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Abstract: The high-speed and high-precision motorized spindle is the future development trend of
the CNC machine tool field, and has become the focus of research in the world. High-speed motorized
spindles tend to develop in the direction of high precision, high speed, low energy consumption,
high efficiency, and high reliability. We undertake a through, systematic review of the development
history perspective of the research on precision bearing technology, dynamic balancing technology,
thermal error measurement and compensation technology with regard to the key technologies of
high-speed motorized spindles. On this basis, the current level of development of key technologies
for high-speed motorized spindles is analyzed, and the objective advantages and disadvantages of
existing technologies are summarized. Finally, the development tendency of high-speed motorized
spindle technology is predicted and foreseen.

Keywords: high-speed motorized spindle; precision bearing; dynamic balancing; thermal error
measurement and compensation; development trend

1. Introduction

As modern machine tools are developing towards high speed and high precision, the
technical requirements for the spindles of machine tools are increasing. The motorized
spindle is one of the core functional components of high-speed machine tools; the motor
of a motorized spindle is placed inside the spindle unit of the machine tool to drive
the spindle. Therefore, the machine drive structure is simplified, and “zero drive” is
achieved [1,2]. Because the motorized spindle has the advantages of its compact structure,
is lightweight, has small inertia and good dynamic performance, the dynamic balance
of the machine tool is improved and the vibration and noise are avoided. The structure
of traditional rolling bearings makes it difficult to meet the requirements of high speed
and high precision for high-speed machine tools, so the research of bearings is one of
the key research objects in the field of high-speed machine tools [3]. As the key support
technology for high-speed motorized spindles, bearings must meet the requirements of
high-speed operation, and have high rotary accuracy and low-temperature rise, in addition
to long service life, especially with regard to maintaining the accuracy. The current high-
speed motorized spindle applied bearings are mainly angular contact ball bearings, liquid
floating bearings, air bearings, and magnetic bearings. But the speed and precision of the
spindle-bearing improvement is based on the premise of high-precision dynamic balance.
For motorized spindles, the unbalance phenomenon is inevitable due to the influence of
factors such as manufacturing, installation error, and material unevenness. Therefore, the
research on the dynamic balance characteristics of the high-speed motorized spindle is
also a hot issue in the key technology of the motorized spindle. At the same time, the
built-in motor and bearings will generate a lot of heat when the spindle is running at
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high speed. The internal structure of the motorized spindle is compact, and if the heat
cannot be removed in time it will lead to thermal deformation of the parts, which will
affect the preload state of the bearings and the machining accuracy of the machine. For
ultra-precision machining machines, the thermal error of high-speed motorized spindle
operation is as high as 90% [4], so the thermal error restricts the improvement of machining
accuracy for the processing machine. Proposing a reasonable and effective method to
suppress thermal error is necessary to improve the accuracy and performance of motorized
spindles’ machining guarantee. Therefore, studying the bearing technology, dynamic
balancing technology, and thermal error measurement and compensation technology of
high-speed electric spindles is necessary. The architecture diagram of the three technologies
synergistically influencing the development of high-speed motorized spindles is shown
in Figure 1.

Machines 2022, 10, x FOR PEER REVIEW 2 of 24 
 

 

also a hot issue in the key technology of the motorized spindle. At the same time, the built-
in motor and bearings will generate a lot of heat when the spindle is running at high speed. 
The internal structure of the motorized spindle is compact, and if the heat cannot be re-
moved in time it will lead to thermal deformation of the parts, which will affect the pre-
load state of the bearings and the machining accuracy of the machine. For ultra-precision 
machining machines, the thermal error of high-speed motorized spindle operation is as 
high as 90% [4], so the thermal error restricts the improvement of machining accuracy for 
the processing machine. Proposing a reasonable and effective method to suppress thermal 
error is necessary to improve the accuracy and performance of motorized spindles' ma-
chining guarantee. Therefore, studying the bearing technology, dynamic balancing tech-
nology, and thermal error measurement and compensation technology of high-speed elec-
tric spindles is necessary. The architecture diagram of the three technologies synergisti-
cally influencing the development of high-speed motorized spindles is shown in Figure 1. 

Bearing 
structures

Bearing 
Characteristics

Modal balancing 
method

Temperature measurement 
point optimization

Thermal error 
prediction model

Dynamic 
balancing

 Influence 
coefficient method

No trial weight 
method

Ceramic bearings

Thermal 
Features

Dynamic 
Features

 Magnetic bearings

liquid floating 
bearings

Air bearings

 
Figure 1. Analysis diagram of high-speed electric spindle technology. 

2. Recent Developments in Precision Bearing Technology 
The high-speed precision bearing is one of the core supporting components of a high-

speed motorized spindle. Bearings are often in high-speed or ultra-high-speed operation, 
so the bearings must have a series of characteristics such as good high-speed performance, 
high dynamic load-carrying capacity, superior lubrication performance, and low heat 
generation. At present, high-speed precision bearings have become the key research and 
development technology in the world. There are four main types of bearings for high-
speed spindles, including angular contact ceramic ball bearings, liquid floating bearings, 
air bearings, and magnetic bearings. The specific classification is shown in Figure 2 [5]. In 
addition, after extensive literature research, recent surveys are presented in this section 
and summarized in Table 1. 

Figure 1. Analysis diagram of high-speed electric spindle technology.

2. Recent Developments in Precision Bearing Technology

The high-speed precision bearing is one of the core supporting components of a high-
speed motorized spindle. Bearings are often in high-speed or ultra-high-speed operation,
so the bearings must have a series of characteristics such as good high-speed performance,
high dynamic load-carrying capacity, superior lubrication performance, and low heat
generation. At present, high-speed precision bearings have become the key research and
development technology in the world. There are four main types of bearings for high-speed
spindles, including angular contact ceramic ball bearings, liquid floating bearings, air
bearings, and magnetic bearings. The specific classification is shown in Figure 2 [5]. In
addition, after extensive literature research, recent surveys are presented in this section and
summarized in Table 1.

2.1. Existing Survey Studies on the Structural Design of Precision Bearings

Angular contact ceramic ball bearings are universally used for high-speed spindle
bearings. The advantages of angular contact ceramic ball bearings are their simple structure,
high rigidity, and high load-carrying capacity. But the ball bearings have the defects of
large vibration amplitude and poor accuracy retention, resulting in a shorter life of the
ball bearings.

In [6], the grease-lubricated ceramic bearing with a piezoelectric ceramic inner ring
was invented. The author invented an improved structure for the ceramic bearing applied
to the steel shaft, due to the temperature change generated by the high-speed operation of
the spindle causing the ceramic material bearing inner ring to broke or slip, and the noise
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of the ceramic bearing affecting the overall quality of the equipment, as shown in Figure 3a.
Different from the structure of traditional ceramic bearings, a new type of dynamic pressure
gas radial ceramic bearing was designed. Driven by the high-speed rotating spindle, the
mating gap between the gas film of the inner ring of the bearing sleeve and the shaft tile
provides the spindle stabilization [7], as shown in Figure 3b.

Table 1. Research work on bearing structures.

Reference Brief Summary Type of Bearing Objective

Wu et al. [6]
Grease lubricated ceramic bearing
with piezoelectric ceramic inner

ring
Ceramic bearing

Avoid the noise caused by fracture
or slipping of the inner ring of the

bearing

Liu et al. [7] New Dynamic Pressure Gas
Radial Ceramic Bearing Ceramic bearing High stability of high-speed

rotating spindle

Jiang et al. [8]
Liquid hydrostatic bearing of the

slotted water cavity type with
varying opposing areas

Liquid floating
bearing

Provide large hydrostatic load
capacity and overcome the defect of

low rotation accuracy of spindle
at high speed

Zhang et al. [9] Hydrostatic floating bearing
of through-hole type

Liquid floating
bearing

Simple structure, easy to achieve the
purpose of spindle suspension

Ko et al. [10] Hydrostatic bearing monitoring
system and monitoring method

Liquid floating
bearing

Real-time monitoring of hydrostatic
bearing performance and fault

warning

Yu et al. [11] Ultra-precise air bearing with
active compound throttling type Air bearing

Suppress micro-amplitude vibration
of air-bearing, improve dynamic

stiffness

Yin et al. [12] Air bearing with replaceable
throttle plug Air bearing Effectively avoid the phenomenon

of “air hammer” in bearing

Keun et al. [13] Improved structure of the
new air bearing Air bearing

Avoid thermal deformation of
bearing

or spindle caused by dynamic
instability of the rotor and high

speeds

Chen et al. [14] Hybrid magnetic bearing structure Magnetic bearing Effective simplification of magnetic
floating bearing structure, saving cost

Zhang et al. [15]
Protective structures for

magnetic bearings and magnetic
assemblies

Magnetic bearing

Solve the problem of spindle and
bearing wear due to easy failure of

the magnetic bearing protection
structure

Chen et al. [16] Coil type axial permanent
magnet electric magnetic bearing Magnetic bearing

Realize axial bidirectional self-
stabilization, less resistance and

lower energy consumption

The liquid floating bearing is a non-direct contact bearing, and the supporting medium
is liquid. The liquid floating bearing has the characteristics of small wear, large support
stiffness, strong damping and shock absorption, high rotary accuracy, and a theoretical
infinite life.
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ceramic bearing.

In [8], the authors designed a liquid hydrostatic bearing with a slotted water cavity
of unequal area. The direction of action of the external load on the bearing points to
the slotted water cavity, and the journal position is biased in the direction of the slotted
water cavity to achieve the purpose of external throttle pressure regulation. The pressure
and bearing area in the hydrostatic groove around the slotted water cavity is larger than
the equal opposite water cavity, and a large hydrostatic bearing force is generated in the
groove, as shown in Figure 4a. Addressing the problem that the overall structure of a
hydrostatic bearing is more complex and not easily serviced, the authors of [9] proposed a
monitoring system and method for the hydrostatic bearing. By using multiple sensors to
monitor the state parameters of the hydrostatic bearing device, multiple state parameters
are sent to the computing unit and use the model of the computing unit to establish a
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performance prediction model with multiple state parameters. The authors achieved real-
time monitoring of the hydrostatic bearing performance and the pre-checking of faults. To
solve the problem of complex structures of liquid hydrostatic bearings mentioned above,
the new structure designed by the authors of [10] achieves high-speed rotation of the
spindle, as shown in Figure 4b. The through-holes are opened in the housing of the bearing.
The liquid cavity formed between the outer wall of the sleeve and the inner wall of the
bearing housing and the through-holes is connected. When the spindle and the sleeve are
installed, a slit appears. With the liquid flowing through the liquid chamber and entering
the slit, the liquid in the gap causes the pressure to increase due to the viscous property
and finally the spindle floats.
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Gas is used as the supporting medium of air bearings in order to achieve ultra-high-
speed and frictionless operation. However, the viscosity of the gas medium is extremely
low and one thousandth of the lubricating oil’s viscosity, resulting in a low stiffness of the
air bearing. Air bearings are used in high-speed precision machining with low loads.

In [11], the authors proposed that an ultra-precision air bearing is suitable for ultra-
precision manufacturing. The signal is produced by the compound throttling control
unit, and the drive unit analyzes the signal for expansion and contraction. The throttling
height and throttling area are adjusted to change the pressure distribution in the air film
gap. To make the maintenance of air float bearings easy, the authors of [12] replaced the
conventional single outlet hole with a replaceable throttle plug and throttle slot. The throttle
plug is provided with a throttle slot and inserted into the outlet slot, and the throttle slot
is connected to the outlet slot to realize the formation of a high-pressure air film on the
floating surface, as shown in Figure 5a. Different from the traditional air-bearing, the
authors of [13] designed a new air bearing structure that consisted of three main parts: a
bearing support, spring, and damper. The part of the bearing bracket that mates with the
rotor is made of a rigid body. The rigid body and radial shaft structure are used to support
the air. The bearing bracket is supported by springs and dampers to eliminate the energy
generated by the vibration of the bearing bracket, as shown in Figure 5b.



Machines 2022, 10, 145 6 of 23
Machines 2022, 10, x FOR PEER REVIEW 6 of 24 
 

 

  
(a) (b) 

Figure 5. Structure type of air bearings. Magnetic bearing (a) An air bearing with replaceable 
throttle plug; (b) A new air bearing structure. 

The magnetic bearing can make the spindle reach high speeds without mechanical 
contact. However, the cost is high, the control system is too complicated, the heat problem 
is not easy to solve, and magnetic bearings are suitable for special applications. 

In [14], the authors invented a structure of the hybrid levitation bearing and com-
bined active and passive levitation techniques. The uncontrolled structure with passive 
levitation simplifies the structure of the magnetic bearing, and the magnet structure with 
a mixture of electromagnetic and permanent magnet facilitates energy savings, as shown 
in Figure 6a. The protective structure of magnetic bearings is prone to failure, leading to 
accelerating the wear of spindles and bearings; the authors of [15] investigated a protec-
tive structure for magnetic bearings and magnetic bearing assemblies to address this prob-
lem. To reduce the energy consumption of magnetic levitation bearings to a lower level 
and save costs, the authors of [16] designed a magnetic bearing with an axial permanent 
magnet motor. The axial bi-directional self-stabilization was achieved without a control 
system, and the bearing was subjected to less resistance and consumed less energy. The 
magnetic bearing of the coil type is shown in Figure 6b. 

 
 

(a) (b) 

Figure 5. Structure type of air bearings. Magnetic bearing (a) An air bearing with replaceable throttle
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The magnetic bearing can make the spindle reach high speeds without mechanical
contact. However, the cost is high, the control system is too complicated, the heat problem
is not easy to solve, and magnetic bearings are suitable for special applications.

In [14], the authors invented a structure of the hybrid levitation bearing and combined
active and passive levitation techniques. The uncontrolled structure with passive levitation
simplifies the structure of the magnetic bearing, and the magnet structure with a mixture
of electromagnetic and permanent magnet facilitates energy savings, as shown in Figure 6a.
The protective structure of magnetic bearings is prone to failure, leading to accelerating the
wear of spindles and bearings; the authors of [15] investigated a protective structure for
magnetic bearings and magnetic bearing assemblies to address this problem. To reduce
the energy consumption of magnetic levitation bearings to a lower level and save costs,
the authors of [16] designed a magnetic bearing with an axial permanent magnet motor.
The axial bi-directional self-stabilization was achieved without a control system, and the
bearing was subjected to less resistance and consumed less energy. The magnetic bearing
of the coil type is shown in Figure 6b.

2.2. Development of Bearing Thermal Performance Research

The thermal characteristics of the spindle-bearing system are the main constraint to
improving the cutting speed and machining accuracy under the high-speed operation of
machine tools. Scholars in developed countries are still relatively early in their research on
the thermal characteristics of spindle-bearing systems. In this section, the research results
related to the development of the thermal properties of bearings are presented. These are
also summarized in Table 2.

Scholars are still in the relatively early stages of this research and have proposed
basic thermal theories. The authors of [17] first proposed a heat source model for bearings
which laid the foundation for subsequent studies to calculate the thermal characteristics
of spindles, but the model was limited to use under low and medium-speed operating
conditions. In the same year, the authors of [18] Fafnir Bearing Company in the United
States further proposed the calculation method of friction force and friction moment in the
contact area of the raceway; the method is mainly used to solve the bearing spin-sliding
friction heat generation. In [19], the authors of SKF Bearing Company, Philadelphia, PA
USA, proposed a method for calculating the temperature network distribution of bearing
systems. Empirical formulas were summarized regarding the forced convection heat
transfer coefficient of the lubricant on the bearing surface, laying the foundation for the
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establishment of a bearing heat transfer model. Based on the above mentioned literature,
the authors of from the University of Michigan, Ann Arbor, MI, USA [20] established a heat
transfer network inside the bearing and investigated the effect of transient preload force
changes caused by uneven thermal expansion of the bearing. Based on the phenomenon
that the thermal deformation of the bearing causes a change in the preload force, the authors
at Purdue University in West Lafayette, IN, USA [21] established a model of a thermally
induced preload of motorized spindle and proposed a scheme to adjust a thermally induced
preload in order to analyze the change of preload caused by thermal expansion. However,
the effect of heat loss on the motor was not considered in the modeling. In [22], the
authors proposed a finite element difference method to establish an analytical model of
the motorized spindle heat source, and a detailed theoretical analysis of the heat source
and heat transfer mechanism of the spindle system was calculated. Based on the heat
generation mechanism of bearings proposed in [19], the authors of [23] further proposed a
qualitative power flow model. The model is used to calculate the thermal power loss of a
high-speed motorized spindle and the temperature rise of each component. However, the
effect of the thermal expansion of bearings on the dynamic characteristics of the spindle is
not considered.

Attempting to address the problem that motor heating is not considered in [21], the
authors of [24] studied the loss in heat generation of the motor and friction heat generation
of bearings in the high-speed motorized spindle and analyzed the heat dissipation char-
acteristics of the oil-water heat exchange cooling system and oil-air lubrication system. A
finite element analysis model of the temperature field of the high-speed motorized spindle
was established, and the temperature field of the spindle was calculated using ANSYS
software. The authors from Chongqing University, Chongqing, China [25] developed a
thermal-mechanical coupling model of a single-row angular contact ball bearing. The
authors analyzed the friction loss and dynamic support stiffness of the bearing during
spindle operation by studying the thermal response of the system and the influencing
factors of the preload mode. By establishing the electromagnetic loss model, the heat gener-
ation pattern of the bearing and motor was obtained. In the same year, the authors of [26]
developed a power flow model of a motorized spindle based on the law of energy conser-
vation. The motor loss model was refined and analyzed by considering the relationship
between various losses. The model makes the heat calculation of the thermal state model
more accurate. In [27], the authors of Xi’an Jiaotong University, Xi’an, China established
a thermal-mechanical coupling analysis model regarding the influence of spindle speed,
initial preload force, and ambient temperature on bearing preload force. The transient
temperature rise and thermal deformation of the spindle system are calculated by the
finite element method, and the thermal preload force and radial stiffness of the bearing
are calculated and tested by the preload force test for the bearing preload force variation.
Aiming at the difficult problem of measuring bearing preload, a thermally induced preload
testing system for bearings was developed [28]. In contrast to the traditional contact-time
measurement or infrared measurement methods, the authors proposed a new measurement
technique that uses fiber-optic grating sensors to monitor the preload force of bearings
online, using the amount of change in wavelength to determine the preload force. However,
the fiber optic grating is highly sensitive to temperature and strain, and the fiber optic grat-
ing sensor is highly susceptible to ambient temperature changes; there is a situation that the
measured data is not accurate. In the same year, a new thermal resistance network model
was established based on the fractal theory [29]. The authors analyzed the steady-state and
transient temperatures at the nodes by listing the heat balance equations of the key nodes of
the motorized spindle system. The accuracy of the contact thermal resistance and thermal
resistance network model between circular contact surfaces was verified through fractal
parameter identification, heat transfer and temperature rise experiments. The results show
that this theory can predict the temperature rise of each component of the spindle system.
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Table 2. Bearing thermal performance research works.

Reference Brief Summary Year Objective

Palmgren et al. [17] The bearing heat source model
is proposed for the first time 1959

The subsequent research on thermal
characteristics of spindle has laid

a foundation

Jones et al. [18]
The calculation method of friction
force and friction moment in the

contact area of the raceway is proposed
1959 Mainly used to solve for bearing

spin-sliding friction heat generation

Harris et al. [19] A temperature network distribution
method for bearing system is proposed 1973 Laying the groundwork for a heat

transfer model of the bearing

Stein et al. [20] Internal heat transfer network
of the bearing is established 1994

The effect of transient preload force changes
caused by uneven thermal expansion of the

bearing is investigated

Tu et al. [21] Thermally induced preload force model
for motorized spindles is proposed 1996 Analysis of the changes in bearing preload

force caused by thermal expansion

Bossmanns et al.
[22]

Analysis model of motorized spindle
heat source based on finite element

difference method is proposed
1999

Effective analysis and calculation of the heat
source and heat transfer mechanism of the

spindle system

Bossmanns et al.
[23]

A qualitative power flow model is
proposed 2001

To provide a theoretical basis for the
subsequent study of the power balance of

heat
generation and heat dissipation in a

motorized spindle

Huang et al. [24]
A finite element model of the

temperature field of high-speed
motorized spindle was established

2003 The loss heat generation of motor and
friction heat generation of bearing is studied

Chen et al. [25]
A thermal-mechanical coupling model

of a single-row angular contact ball
bearing is established

2013
The factors influencing the thermal response

and preload mode of the system are
investigated

Chen et al. [26]
The motorized spindle power flow model

was established based on the
law of energy conservation

2013
Refined analysis of the motor loss model for
more accurate heat generation calculations

in the thermal state model

Zhou et al. [27]
The thermal-mechanical coupling

analysis model of high-speed
motorized spindle is established

2015
The effects of spindle speed, initial preload

and ambient temperature on bearing preload
are studied

Lu et al. [28] A thermally induced preload testing
system for bearings is established 2021 A new measurement technique for online

monitoring of bearing preload is proposed

Meng et al. [29] The thermal resistance network model
based on fractal theory is proposed 2021

Reliability of fractal theory applied to
thermal

resistance network models for predicting
temperature rise is demonstrated

2.3. Research Progress on the Thermal-Dynamic Coupling Performance of Spindle and Bearing

In the actual operation of motorized spindles, heat generation in the motor and
bearings causes changes in bearing preload and stiffness. Heat generation is an important
factor affecting the thermal deformation of the spindle and the dynamic characteristics
of the spindle-bearing system. At present, the thermal dynamic coupling performance of
spindle-bearing has been studied by many scholars and is summarized in Table 3.



Machines 2022, 10, 145 9 of 23

Table 3. Research work on the thermal-dynamic coupling performance of spindles and bearings.

Reference Brief Summary Year Objective

Kim et al. [30] An integrated thermal-mechanical
prediction model was developed 2001

Study on the frictional torque and heat
generation of bearings to change the spindle

system stiffness angle

Jiang et al. [31]
The calculation model of thermal

deformation and inherent frequency of
the spindle is proposed

2001
The problem of nonlinear characteristics of
bearing load and bearing deformation and

the effect of frictional heat is solved

Lin et al. [32]
The dynamic-thermal functional model
of the integrated high-speed motorized

spindle is established
2003

The effect of thermally induced preload on
bearing stiffness and overall spindle

dynamics
is quantitatively discussed

Li et al. [33]
The dynamics model of the spindle-

bearing “thermal-mechanical coupling”
system is established.

2004 Motorized spindles with complex physical
characteristics or geometries are solved

Holkup et al. [34]

The thermal-mechanical coupling model
of the spindle-bearing system is
established based on the finite

element method

1996

The spindle-bearing system model can
accurately predict the temperature

distribution
and thermal displacement of the system is

verified

Song et al. [35] The spin-generated heat model of the
bearing is established 1999

Analysis of the causes of bearing failure
provides

guidance for predicting dangerous bearing
failures

Yu et al. [36]

A coupled model of dynamic-thermal
characteristics of the bearing is

established
based on the thermal network method

2001

Study on the effect of thermal deformation
on bearing contact parameters under

different
operating conditions

Liu et al. [37]
The thermal-mechanical coupling
dynamics model of a high-speed
motorized spindle is established

2003
To provide a theoretical basis for subsequent

research on thermal compensation of
high-speed motorized spindles

In [30], the authors of the Gwangju Institute of Science and Technology, Gwangju,
Korea, developed an integrated thermal-mechanical prediction model. The frictional torque
of the bearing and the heat generation cause the change of the space to change the angle of
the spindle system’s stiffness. And the cooling part of the spindle system and the control
method are designed optimally.

For the nonlinear characteristics of bearing load and bearing deformation and the
effect of frictional heat, the authors of [31] established a computational model of thermal
deformation and inherent frequency of the spindle. In [32], the authors established a
comprehensive dynamic-thermal functional model of a high-speed motorized spindle. The
effect of a thermally induced preload on bearing stiffness was discussed. And the variation
of centripetal force and gyroscopic moment of the rotating spindle was profiled. However,
thermal deformation of the rotor due to external loads has not been considered. At the same
time, the factors of speed and temperature rise of the rotor that changes the support stiffness
of the spindle have not been analyzed. Based on the consideration of the bearing stiffness,
contact load, and dynamic response of the spindle support, the authors of [33] established
a thermal-mechanical coupling dynamics model of the spindle and bearing. By coupling
the thermal expansion at the bearing connection and the heat transfer in the whole system
with the dynamic model of a spindle, the thermal expansion and dynamic characteristics
of the bearing were simulated and analyzed. The effect of the remaining variables on the
inherent frequency was analyzed. The dynamics model is capable of solving motorized
spindles with complex physical characteristics or geometrical forms. The authors from the
Czech Technical University in Prague, Czech [34] developed a thermal-mechanical coupling
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model of the spindle-bearing system based on the finite element method. At the same time,
the effects of the heat generation of the motor and bearings on the spindle components were
considered, and the transient changes of temperature, deformed lubricant viscosity, and
bearing stiffness were analyzed. The results show that the spindle-bearing system model is
capable of predicting the temperature distribution and thermal displacement of the system.
On the basis of [34], the authors of Jilin University, Changchun, China [35] established a
bearing heat generation model considering the spin-generated heat of bearings, analyzed
the spin-generated heat of bearings, and dissected the causes of bearing failure under
the thermal-force coupling characteristics of bearings at high spindle speeds. The spin-
generated heat model guides the failure prediction of bearings. In [36], the authors from
Shanghai University, Shanghai, China considered the thermal deformation of the part due
to frictional heat generation in the bearing. The steady-state temperature field model of the
bearing was established by using the thermal network method, and the coupled dynamic-
thermal characteristics model of the bearing was further proposed. The results show
that thermal deformation has a large impact on the bearing under high-speed operation.
And the thermal deformation under different operating conditions leads to disparate
contact parameters of the bearing. The authors of [37] established a coupled thermal-
mechanical dynamics model for a high-speed motorized spindle and analyzed the coupling
relationship between the bearing model, the thermal model, and the spindle dynamics
model. The dynamic behavior of the spindle system and the thermal displacement of the
system were investigated, and the accuracy of the predictive model was verified through
experiments to improve the model accuracy. The thermal-mechanical coupling dynamics
model provides theoretical support for the subsequent thermal compensation of high-speed
motorized spindles.
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3. Recent Research on Dynamic Balance Technology

In the case of high-speed rotation and cutting, a small unevenness in the operation of
the motorized spindle will produce a huge centrifugal force resulting in the vibration of the
whole machine tool. Excessive vibration causes serious wear inside the spindle, increasing
the dynamic load carried by the spindle, and the life and accuracy of the spindle are reduced.
The dynamic characteristics of high-speed motorized spindles affect the machining quality
and cutting ability. Therefore, the study on dynamic balancing characteristics of high-speed
motorized spindles is a hot issue in the key technology of motorized spindles.
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To achieve an accurate dynamic balancing of the post-installation motor rotor, the
factors of force and self-excited vibration ability that cause dynamic balancing of the
problems are considered. The designed components of a spindle are considered in terms
of the effects of two different vibrations to ensure good running accuracy at high speed.
The dynamic balancing method is the necessary condition and method for online dynamic
balancing of high-speed motorized spindles. The primary method of dynamic balancing for
rigid spindles is the influence coefficient method. The main methods of dynamic balancing
for flexible spindles are the modal balancing method and no trial weight balancing method.
Recent research works have been summarized in Table 4.

Table 4. Research work on the dynamic balance technology.

Reference Brief Summary Method Objective

Zhang et al. [38] Influence coefficient method for
maximum total phase difference

Influence
coefficient

method

Provide the theoretical basis for the
two-sided impact factor method

Chen et al. [39]
Online dynamic balancing method for
low pressure rotors with least squares

influence factor

The vibration amplitude of the rotor
is reduced

Wang et al. [40] Single plane influence coefficient method
The problems of misalignment and long
equilibrium time during mass movement

are solved

Zhang et al. [41] Single plane influence coefficient method The choice of counterweight position is
proposed

Zhao et al. [42] Dual-plane influence coefficient method
Verified that the dual-plane influence
coefficient method is more effective in

optimizing vibration measurement points

Zhang et al. [43] Dual-plane influence coefficient method The effect law of counterweight size with
counterweight plane shift was found

Zhu et al. [44] Single and dual-plane influence
coefficient method

The multifaceted influence coefficient
method applied to flexible rotors is

derived

Khulief et al. [45] Combined influence coefficient method
and modal equilibrium method

Low-speed balancing problem of
high-speed rotors is solved

Qu et al. [46] Holographic spectrum theory

Modal
equilibrium

method

A new technique of holographic
spectrum is introduced on the basis of the

modal
balance method

Liu et al. [47] On-site holographic dynamic balancing
method

Multiple sensor information is fused with
flexible rotor balancing technology to

improve rotor balancing accuracy

Chen et al. [48] Modal dynamic balance method for
flexible rotors

The reliability of the flexible rotor modal
dynamic balancing method was verified

Liu et al. [49] Dual-plane spindle balancing method
based on the modalities of the spindle

The validity of dual-plane dynamic
balancing method is proved

Zhong et al. [50] Modal equilibrium theory Avoid the blindness of choosing the
frontal and balance speed
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Table 4. Cont.

Reference Brief Summary Method Objective

Sun et al. [51]
The dynamic balancing method without

trial weight based on multi-factor
coupled finite element dynamics model

No trial weight
method

The unbalanced vibration of each stage of
the spindle is suppressed

Bin et al. [52]
The least squares method solves the

system of equilibrium vector equations to
obtain the equilibrium counterweight

Complete dynamic balancing of the
flexible spindle without trial weight is

achieved

Jia et al. [53] The dynamic balancing method without
trial weight for high-speed flexible rotors

The problem of low balancing efficiency
due to multiple test weights required for
traditional dynamic balancing is solved

Zhang et al. [54]

Based on a multivariant finite element
analysis model, the dynamic balancing

method without trial weight
is performed

The model can accurately describe the
dynamic characteristics of the spindle

Xu et al. [55] Dynamic balancing method without
trial weight

The method is proven to reduce the
unbalance of rotating shafts

Zhang et al. [56]
Genetic algorithm and particle swarm
optimization are combined to identify

multi-point unbalance of rotor

The reliability of neural network
algorithms for online prediction of

rotor’s unevenness is proposed

Zhang et al. [57] the dynamic balancing method without
trial for modalities

Suppression of vibration caused by rotor
unbalance

3.1. Influence Coefficient Method

The influence coefficient method of a rigid spindle includes the single plane influence
coefficient method and double plane influence coefficient method. The difference is whether
the ratio of spindle length to spindle diameter is greater than 1. If the spindle length is
larger than the diameter, the double-plane influence coefficient method is suitable. When
the spindle length is short, the single-plane influence coefficient method is favored.

The single plane influence coefficient method is a way used for dynamic balance
calibration of rigid rotor shaft systems. The influence factor α represents the amplitude
of vibration generated at the testing surface per unit weight, and the impact factor is
expressed as

α = B − A/Q (1)

If the rotor is balanced, a counterweight is required on the calibration surface, as
expressed by the following equation:

Q0 = A/α. (2)

The authors of [38] proposed an influence coefficient method with the maximum total
phase difference to select two ideal correction planes. When the dual correction planes are
selected separately in the sensitive region, the overall amplitude of the correction vector
is minimized. A scheme is provided for the subsequent study of the two-sided influence
coefficient method. In [39], authors at Northwestern Polytechnic University, Fremont, CA,
USA established a least-squares influence coefficient based field dynamic balancing method
for low-pressure rotors for large culvert ratio turbofan engines. During a weight test, the
amplitudes detected on the three pivot points of the rotor were reduced by 75%, 78.8%
and 68%. When the influence coefficient is used again, the balance without trial weight
can be carried out. The amplitudes at the three pivot points were reduced by 66.7%, 72%
and 81%. The authors of [40] used the influence coefficient method for online dynamic bal-
ancing of the spindle to achieve amplitude reduction of the spindles at different rotational
speeds. Compared with the experimental process of manual balancing, the feasibility and
accuracy of the mass block movement path are higher. The authors solved the misalign-
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ment problems and long balancing time during the mass block movement. The authors
of [41] used the single-plane influence coefficient method for an online dynamic balancing
experimental study of the electromagnetic slip ring type. The oscillatory characteristics of
the experimental platform and the influence of the spindle speed on the online dynamic
balancing system were analyzed, and the selection method of the counterweight position
was proposed. Theoretical support is provided for studying dual-plane dynamic balancing
and modal analysis.

The idea of the dual-plane influence coefficient method is proposed based on the
single-plane influence coefficient method. Two calibration planes (1, 2) and two detection
planes (A1, A2) perpendicular to the spindle are established, as shown in Figure 7.
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The sensor records the values of the two measurement surfaces without counterweight
as A10 and A20. The additional weight is performed on calibration surface 1 to obtain the
values of A11 and A21 on the two test surfaces. Then the counterweight on calibration
surface 1 is removed and the additional weight is performed on calibration surface 2 to
obtain the two values of A12 and A22 on the test surfaces. The resulting calibration surface
1 weighting on the A1 and A2 surfaces is α11 and α12, as shown in the following equation.
The formula is as follows: 

α11 = A11 − A10/Q1
α12 = A12 − A20/Q1
α21 = A21 − A10/Q2
α22 = A22 − A20/Q2

. (3)

Substituting the influence coefficients into the above equation, the required calibration
masses Q10 and Q20 for calibration surface 1 and calibration surface 2 are[

Q10
Q20

]
=

[
α11 α12
α21 α22

][
A10
A20

]
(4)

For the dynamic balancing problem of the dual-plane influence coefficient method,
the authors of [42] analyzed that the single plane dynamic balancing method in reducing



Machines 2022, 10, 145 14 of 23

the vibration of one measurement point will lead to an increase in the oscillatory trend of
the other measurement point. The effect of vibration was not eliminated. On this basis,
the better effect of using the biplane influence coefficient method to optimize vibration
measurement points was proposed. The authors of [43] studied the effect of counterweight
size with counterweight plane transferring in the dual-plane influence coefficient method,
the optimal configuration plane selection position was proposed, and the law of the addi-
tional weight was found. With the gradual study of the influence coefficient method by the
aforementioned scholars, the authors of [44] studied the single plane influence coefficient
method and the dual-plane influence coefficient method for rigid rotor dynamic balancing.
The multi-plane influence coefficient method applied to flexible rotors was derived. The
dual-plane influence coefficient method was focused on the calibration of rigid spindle
dynamic balancing. The results showed that the dual-plane influence coefficient method
achieved good results in the online dynamic balancing of spindles.

3.2. Modal Balancing Method

The modal balancing method is also called the vibration pattern balancing method.
Based on the vibration principle of the rotating shaft, the vibration of the spindle at a
certain speed is calculated, and the vibration mode is decomposed into the main vibration
modes of each order. Then the main vibration modes are balanced to achieve the balance
of the whole rotor system. Most scholars have made great progress in researching modal
balancing methods to apply the modes to balance the spindle. Figure 8 shows the first three
mode shapes of the spindle.
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Foreign scholars have studied the modal balance method relatively early. Since
1953, Melatal first proposed the concept of the modal balance method and analyzed the
characteristics of the critical speed corresponding to the main vibration patterns orthogonal
to each order. In 1983, based on Melatal’s research, Saito S. et al. developed a new
imbalance response method for liquid film bearing-flexible rotors. The problem of choosing
the calibration surface during modal balancing was solved, the position of the unbalanced
mass was corrected, and the problem of gravitational sag was handled. Distinguishing
from the previous single modal balancing method for solving vibration problems, the
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authors of [45] proposed a scheme incorporating influence coefficient and modal balancing
techniques for solving the low-speed balancing of high-speed rotors. The applicability
and reliability of the plan combined with the influence coefficient method and modal
balance technique are verified by building a flexible rotor dynamic balancing experimental
bench. With the continuous development of technology, researchers have introduced a
new technique of holographic spectrum based on the modal balance method. The authors
of [46] introduced the holographic spectrum technique based on the modal equilibrium
method. The performance of the rotor balancing process on the holographic spectrum
was analyzed, and the effect of rotor balancing was predicted by using the phase-shifted
ellipse. Based on the holographic spectrum theory, the authors of Guangdong Power Grid
Corporation Institute of Electric Power Science, Guangdong, China. [47] are the first to use
a field holographic dynamic balancing method that integrates multiple sensor information
with flexible rotor dynamic balancing technology. A genetic algorithm was used to optimize
the data and improve the accuracy and efficiency of rotor balancing. In [48], the authors
of Northwestern Polytechnic University, Fremont, CA, USA proposed a modal dynamic
balancing method for a flexible rotor considering the influence of elastic support. The
critical speed and the modal vibration pattern of the rotor were found by using the finite
element model. The experimental results show that the relative error between the critical
speed and the measured results is 0.36%, and the modal confidence of the first-order
calculated and measured vibration patterns is 0.9906. The authors of [49] used a dual-plane
spindle dynamic balancing method to reduce the amplitude of the spindle at 5000 r/min
from 12 µm to 1.2 µm. The effectiveness of the dual-plane dynamic balancing method was
demonstrated. The equilibrium speed is determined according to the modal balance theory,
and the authors of [50] used the three-trial weight method for calculating the weight. The
finite element method was established to model the rotor, and the correction plane was
selected by sensitivity analysis. The results show that the residual vibration of the rotor is
reduced and the blindness of the traditional balancing method for selecting the front side
is avoided.

3.3. No Trial Weight Method

Dynamic balancing method without trial weight is a new method to obtain the ampli-
tude and phase of spindle unbalance without adding counterweight to the spindle. The
dynamic balancing method without trial weight is based on the traditional modal balancing
method combined with finite element analysis. By considering the model shape of the
spindle, critical speed and other factors, the amplitude and phase of the spindle unbalance
are calculated. Figure 9 shows the dynamic balance flow of the mode without trial weight.

In [51], the authors used the finite element method to establish the dynamics model of
the spindle with multi-factor coupling and proposed a dynamic balancing method without
trial weight based on the finite element dynamics model of the high-speed motorized
spindle. The spindle unbalance vibration of each order is suppressed. To reduce the
number of test weights and save balancing time, the authors of [52] used the least squares
method to obtain the required balancing of the additional weight for the shaft system by
solving the system of balancing vector equations. The counterweight balancing test was
performed on four planes of the shaft system, resulting in a reduction of up to 53% at a
single point. The complete balancing of the flexible spindle system without test weights
was achieved. In response to the problem of low balancing efficiency due to the need for
multiple trial weight in conventional balancing, the authors of [53] proposed a high-speed
flexible rotor modal balancing method without trial weight. After balancing without trial
weight, the first-order amplitude of the spindle is reduced by 60.6% and the second-order
amplitude is decreased by 74%. The balancing efficiency and the safety of balancing are
improved. With the increase of factors affecting the dynamic balance of the high-speed
electric spindle under consideration, the authors of [54] constructed a multi-variant finite
element analysis model of a high-speed motorized spindle, and the bending vibration
pattern and the amplitude-frequency response of the spindle were calculated. The results
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showed that the errors of the first three resonant frequencies calculated using the dynamics
model and the experimental measurements were 0.16%, 4.38%, and 5.95%. The analysis
model is capable of accurately describing the dynamic characteristics of the spindle. The
authors of [55] designed a counterweight block conforming to the dynamic balancing
scheme and established a bearing support model. The simulation was carried out using
the dynamic balancing method without trial weight and the vibration acceleration during
the actual counterweight was measured. The dynamic balancing scheme was verified by
experiments. The results show that the dynamic balancing method without trial weight can
reduce the unevenness during the rotation of a spindle. Artificial intelligence algorithms
applied to the modal dynamic balancing method without trial weight had a positive
effect. The authors of [56] used a combination of genetic algorithm and particle swarm
optimization to achieve accurate identification of the multi-point unbalance of rotors. The
results show that the integrated genetic algorithm and particle swarm optimization are
effective in predicting the rotor unbalance online and guiding the dynamic balancing
method without trial weight. The cost of on-site balancing is reduced and the balancing
efficiency is improved. To suppress the vibration caused by the unbalance of the rotor,
the authors of [57] based their study on the modal trial-weightless dynamic balancing
method. By collecting the vibration data below the critical speed, simulation analysis and
experiments show that the vibration caused by unbalancing is suppressed. The smooth
and safe operation of the rotor at high speed is ensured.
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4. Research Progress of Thermal Error Measurement and Compensation Technology
4.1. Temperature Measurement Point Optimization Technology

Temperature measurement point optimization is one of the primary research directions
in the field of thermal error compensation for machine tools. Regarding the optimization of
temperature measurement points of the spindle, extensive research has been conducted
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by a wide range of scholars. The methods used mainly include the stepwise regression
method, fuzzy clustering method and gray system theory.

The stepwise regression method is the preferred method to study multivariate mod-
eling, but in some cases, the calculation takes a long time when the variables are large.
In addition, the stepwise regression method only considers the correlation between the
thermal error and each temperature, which leads to coupling between temperature vari-
ables in thermal error modeling and reduces the model accuracy. Therefore, the stepwise
regression method is used for thermal error models with a small number of independent
variables. In [58], the authors proposed an improved binary grasshopper optimization
algorithm (IBGOA) combined with a stepwise regression method for temperature-sensitive
point screening. Compared with the traditional fuzzy C clustering (FCM), the predictive
error was reduced to about 30% on average.

The fuzzy clustering method aggregates temperature measurement points into multi-
ple categories, and one temperature point from each category is selected for calculating
thermal error. After the variables are classified and then grouped, the most relevant
variables are selected as the basic variables of the category. The more representative tem-
perature variables are selected from the basic variables and applied to modeling. The fuzzy
clustering method avoids the coupling between variables and improves the efficiency of
finding the optimal temperature measurement point. However, gray system theory is
suitable for a small sample size. Scholars tend to integrate the fuzzy clustering method with
the gray theory to filter the optimized temperature variables. In [59], the authors used gray
system theory to optimize the temperature variables in the thermal error model from 16 to
four. The robustness of the model and the prediction accuracy was improved. The authors
of [60] used fuzzy C-mean clustering and correlation analysis to optimize the temperature
variables from 24 to 5. In [61], the authors used a k-means clustering algorithm to cluster
and filter the temperature measurement points at different locations. The relationship
between temperature and thermal error of the spindle was analyzed by Pearson correlation
coefficient calculation, and the number of temperature measurement points was reduced
from 8 to 2. The optimal combination of measurement points was selected and applied
to the thermal error modeling. The authors of [62] proposed a method for optimization
of temperature measurement points based on a combination of fuzzy clustering and gray
theory. The 64 temperature variables were divided into 10 for clustering, and the screened
three temperature variables were used in the thermal error prediction model.

Research work on the optimization of temperature measurement points is also sum-
marized in Table 5.

Table 5. Research work on the optimization of temperature measurement points.

Reference Method Type

Sun et al. [58]

Improved Binary Locust
Optimization Algorithm
and Stepwise Regression

Method

Stepwise Regression Method

Yan et al. [59] Gray System Theory Gray System Theory Method

Shen et al. [60]
Fuzzy C-means clustering
and correlation analysis

method
Fuzzy clustering method

Zhou et al. [61] K-means clustering algorithm Fuzzy clustering method

Zhang et al. [62] Fuzzy clustering combined
with gray theory Fuzzy clustering method

Therefore, too much temperature measurement point selection will bring too much
measurement error, and too little temperature measurement point selection will result in
incomplete information contained in the temperature data. So a scientific temperature
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measurement point optimization strategy is crucial. By using intelligent algorithms to filter
multiple temperature measurement points, effective temperature measurement points are
obtained, and in the process of modeling thermal errors in a high-speed motorized spindle,
effective temperature variables are helpful to improve the accuracy and generalization
ability of prediction models for thermal error compensation.

4.2. Thermal Error Compensation Modeling Technology

The thermal error prediction model of the high-speed motorized spindle is the core of
the thermal error compensation system. Using temperature data to predict the change of
thermal displacement, the establishment of the thermal error prediction model affects the
accuracy and generalization ability of the thermal error compensation system. In the study
of thermal error modeling of high-speed motorized spindles, researchers have widely used
the multiple regression method, gray theory and neural network method. In this section,
the research results related to thermal error modeling are presented and summarized
in Table 6.

Table 6. Research work on thermal error prediction models.

Reference Brief Summary Method Effect of Prediction Accuracy

Xue et al. [63] Partial least squares regression method Multiple linear
regression method Average

Miao et al. [64] Unbiased estimation splitting method Multiple linear
regression method Good

Zhou et al. [65] Classical multiple linear regression
method

Multiple linear
regression method Fair

Jiang et al. [66] Standard grey system model Multiple linear
regression method Average

Zhang et al. [67] Serial Grey neural network and parallel
grey neural network Grey theory Good

Wang et al. [68]
Comparison of grey prediction model

and
BP neural network prediction model

- -

Ma et al. [69] Particle swarm optimization optimized
BP model Neural network Good

Xie et al. [70]
Thinking evolutionary algorithm

optimized
BP model

Neural network Good

Wu et al. [71]
Simulated annealing algorithm coupled

with particle swarm algorithm to
optimize BP model

Neural network Good

Sun et al. [72] Bat algorithm optimized BP model Neural network Excellent

Lv et al. [73] Generalized radial basis function neural
network prediction model Neural network Good

Zhang et al. [74]
Optimization of radial basis function

neural
network model by genetic algorithm

Neural network Excellent

The multiple regression method is more predictive in thermal error modeling. The au-
thors of [63] established a multiple linear regression model based on the partial least squares
regression method and analyzed the relationship between the data of each temperature
measurement point and the thermal error. The results showed that the model value was
103.4072 and the coefficient of determination was 0.9858. The model had a strong predictive
ability, but there was a defect of inaccurate prediction accuracy. The unbiased estimation
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algorithm for multiple linear regression appears to distort the parameter estimates of the
model when dealing with thermal error modeling with multiple covariance. Therefore, the
authors of [64] proposed an unbiased estimation splitting algorithm for dealing with covari-
ance data. The algorithm divides the modeling process into multiple steps to complete, and
each step only regresses one independent variable. The comparison results show that the
predictive accuracy and robustness of the unbiased estimation splitting model are better
than the classical multiple linear regression model. Based on the multiple linear regression
method, the authors of [65] established a cooling prediction model for motorized spindles
by considering the factors of flow rate and the temperature of cooling water. The accuracy
of the model was verified by three test methods, including a judgment coefficient test, a
significance test of the regression coefficient, a significance test of the regression equation,
and residual analysis. The influence of motorized spindle heat on machining performance
is reduced, and the purpose of thermal error compensation is achieved.

Gray theory was earlier applied to thermal error prediction models. Based on a genetic
algorithm to search for the optimal dimension n and weight value λ, the authors of [66]
proposed an optimal thermal error modeling strategy based on the standard gray model
(GM [1,1]). This prediction model reduces the original error by 80%. In [67], the authors
combined gray models with artificial neural networks to build serial gray neural networks
(SGNN) and parallel gray neural networks (PGNN) to predict thermal errors. The results
showed that the gray neural network methods improved the robustness and predictive
accuracy compared with the traditional gray theoretical model and artificial neural network.
However, the gray theory suffers from a lack of predictive accuracy compared to artificial
neural networks. The authors of [68] compared the GM (1, n) gray prediction model and
the BP neural network prediction model. The results showed that the average relative
error between the predictive results of the BP neural network model and the measured
results was 5.19%, which was smaller than the average relative error between the predictive
results of the gray prediction model and the measured results. Therefore, the artificial
neural network prediction model is more effective in improving the accuracy of spindle
thermal error prediction. In [69], the authors proposed a new criterion of the particle
swarm optimization (PSO) to improve the generalization ability of the model by optimizing
the parameters of the BP model with particle swarm optimization. By establishing the
thermal error PSO-BP model of the spindle, the convergence and convergence speed of
the original model were improved, and the predictive accuracy of the prediction model
was improved. To reduce the thermal errors generated during spindle operation, the
authors of [70] analyze the shortcomings of the simulated annealing algorithm (SAA) and
the particle swarm optimization (PSO). The BP neural network prediction model was
optimized by coupling the SAA model to the PSO model, and the accuracy of the prediction
model was experimentally verified. The results show that the coupled model reduces the
maximum error value generated in the y-axis direction from 7.3 µm to 2.3 µm and the
maximum error value in the z-axis direction from 7.5 µm to 2.6 µm compared to the BP
neural network model. The authors of [71] used the Bat Algorithm (BA) to optimize the
initial values of the wavelet neural network (WNN). The initial connection weights, scale
factor, and translation factor parameters are introduced. A thermal error prediction model
of the spindle was developed and compared with the WNN prediction model and BP neural
network prediction model. The results showed that the maximum residuals were reduced
by 25.8% and 34.8%. Due to the shortcomings of BP neural networks in training time and
prediction accuracy, the radial basis function neural network (RBFNN) has become a new
research hotspot in the field of modeling motorized spindles. To address the problems
of low efficiency of thermal error modeling and unsatisfactory prediction accuracy of the
model, the authors of [71] proposed a generalized radial basis function neural network
(RBF) modeling method and applied the model to the thermal error modeling of CNC
machine tools. The results show that the generalized RBF neural network model of thermal
error has the advantages of high prediction accuracy and strong generalization ability.
Compared with the traditional RBF neural network modeling method, the generalized
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RBF neural network modeling method has higher modeling efficiency and better model
robustness and predictive performance. The generalized RBF neural network model for
thermal errors is an effective modeling method for real-time compensation of thermal errors
in CNC machine tools. The authors from Huazhong University of Science and Technology,
Wuhan, China [72] established a genetic algorithm radial basis function neural network
prediction model (GA-RBFNN). Compared with the traditional RBFNN model and the
least-squares multiple linear regression prediction model, the residual range is controlled
at [1.94, −1.76] µm. The GA-RBFNN prediction model has higher prediction accuracy.

All of the above methods are data-driven models, also known as black box models.
Although the accuracy of thermal error prediction models is improved, data-driven mod-
eling has inherent drawbacks. A model with good predictive performance can be built
only when enough input and output data are available. When the acquired data are not
comprehensive enough, the model built is difficult to adapt to various situations, resulting
in poor robustness. In addition, by obtaining enough input and output data will increase
the experimental difficulty in identifying the parameters of the thermal characteristics
of the machine tools. Even if a data-driven model is established, the exact relationship
between the input and output variables is not known.

5. Development Trend of High-Speed Motorized Spindle Technology

With the rapid development of high-speed cutting, CNC technology and the needs
of practical applications, the performance of the high-speed motorized spindle of CNC
machine tools has put forward higher and higher requirements. Based on the analysis of the
key technologies of the high-speed motorized spindle, the research direction of high-speed
motorized spindle unit technology is summarized. The main aspects are as follows.

(1) The development of high precision, high reliability and long life of CNC machine
tools is the goal. At present, the precision and reliability of the use of CNC machine
tools need to meet higher requirements. As one of the core functional components of
CNC machine tools, the high-speed motorized spindle requires higher precision and
reliability.

(2) With the improvement of the bearing technology as the goal, the problems of high
cost, large structures and difficult to control of magnetic bearings need to be solved.
Research and development of high speed and high power shaftless high-speed motor-
ized spindles with magnetic bearings as support must be undertaken.

(3) To improve the running accuracy of the motorized spindle, the research on the gener-
alization of dynamic balancing technology, using a dynamic balancing method that
capable to balance the rigid spindle and flexible spindle at the same time, which
would help to reduce the impact of vibration on the high-speed motorized spindle,
must be accelerated.

(4) To reduce the influence of heat generation and thermal error of the spindle, and im-
prove the accuracy of the spindle, research on the application of computer simulation
technology in the design of high-speed motorized spindles must be strengthened, and
the development of highly reliable modeling methods to realize the compensation of
errors must be achieved.

6. Conclusions

With the generalization of the research and application of high-speed motorized spin-
dles, high-speed and high-precision cutting processing has been pushed to a new height.
The high-speed motorized spindle incorporates high-speed precision bearing technology,
dynamic balancing technology, thermal error measurement and compensation technology,
etc. This article briefly describes the four structural types of high-speed precision bearings
and the influence of the thermal and dynamic characteristics of the bearings on the per-
formance of high-speed motorized spindles. The basic principle and process of achieving
dynamic balancing technology are outlined, and the dynamic balancing methods adopted
at this stage for rigid and flexible spindles are discussed. The temperature measurement
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point optimization method and thermal error compensation modeling method applied
to high-speed motorized spindles of CNC machine tools are outlined. Finally, the future
research directions of CNC machine tools, bearing technology, dynamic balancing methods,
and thermal error modeling methods are foreseen. The field of high-speed motorized
spindles has great potential to develop and replace traditional machining machines, so all
aspects of the technology require further in-depth research.
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