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Abstract: Considering sensor faults for a thermoelectric cooler actuated by Peltier devices, this work
proposes an operator-based robust nonlinear fault tolerant controller (FTC) integrated with early
fault detection using a support vector machine (SVM). Firstly, a physical model is formulated based
on the law of heat transfer, and the estimated model is derived based on Volterra identification.
Then, an operator-based robust nonlinear control system is employed to compensate for uncertainties
and to eliminate the effects of coupling. Furthermore, FTC integrated with SVM-based early fault
detection is designed to improve the safety performance in the case of sensor faults. The simulation
results indicate that SVM-based fault detection can shorten the detection time in comparison to the
conventional method without the SVM classier. The experiment results are utilized to verify the
tracking performance of the proposed FTC method in the case study.

Keywords: operator theory; robust nonlinear control; fault tolerant control; support vector machine;
fault detection; Peltier cooler

1. Introduction

Thermoelectric technology has been growing rapidly with increasing significance, and
it requires precise temperature regulation for the physical, chemical, and biotechnological
reaction, using the relevant heating/cooling technique. The thermoelectric cooler (TEC)
actuated by Peltier devices has a high-surface-to-volume area with an efficient transfer
and higher safety level, and it is regarded as a promising new tool for studying and opti-
mizing fine medicine chemicals. Peltier as a solid-state construction is usually applied in
the thermoelectric cooler, which transfers heat from one side to the other, depending on
the direction of the current. Peltier devices have few noticeable advantages: no moving
parts, no effects of noises and vibrations, able to operate without Freon gas, light weighted
with a long-life expectancy, etc. It is also worth noting that the thermoelectric cooler is
a classical nonlinear dynamic system that has parameter uncertainties and comes with
the effects of coupling between adjacent devices. As TEC has the nature of parameter
uncertainties, process disturbance, and measured noises, it is difficult to obtain the exact
mathematical−mechanical modelling. However, nothing comes without consequences.
Usually, automated systems are more likely to be more vulnerable to cope with potential
faults, if there are any. The faults placed in a certain area could lead to massive conse-
quences, and lower the economic efficiency and would reduce the product availability
and reliability. The safety-critical systems such as aircraft flight control, spacecraft, robots,
power plants, and thermal processes are extremely vulnerable to faults, and the require-
ment for stability/reliability means no tolerance to the fault. To solve the above issues,
basic problems are concerned with modelling; robust stability and estimation; output
performance; and safety in dynamic linear/nonlinear systems associated with uncertainty,
time-delay, hysteresis, perturbation, etc. [1–4].
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In previous research, the microreactor actuated by Peltier devices aimed to achieve a
level of guaranteed stability, while minimizing the influence of disturbances, noises, and
perturbations, and optimizing the safety performance. In the initial stage, the primary focus
is to achieve robust stability for the tracking performance. In this paper, the research focuses
on operator-based design methods. However, in this approach, some open problems using
the existing results, such as robust filtering, dynamic environment analysis, adaptive
control, and predictive control, need to be considered [5,6]. An operator-based roust
right coprime factorization for nonlinear feedback control systems has been a promising
approach for nonlinear systems analysis, design, stabilization, and control. Moreover, the
robust stability of the nonlinear systems can be guaranteed by the establishment of the
Bezout identity and an inequality in the form of the Lipschitz norm [7–13]. An operator-
based robust controller for nonlinear systems with the Prandtl−Ishlinskii hysteresis is better
than the Lyapunov method, for which simulation results have confirmed that the vibration
of the flexible arm converges much faster than the system compared with the Lyapunov
method [14]. The robust right coprime factorization theory can be utilized to detect the
fault signal in the tracking operator system. The Bezout identity was used to ensure that the
observed fault signal equals the real fault signal in the literature [15,16]. Kawahata et al. [17]
extended the MIMO microreactor considering the compensation of uncertainties and the
elimination of interference, achieving nonlinear cooling control based on operator theory
and fault tolerant control when switching the close feedback loop. When a fault occurs, the
compensation operator for the fault signal will be active. Furthermore, to prevent dangerous
accidents when optimizing the performance safety level, many different control strategies
are considered during the process of corresponding to different fault levels. While FTC is a
real-time safety-critical system that operates well within its’ feasible limits, fault detection
is an indicator that makes a binary decision regarding whether the fault occurs or not by
checking the residual signal (i.e., the difference between the real system and the normal
model behaviors). The integrated fault detection and fault-tolerant control for a Hexacopter
is proposed to handle up to two actuator failures in the presence of disturbances [18].
Salahshoor et al. [19] utilized the fusion of an SVM classifier with an ANFIS (adaptive
neuro-fuzzy inference system) classifier, integrated into a common framework to enhance
the fault detection and diagnostic tasks. Furukawa et al. [20] presented a fault detection
method when using SVM combined with ChangeFinder for a tank-system. As mentioned
above, it is worth noting that, although there is much existing literature discussing the
fault tolerant control and fault detection matter separately, current research has made few
attempts towards a fault tolerant controller dealing with the delay detection in nonlinear
dynamic system, and no existing literature so far has specifically discussed the combination
of operator-based robust nonlinear FTC with early fault detection.

The main contribution of this paper is to propose a fault tolerant controller integrated
with SVM-based early detection for multiple sensor faults. The technical novelty focuses
on a robust nonlinear FTC method that reduces the fault detection time under different
faulty conditions. That is, SVM as a two-kind classifier has been employed to deal with
noised uncertain nonlinear processes. As a result, earlier detection is obtained than from the
former methods, where SVM-based fault detection improves the sensitivity classification
against the noise and uncertainties and shortens the detection time. If the detecting scheme
finds a fault, the fault tolerant control is switched by an operator, and the employed
control is based on Volterra identification, where an operator-based robust nonlinear
control system is designed to compensate for uncertainties and to eliminate the coupling
effect. The remainder of this paper is organized as follows. Section 2 will illustrate
the preliminaries and problem statement. The structure of the microreactor system is
described as the object research, the physical model is formulated based on the laws of
heat transfer and the estimated model is derived by the Volterra identification in Section 3.
The proposed framework of the robust nonlinear control system design is carried out in
Section 4. The simulation and experiment results are presented in Section 5. Section 6
draws the conclusions.



Machines 2022, 10, 123 3 of 15

2. Mathematical Preliminaries

Some necessary notations and definitions about operator theory, Volterra identification,
and support vector machines are formulated as the fundamentals of the control system in
this section.

2.1. Operator Theory

The definition of nonlinear operators is given [21] by R. de Figueiredo and G. Chen.
Let U and Y be linear spaces over the field of complex numbers. Let P: U→ Y be an

operator mapping from U to Y, and denote the domain and range of P by D(P) ⊆ U and
R(P) ⊆ Y, respectively.

The concept of right coprime factorization is as follows.
Let P: D(P) → R(P) be a causal and stabilizabling nonlinear operator. P is said to

have a right coprime factorization on D(P) over the space of finite-gain stable and causal
operators if it has a right factorization P = ND−1 on D(P). Moreover, two operators exist,
A: R(N)→ D(P), B: R(D)→ D(P), and for the unimodular operator M: D(N)→ D(P), we
have the Bezout identity:

AN + BD = M, M ∈ (W, U) (1)

2.2. Volterra Identification

Volterra identification aims at developing high-fidelity mathematical models in the
presence of nonlinearity and uncertainty from input and output measurements performed
on the real structure. In mathematics, the Volterra model can be expressed as a symbolically
nonlinear dynamic time-invariant functional expansion by an infinite series of multidi-
mensional convolution integrals. The Volterra series constructs an explicit input−output
relationship for nonlinear dynamic systems.

For a nonlinear continuous time-invariant system with input u(t) and the system
response y(t), the Volterra model can be expanded symbolically by a series of convolution
integrals,

y(t) = h0 +
∫ ∞
−∞ h1(τ)u(t− τ)dτ +

∫ ∞
−∞

∫ ∞
−∞ h2(τ1, τ2)Π2

i=1u(t− τi)dτi + . . .+∫ ∞
−∞

∫ ∞
−∞ · · ·

∫ ∞
−∞ hn(τ1, τ2, · · · , τn)Πn

i=1u(t− τi)dτi + · · ·
(2)

which is also known as the Volterra series. In Equation (2), each of the convolution integrals
contains a kernel, either linear (h1) or nonlinear (h2 . . . hn), which represent the behavior
of the system. Generally, the first-order kernel h1 (τ) is the linear response associated
with input signal u at time lag t, and h2(τ1, τ2) is the second-order kernel that reflects the
quadratic properties. The rest may be deduced by analogy, hn (τ1, τ2, . . . τn) is the nth
order kernel and contains the nth order nonlinear information of the system.

2.3. Support Vector Machine

SVM is a set of supervised learning methods used for classification, regression, and
outlier detection [22,23]. Real-time fault detection using the generalized Gaussian function
as the kernel function of SVM is presented in [24]. In dealing with the noise-containing
nonlinear process, the SVM classifier has been widely employed for sensitivity classification
against noise in fault detection.

The classifier g (x) is defined as follows, using the real-valued decision function f (x).

g(x) =
{

1 , f (x) > 1
−1 , f (x) < 1

here, f (x) is a linear function, and the division of hyperplanes can be described by
linear equations:

f (x) = wTx + b

where w = (w1; w2; . . . ; wd) is weight vector, x is the input vector, and b is the basis.
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3. Modeling of Microreactor System

As shown in Figure 1, the microreactor system can generally be divided into three parts:
actuators (i.e., Peltier device), the plant (i.e., the tube of water), and sensors (i.e., the tube
sensors are embedded the inner aluminum boxes and the aluminum sensors are installed
the outer aluminum plates). Peltier devices with size 3 × 3 cm2 are used to cool water in
the inner tube. The operating temperature ranges from −55 ◦C to +80 ◦C, with accuracy
and good long-term stability. A large surface-to-volume ratio also allows for better thermal
control. Four Peltier devices are pasted on the front and back sides of each of the aluminum
boxes. The parameters of the thermal transfer and microreactor model are described in
Tables 1 and 2, respectively. S4 indicates the Peltier device’s surface area and the tube’s
radius is r1 = 0.01 m.
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Figure 1. Photos and configuration of the microreactor system.

Table 1. Parameters of the microreactor system.

Parameters Value[m] Parameters Value[m]

d1 0.07 d5 0.045
d2 0.12 d6 0.02
d3 0.014 d7 0.01
d4 0.03 d8 0.06

Table 2. Parameters of the thermal transfer.

Symbol Description Unit

T0 Initial temperature [K]
Tan Aluminum temperature of Part An [K]
Twn Water temperature of Part Wn [K]
S Seebeck coefficient [V/K]
α Thermal transfer rate [W/m2·K]
λ Thermal conductivity rate [W/m2·K]
c Specific heat capacity [J/kg·K]
ε Emissivity -
σ Stefan–Boltzmann constant [W/m2·K4]
I Current [A]
R Peltier’s resistance [Ω]
m mass [kg]

3.1. Physical Model Based on Laws of Heat Transfer

Models of the single aluminum plate and tube are presented in Figure 2, based on the
physical laws of heat transfer, such as Newton’s law of cooling, Fourier’s law concerning
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thermal conduction, and Joule heat. As mentioned above, Newton’s Law of cooling
states that the rate of change of temperature is proportional to the difference between the
temperature of the object and that of the surrounding environment. Fourier’s law is known
as the rate of heat conduction through a plane layer, and is proportional to the temperature
gradient across the layer and the heat transfer area of the layer. Joule heating is the physical
effect through which the current passing through an electrical conductor produces thermal
energy. The thermoelectric effect is the actuated thermal process by Peltier devices, as
shown in Figure 3.
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3.1.1. Modeling of Peltier Device

Quantity of endothermic of Peltier devices ud1 is formulated by Equation (3):

ud1 = STc I − λ∆TA− 1
2

RI2 (3)

where STc I is derived from the Seebeck effect, λ∆TA is denoted as the Newton’s cooling
law, and RI2 is the Joule heat.

3.1.2. Modeling of Aluminum Plate

The quantity of the endothermic of the aluminum plate in Part A1 is formulated by
Equation (4). Each part on the right side of the equal sign is denoted by the endothermic of
the Peltier, heat transfer of the water−aluminum plate, thermal conduction of the aluminum
plate, thermal conduction of air, and thermal radiation of the aluminum plate, respectively.

d(T0−Ta1)maca
dt = 2ud1 + αwS6(Ta1 − Tw1)

+
λαS3(Ta1−Ta2)

dx − α(T0 − Ta1)(S1 + S2 + S3 − 2S4 − S5)

+εaσ
(
T4

a1
− T4

0
)
(S1 + S2 + S3 − 2S4 − S5)

(4)
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Assuming that
yan = T0 − Tan (5)

The quantity of endothermic of the aluminum plate of Part An can be transfer
as Equation (6).

dyan

dt
= ωan +

4

∑
m=1

(−1)m Aanm ym
an n = 1 ∼ 6 (6)

3.1.3. Modeling of Tube

The quantity of endothermic of the tube of Part W1 is formulated by Equation (7)
based on the heat transfer of water and the thermal conduction of tube W1.

d(T0−Tw1)mwcw
dt = αwS6(Tw1 − Ta1)

− λwS5{(Tw0−Tw1)−(Tw0−Tw2)}
dx

(7)

The quantity of endothermic of the tube of Part W3 is formulated by Equation (8)
based on the thermal radiation and thermal conduction of the tube W3.

d(T0−Tw3)mwcw
dt = εwσ

(
T4

w3
− T4

0
)
S6

− λwS5{2(Tw0−Tw3)−(Tw0−Tw2)−(Tw0−Tw4)}
dx

(8)

Assuming that
ywk = T0 − Twk (9)

The quantity of endothermic of the tube of Part Wn can be transferred as follows.

dywk
dt = ωwk − Awk ywk k = 1, 2, 4, 5, 7, 8

dywk
dt = ωwk +

4
∑

m=1
(−1)m Awkm ym

wk
k = 3, 6

3.2. The Estimated Model by Volterra Identification

The Volterra kernels are the backbone of the Volterra series. All of the system charac-
teristic related information is contained in these kernels. For any system with its Volterra
kernels, the Volterra series can predict the system’s response to any arbitrary input. For
any system with its Volterra kernels, the Volterra series can predict the system’s response
to any arbitrary input. One issue is obtaining Volterra kernels using M-sequences and
the correlation technique. Due to the weak nonlinearity, the estimated model of the mi-
croreactor system can be represented by one order Volterra series. The computation of
the Volterra identification is testified by the simulation results in Figures 4 and 5. The
cross-correlation function of an input signal and output signal is transformed to a kernel
while the autocorrelation function ϕuu is equal to the impulse signal δ when the maximum
length sequence signal (M-seq) is the input.

ϕuy(τ) =
∫ ∞

0
g(τ)ϕuu(t− τ)dτ (10)

ϕuy(t) = g(t) (11)
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According to Equations (10) and (11), the kernel identification of the aluminum plate
and tube are computed by the sensor measurement as the output and M-seq as the input
signal, respectively, as shown in Figure 4.

Then, the output of aluminum plate and tube are estimated based on Equation (12),
where the input u(t) is the current signal and the output y(t) is the sensor measurement.
The results are presented in Figure 5.

y(t) =
∫ ∞

0
g(τ)u(t− τ)dτ (12)
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4. Control System Design

In this section, the proposed control system is designed as five blocks; while the three
blocks of operator-based robust nonlinear control, early fault detection, and fault tolerant
control are introduced in detail, for the remaining blocks of compensation of uncertainties
and elimination of coupling effects, please refer to Deng, M. and Koyama, A. [25].

4.1. Operator-Based Robust Nonlinear Control

Figure 6 shows the operator-based temperature tracking control system.
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Operators Dan and ÑWk are rewritten as the given plant by right coprime factorization.
Operators RWk and SWk are designed by using the arbitrary constant to satisfy the Bezout
identify in Equation (13). Then, the cooling temperature control system is said to be BIBO
stable.

SWk ÑWk + RWk Dan = I , (I : identity mapping) (13)

the operators SWk and RWk are obtained as below.

SWk

(
yswk

)
= (1− Bn)

(
Ñ−1

Wk
(ysan)

)
RWk (udn) =

Bn
maca

udn

The tracking controller Cwk is designed as follows:

Cwk (ẽan) = KPn ẽan + KIn

∫ t

0
ẽan(τ)dτ

4.2. SVM-Based Early Fault Detection

Early fault detection is based on the SVM algorithm in order to make the process safe,
more efficient, and more economical if abnormal behavior is noticed in a timely manner.
The fundamental principle of the SVM algorithm is separating the dataset into two classes
(normal or faulty condition) according to the hyperplane (a decision boundary), which
should have maximum distance between support vectors (i.e., representative training data
point)) in each class. The basic process of constructing an SVM classifier model is as follows:
using the optimal parameters and appropriate RBF kernel to build a classifier based on
the training set, then using it to predict the target value of the data in testing set. Operator
Q of the fault tolerant control system works in the occurrence of faults and outputs a
compensation signal q when it detects a fault in the temperature sensor (tube).

From the viewpoint of nonlinear classification, the radial basis function kernel (RBF)
is determined using Equation (14).

K
(
xi, xj

)
= exp

(
−γ‖xi − xj‖2

)
(14)

The hyper-parameters of the RBF kernel C and γ are obtained by simulation and real
experimental tests, respectively. The heat absorption amount is learned as the input, and
the tube temperature sensor value yswk is learned as the output. Therefore, the time series
data are also trained for the output. The SVM software uses libsvm, which is common for
the simulation and the real machine experiment. Figure 7 shows early detection using SVM
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and operator Q behind the tracking controller design, uncertainties compensation, and
coupling effects elimination.

Machines 2022, 10, x FOR PEER REVIEW 10 of 15 
 

 

SVM and operator Q behind the tracking controller design, uncertainties compensation, 
and coupling effects elimination.  

 
Figure 7. Early fault detection using SVM. 

Assume a fault dw in the temperature sensor of the tube. Operator Q is designed to 
satisfy the Bezout identity for eliminating the effect of fault dw. First, the control loop of 
the fault condition is formulated in Equation (15). 𝑅 𝐷 (𝜔) =  𝐶 (𝑒 )  +  𝑄(𝑓)  −  𝑆 (𝑦 ) (15)

The fault signal f in Equation (16) is calculated from the actual temperature sensor 
value and the input. 𝑓(𝑡) = 𝐵𝑁 − 𝐴𝐷   (16)

Formula (15) is converted to the following equation: 𝑆  𝑁 −  𝑄𝐵𝑁  𝑁 𝑦 =  𝐶 𝑒  −  𝑅  𝐷  +  𝑄𝐴𝐷 𝑁 (𝑦  − 𝑑 ) 

where the Bezout identify I and the fault 𝑑  are satisfied through the following condi-
tions,  𝑆 𝑁 − 𝑄𝐵𝑁 = 𝐼𝑅 𝐷 + 𝑄𝐴𝐷 = 0 (17)

Operators A, B, and Q are obtained according to the below equations, where M is the 
tracking controller: 𝐴 =  𝐷 𝑁 ,   𝐵 =  𝑃  𝑄 =  −𝑀𝑅 𝐷 𝑃 (𝑓) 

4.3. Fault Tolerant Control System 
As shown in Figure 8, the fault tolerant control design is derived by the differences 

of the tube’s temperature values among the physical model based on the law of heat transfer 
(y0), the estimated value (y1) from the aluminum sensor and the estimated value (y2) from 
the tube sensor, and the estimated value of Volterra identification (y3). The equation of Wa 
is used to detect and remove the faulty sensor using the weight of the estimated values, 
which are denoted as below. The output of the fault tolerant control 𝑊  can be calculated 
based on Equation (18), where there is a condition y0 ≠ yi at all times. 

𝑊 = 1∑ 1(𝑦  − 𝑦 ) 1(𝑦 − 𝑦 ) 𝑦   (18)

Figure 7. Early fault detection using SVM.

Assume a fault dw in the temperature sensor of the tube. Operator Q is designed to
satisfy the Bezout identity for eliminating the effect of fault dw. First, the control loop of the
fault condition is formulated in Equation (15).

Rwk Dan(ω̃) = Cwk (ean) + Q( f )− Swk (ysw f ) (15)

The fault signal f in Equation (16) is calculated from the actual temperature sensor
value and the input.

f (t) = BÑwk − ADan (16)

Formula (15) is converted to the following equation:

(Swk Ñwk −QBÑwk )Ñ−1
wk

(ysw f ) = Cwk (ean)−
(

Rwk Dan + QADan

)
Ñ−1

wk
(ysw f − dw)

where the Bezout identify I and the fault dw are satisfied through the following conditions,{
Swk Ñwk −QBÑwk = I
Rwk Dan + QADan = 0

(17)

Operators A, B, and Q are obtained according to the below equations, where M is the
tracking controller:

A = D−1
an Nan , B−1 = Pwk

Q = −MRwk Dan Pwk ( f )

4.3. Fault Tolerant Control System

As shown in Figure 8, the fault tolerant control design is derived by the differences of
the tube’s temperature values among the physical model based on the law of heat transfer
(y0), the estimated value (y1) from the aluminum sensor and the estimated value (y2) from
the tube sensor, and the estimated value of Volterra identification (y3). The equation of Wa
is used to detect and remove the faulty sensor using the weight of the estimated values,
which are denoted as below. The output of the fault tolerant control Wa can be calculated
based on Equation (18), where there is a condition y0 6= yi at all times.

Wa =
1

∑3
i=1

1
(y0−yi)

2

3

∑
i=1

1

(y0 − yi)
2 yi (18)
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Operator-based robust nonlinear control is achieved the temperature tracking perfor-
mance, the operator Q with SVM is designed to early fault detection for the tube sensor
fault fw, while fault tolerant controller is used to the aluminum plate sensor fault fa. The
proposed control system is shown in Figure 9.
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5. Simulation and Experimental Tests

Parameters of simulation and experiment are listed in Table 3.

Table 3. Parameter of simulation and experiment.

Parameters Value [Units]

Initial temperature 25.0 [◦C]
Reference input r 1.0 [◦C]

Sampling time 0.5 [s]
Simulation time 600 [s]

Gain of CKP 0.3
Gain of CKI 0.008
Gain of MKP 0.45
Gain of MKI 0.008

Designed SVM parameter C 1
Designed SVM parameter γ 0.25
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Assume the case study is the added fault 4 [◦C], TF = 300 s, the fault signal da,w is
expressed as Equation (19):

da,w = 4[◦C]× (1− exp(−0.2(t− TF))) (19)

5.1. Simulation Results

The temperature sensor (tube) rises 4 ◦C in 300 s as a sensor fault signal shown in
the first upper Figure. The second of Figure 10 presents the flag = 1 when fault signal is
detected at 304.5 s by using SVM. Compared to the conventional method without SVM
algorithm which refers to Deng and Koyama [25], the fault is detected at 314.5 s shown as
the dashed line in the third of Figure 10. The simulation results indicate that operator Q
with SVM classier is detected 10 s earlier by comparison on the conventional method
without SVM classier. From the bottom of Figure 10, the temperature output has presented
a better performance of FDI in the case of sensor fault. Therefore, it cannot only maintain
safety operation, but also shorten the delay time in fault detection against the uncertainties
and noise in the simulation case.
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From the viewpoint of control design, on the one hand, the conventional method
in Deng and Koyama [25] consists of operator-based robust nonlinear control and fault
tolerant control for one sensor fault (i = 1, 2). This work considers taking one step the
previous research to improve the safety performance of FTC and extend to more sensor
faults (i = 1, 2, 3). On the other hand, SVM as a binary classifier has been considered
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a flexible algorithm to perform accurate classification in dealing with noise-containing
nonlinear process. The combination of FTC and SVM-based fault detection is to overcome
the limitation of the conventional method. The comparative analysis of detection time has
shown in simulation results with and without SVM-based fault detection [26].

5.2. Experimental Tests

Compared to the detection time in simulation, the experimental parameters for the
setup were the same as the simulation parameters under one case study. The initial
temperature was about 20 ◦C. The experimental tests are presented in Figures 11–13. In
Figure 11, da and dw indicate the fault signals of the aluminum plate sensor and the tube
sensor in the upper picture, respectively, when the fault signals of da and dw rise 4 ◦C
in 300 s and 450 s, respectively. In the middle picture, the multiple sensor faults can be
detected within 5 s. The output of FDI in the bottom of Figure 11 shows a good tracking
performance under the faulty conditions. It is demonstrated that the proposed approach is
flexible and effective to deal with the sensor faults. The temperature curves of the tube and
aluminum plate are shown in Figure 12, while the input current is presented in Figure 13.
The experiment results confirm that the tracking performance is improved by the proposed
control system.
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Figure 13. Input of the current in the experiment.

In this case study, given a desirable value 1.0 ◦C, the output of the temperature is
cooler than the initial temperature while the sensor faults were occurring. Considering the
uncertainties and faults, both the robust stability and cooling performance were proven by
the experiment test.

6. Conclusions

This paper presents a hybrid fault tolerant controller for a microreactor system sub-
jected to sensor faults. For the parameter uncertainties and the effect of coupling, an
operator-based nonlinear control design guarantees robust stability. Compared to the
previous method without the SVM algorithm, operator Q with an SVM classier reduces
the fault detection time when dealing with a noise-containing nonlinear process in the
simulation results. The fault tolerant controller extends to cope with more sensor faults. A
novel integrated fault tolerant controller with SVM-based early fault detection is proposed
for the first time in order to maintain the safety operation in the event of sensor faults. The
feasibility and effectiveness of the proposed FTC system are proven by the simulation and
the experimental tests provide a good tracking performance in the case study. Future work
will be on experimental tests for SVM classifier. In addition, the faults are often classified
as actuator faults, sensor faults, and plant faults (or called component faults or parameter
faults). The limitation of this work is the kind of sensor faults in the microreactor system,
while the actuator and plant are assumed as the normal condition. Future work will focus
on fault diagnosis, to determine the location, type, shape, and size of the faulty component
in the event of the three types of faults. Moreover, we will consider the Lyapunov-based
approach as well as these types of techniques to prove the stability and robustness of the
model-based approach.
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