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Abstract: High-quality reconstruction of polished surfaces is a promising yet challenging task in the in-
dustrial field. Due to its extreme reflective properties, state-of-the-art methods have not achieved
a satisfying trade-off between retaining texture and removing the effects of specular outliers. In this
paper, we propose a learning based pixel-level photometric stereo method to estimate the surface
normal. A feature fusion convolutional neural network is used to extract the features from the normal
map solved by the least square method and from the original images respectively, and combine
them to regress the normal map. The proposed network outperforms the state-of-the-art methods
on the DiLiGenT benchmark dataset. Meanwhile, we use the polished rail welding surface to verify
the generalization of our method. To fit the complex geometry of the rails, we design a flexible
photometric stereo information collection hardware with multi-angle lights and multi-view cameras,
which can collect the light and shade information of the rail surface for photometric stereo. The ex-
perimental results indicate that the proposed method is able to reconstruct the normal of the polished
surface at the pixel level with abundant texture information.

Keywords: polished surface; specular reflection; photometric stereo; feature fusion; 3D reconstruc-
tion/modeling

1. Introduction

Surface quality inspection of products is an essential part of industrial manufactur-
ing [1]. In recent years, 2D and 3D machine vision have become the mainstream methods
to obtain the surface information of objects, enabling automatic surface defect detection
and size measurement of industrial products [2–5]. However, obtaining information of sur-
face with specular reflection is still a challenging task, especially in the industrial field [6].
Because the reflected light from the specular reflection area is more significant than the cor-
responding threshold of the camera sensors, the specular reflection area in the image
obtained by the traditional 2D vision is overly highlighted and barely contains any useful
information. In contrast, 3D vision can obtain the depth of the object surface and reflect
the surface characteristics more comprehensively and concisely, thus becoming the com-
monly used method to replace 2D vision in the industrial field [7]. The mainstream 3D
vision in the industrial field includes binocular stereo vision, structured light, time-of-flight
(TOF), and so forth, which have been applied to 3D-dimension measurement and surface
defect detection [8,9]. However, these methods are costly and can hardly deal with small
surface defects.

In recent years, photometric stereo has become a very promising technology in 3D
vision due to various outstanding advantages [10], among which three deserve our at-
tention. The first is pixel-level resolution. Photometric stereo can reconstruct the normal
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of each pixel with rich texture information. The second is that it can handle specular
reflections. Photometric stereo is a technology based on the reflection of the object surface.
The normal of the specular reflection area can be regarded as the bisector of the viewing
and light directions. Furthermore, the use of multiple images to reconstruct the normal
map can greatly reduce the adverse effects of the highlighted area. The third is low cost.
In terms of hardware, photometric stereo only requires one camera and multiple LED lights.
Therefore, a large amount of research on photometric stereo has been carried out, and
preliminary applications have been obtained in many fields, such as the detection of defects
on the surface of strip steel [11].

The main problem that limits the development and application of photometric stereo is
the estimation of non-Lambertian surface normals. The classic photometric stereo technol-
ogy was developed based on the Lambertian reflectance model [12], but a pure Lambertian
surface rarely exists in reality. As a result, numerous research papers have extended pho-
tometric stereo to non-Lamberttian fields. Non-Lambertian photometric stereo methods
can be roughly divided into four categories. The first category is based on the method
of removing outliers. The earliest non-Lambertian photometric stereo method believes that
specular reflection rarely exists in photometric stereo, which is an abnormal value. Meth-
ods such as rank minimization [13], RANSAC [14], taking median values [15], expectation
maximization [16], and sparse Bayesian regression [17] have been proposed to eliminate
outliers in observations and estimate relatively accurate normal maps. However, such
a method is only suitable for the case in which a small number of non-Lambertian regions
exist. For materials with a large amount of specular reflection such as metal surfaces,
these methods are no longer applicable. The second category is based on sophisticated
reflectance models. These methods accurately estimate the surface normal by establishing
the reflection model of the object surface, including many classic analysis models, such
as the Blinn–Phong model [18], the Torrance–Sparrow model [19], the Ward model [20],
the Cook–Torrance model [21] and so on. Some methods based on improved BRDF have
been proposed, such as bivariate BRDF representations [22,23] and symmetry-based ap-
proach [24], which are used to characterize the reflection model of the object surface.
However, these methods typically require a suitable optimization model, which is only
suitable for limited materials, and it is difficult to propose a commonly used reflection
model. The third category is the example-based method. If a ball of the same material
is placed in the same scene, then the surface normal of the ball is already known, which
turns the non-Lambertian problem into a matching problem [25]. Recently, Hertzmann
et al. rendered balls of different materials to remove the limitation of physical reference
balls [26]. However, these methods are too cumbersome and time-consuming. The fourth
category is learning-based methods, which have emerged in recent years. In 2017, Santo et
al. first introduced the deep fully connected network to photometric stereo, and learned
the mapping between the corresponding pixel points in multiple observation images and
the normal of the point in a pixel-wise manner [27]. However, this method requires a pre-
defined light direction. When applied in an industrial scene, the light direction needs
to be kept consistent with the one used during training. Ikehata et al. first introduced
the convolutional neural network (CNN) to photometric stereo, merging all the input data
of a single pixel into the intermediate representation, which is termed the observation
map, and a CNN network was used to regress the surface normal [28]. Chen et al. first
introduced the fully connected network into photometric stereo, and used the information
of the entire image to directly estimate the normal map of the entire image [29]. Meanwhile,
they proposed two widely used synthetic photometric stereo datasets. Cao et al. applied
a three-dimensional convolutional neural network to photometric stereo, constructing
inter- and intra-frame representations for accurate normal estimation of non-Lambertian
objects for more accurate normal estimation results using significantly fewer parameters
and performing robustly under both dense and sparse image capturing configurations [30].
Nevertheless, these methods still have some difficulties in dealing with polished surfaces
with specular reflection.



Machines 2022, 10, 120 3 of 18

In this paper, a novel learning-based photometric stereo method is proposed to solve
the problem of specular reflection in non-Lambertian photometric stereo. We design
a feature fusion convolutional neural network called FFCNN for estimating the normal
map of objects. FFCNN combines the initial normal estimated by the L2 [12] method for
the feature extraction of the convolutional neural network. Although CNN and maxpooling
operations can extract salient features for estimating normal maps, for low-frequency
information close to Lambertian reflection [22], the L2 method can reduce the influence
of specular reflection areas in multiple images. The complementary advantages of CNN and
L2 methods are well integrated to estimate more accurate normal maps. As a consequence,
FFCNN can handle non-Lambertian surfaces very well, as well as objects that contain
specular reflections. Compared with the state-of-the-art methods [30,31], our proposed
FFCNN method can estimate the normal map more accurately.

Additionally, we apply our method to the surface normal estimation of rail welds
after polishing, and we build a novel photometric stereo information collection system,
which can adapt to the complex geometric surface of the rail. Experiments show that
the estimated normal map contains abundant texture information in the presence of large
specular reflection areas, validating the effectiveness and generalization of our method.

2. Materials and Methods
2.1. Principle of Photometric Stereo

Photometric stereo was proposed by Woodham in 1998 [12], and uses the light and
shade information of the surface to analyze the light reflection model. Given images
of the surface under different lighting directions with a fixed camera, the normal of the sur-
face is calculated from the image brightness. Figure 1 shows a typical photometric stereo
system, which consists of two parts: the photometric stereo information capture system
and the photometric stereo normal estimate algorithm. The photometric stereo information
acquisition system mainly includes a fixed camera and multiple LED lights. The camera
captures a number of images when each light is sequentially turned on. The surface normal
map can be solved from the acquired multiple images through the photometric stereo
algorithm.

Figure 1. A typical photometric stereo system containing two parts: the photometric stereo informa-
tion capture system and the photometric stereo normal estimate algorithm.
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Early photometric stereo algorithms usually assumed an ideal Lambertian reflectance
model [12], and the image acquisition process can be formulated as:

I = ρ max
(

n>l, 0
)

, (1)

where I represents the intensity of the captured image, ρ represents the surface albedo
which is constant, n represents the surface normal which is a unit vector, l represents
the lighting direction, and max

(
n>l, 0

)
denotes attached shadows. The normal map can be

solved by Equation 1 with three or more images [12].
Unfortunately, most real-world objects are non-Lambertian. For non-Lambertian,

the image forming formula can be written as [32]:

I =
∫ ∞

0
Q(λ)E(λ)S(λ)dλ, (2)

where (λ) represents the spectral length, Qc(λ) represents spectral sensitivity of the camera,
E(λ) represents the spectral distribution of the light, and S(λ) represents the spectral
reflectance of the object surface.

Normally, it is difficult to directly solve the normal n through this formula. As men-
tioned in Section 1, many researches have been proposed to solve the problem of non-
Lambertian surfaces. Our method belongs to the fourth category. We let the network
directly learn the mapping between the normal map and the captured images. Our method
will be discussed in detail in Section 2.2.

2.2. Learning Based Photometric Stereo: FFCNN

We adopt two commonly-used assumptions in photometric stereo, i.e., orthogonal
cameras and directional lights. According to the semiparameter BRDF model [23,33],
for most isotropic reflectances, the image formation equation of photometric stereo can be
written as:

I = fBRDF(n, v, l)max(nTl, 0), (3)

where fBRDF represents the BRDF function, n represents the surface normal, l is the lighting
direction, and v is the viewing direction, which is [0, 0, 1].

For a Lambertian surface, the BRDF is a constant, and the L2 method (least square
method) [12] can solve the surface normal well through three or more observations. How-
ever, the Lambertian surface barely exists. For a non-Lambertian surface, the problem
of predicting normal n from the light source direction l and image brightness I is signifi-
cantly more complicated because the BRDF function is unknown.

We design a learning-based approach to solve the problem of non-Lambertian. In-
stead of solving for n directly, we implicitly learn the mapping between input [I, l] and
output n through the feature fusion convolutional neural network named FFCNN.

Firstly, we use a normalization strategy to process the image following [31]. Points at the same
position in each image are processed as follows:

(
i′1, . . . , i′m

)
=

 i1√
i21 + . . . + i2m

, . . . ,
im√

i21 + . . . + i2m

, (4)

where i and i′ represent the value of original and processed points, i1 and im represents
points in the same position on the first images and the mth images. This can remove
the effect of reflectivity in low-frequency information, which is very close to Lambertian
reflectance [22].

It should be noted that when the number of input images during the test time and
the number of input images during the training are different, the scale of the data will be
different. For example, when the pixel values of the image are all 1, the number of input
images during training is q, the number of input images during training is t, and the ratio
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of the input value during testing to the image during training is
√

q/t. We multiply
the normalized image by a factor

√
t/q during the test.

Meanwhile, the initial normal is calculated by the L2 method [12] as the input
of the subnetwork, which can provide sufficient prior information for FFCNN network.
Then we use the preprocessed images and initial normal as the input of FFCNN to estimate
the accurate surface normal. It can be written as:

N = f ([I1, . . . . . . , Im], [l1, . . . . . . , lm], Ninitial), (5)

where f (∗) represents the FFCNN model, N represents the estimated normal map, [I1, . . . . . . Im]
represents images from the first to the mth, [l1, . . . . . . , lm] represents the corresponding lighting
directions, and Ninitial represents normal map solved by L2 method.

As illustrated in Figure 2, our proposed FFCNN model consists of four major compo-
nents including photometric stereo image feature extraction, L2 normal feature extraction,
feature fusion and normal map estimation.

Given m images and m corresponding lighting directions, we expand each light
direction into a lighting map with the same size as the image, and then concat the image
and lighting map to obtain a 6× H ×W input image IL. Thus, we have m input matrix IL.

Then, the preprocessed data IL is fed into the network named FFCNN. We first deploy
a photometric stereo feature extraction module to extract feature map FIL. All the input
matrix IL are fed into the photometric stereo feature extraction network sequentially, which
means they share the same weight. The shared-weight photometric stereo feature extractor
module is composed of seven convolution layers with 256 channels. Downsampling is
carried out at the second convolution layer and the fourth convolution layer, and up-
sampling is carried out at the sixth convolution layer, which greatly increases the receptive
field of the network and reduces the memory usage. Given m image-lighting data IL, m
feature maps FIL are obtained by this module.

Figure 2. Network architecture of FFCNN.
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Then, we deploy an L2 normal feature extraction module to extract feature map
FL2 from the normal map solved by the L2 method [12]. Unlike the photometric stereo
feature extraction module, only one down-sampling is performed at the second convolution
layer in this module. The remaining 6 convolution layers are all convolution layers with
256 channels.

In the feature fusion module, m feature maps FIL and one feature map FL2 are con-
catenated. Next, we apply max-pooling [29] to aggregate the features on each feature map,
which means that only the maximum feature value is retained for each point. Maxpool-
ing is widely used in photometric stereo, due to the removal of non-activated features,
the influence of cast shadows can be eliminated.

Finally, a normal regression module is used to estimate the surface normal. Four con-
volution layers including an up-sampling convolution layer are used to achieve the same
spatial dimensions as the input image. Finally, the L2-Normalization layer is used to nor-
malize the estimated normal map.

In the FFCNN network, all convolutional layers are followed by a Leaky ReLU activa-
tion layer. Except for up-sampling layers, all convolution layers adopt kernels size with
dimensions of 3× 3.

In the training stage, we calculate the cosine similarity error between the estimated
normal and ground truth as the loss function as follows:

L =
1

HW ∑
i,j

(
1− Ni,j · Ñi,j

)
, (6)

where Ni,j and Ni,j represent the estimated normal and ground-truth, respectively. H and
W are the height and width of the normal map, respectively. L is minimized using Adam
with the suggested default settings. The more similar Ni,j and Ni,j are, the closer L is to 0.

3. Dataset and Implementation Details
3.1. Dataset

For training and testing, ground-truth is necessary for the calculation of loss during
training and evaluation during testing, and a mass of data are also needed. However, it
is very difficult to get enough photometric stereo data and ground-truth. Hence, we use
two publicly available synthetic datasets called the PS Blobby dataset and the PS Sculpture
dataset for training and one publicly available synthetic dataset called the PS Sphere Bunny
dataset for testing [29] (see Figure 3).

Figure 3. Examples of the synthetic data. The first two lines show the images of the same object
under two different lighting directions, and the last line shows the normal map.

The MERL dataset is used for synthetic datasets to render 3D objects under differ-
ent lighting conditions, which contains 100 different BRDFs of real-world materials [34].
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The synthetic training datasets use two 3D datasets namely the blobby shape dataset and
the sculpture shape dataset, containing 3D models of multiple objects [35,36]. The synthetic
testing dataset uses 3D models of sphere and bunny to render photometric stereo data with
100 different materials.

In addition, a publicly available real-world photometric stereo dataset called DiLi-
GenT [37] is used to verify the ability of the model to process real-world data, which
contains real-world data of 10 objects under 96 different lighting conditions.

3.2. Training Details

All experiments are performed in the Ubuntu operating system on a computer with
GeForce RTX 3090 Graphics Card and 256GB RAM. Our FFCNN model has 9.21 million
learnable parameters. During training, the initial learning rate is set to 0.001, and the learn-
ing rate is reduced to half for every 5 epochs. It takes about 8 hours to train the FFCNN
model when the batch size is 32 and the epoch is 30. Following [29], the height and width
of the image are randomly rescaled between [32, 128] so that the model could cope with an
input of different sizes, and the image is then randomly cropped to 32× 32 and noise is
randomly added.

3.3. Testing Details

The PS Sphere Bunny dataset is used to illustrate the ability of the FFCNN model
to estimate normal maps on the synthetic dataset. The DiLiGenT benchmark dataset
is used to verify the generalization ability of the FFCNN model in dealing with real-
world photometric stereo data. The accuracy of the normal estimation is quantitatively
evaluated by the average angular error (MAE) between the ground-truth normal map and
the estimated normal map as:

MAE = arccos

(
1
K ∑

k
(1− nk · ñk)

)
, (7)

where nk and ñk represent the ground-truth and the predicted normal maps, respectively.
K represents the number of all pixels in the image except the background area. A lower
MAE means a more accurate normal map estimated by the model. The photometric stereo
data of the polished rail surface are used to verify the generalization of the model and
qualitative analysis of the effect of the model in the industrial field.

4. Experiments and Results
4.1. Network Analysis
4.1.1. Effects of Kernel Size

The kernel size affects the receptive field of FFCNN, thus affecting the performance
of the network. For each point, the larger the kernel size is, the more information from
neighboring points can be used to estimate the normal of the point. However, if the point is
too far away from the estimated point, it will have less useful information for the estimated
point, and may even contain interfering information. Besides, it will also increase the
computational complexity and time cost. We use the PS Sphere Bunny dataset to compare
the performance of our model with different kernel sizes. The number of input images
is 32 during training and 100 during testing. Both Sphere and Bunny contain data for
100 materials, and the result for each material is the average of 100 random trails. We take
the average of the results for all materials. Figure 4 presents the relationship between the
kernel size and the MAE of normal estimation.
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Figure 4. Effects of kernel size. The horizontal axis represents the kernel size, the vertical axis
represents the average angular error (MAE), the blue line represents the performance on the bunny
object, and the yellow line represents the performance on the sphere object.

As illustrated in Figure 4, the MAE does not decrease continuously as the kernel size
increases. On both bunny and sphere datasets, MAE decreases as the kernel size increases
until the kernel size increases to 3. However, when the kernel size increases to 5 and 7,
the MAE keeps increasing. This verifies our conjecture that when the kernel size is too
large, the point too far from the estimated point may contain redundant information that
interferes with the normal estimation. To achieve the best performance, we empirically set
the kernel size to 3.

4.1.2. Effects of Input Number

The number of input images during training will also affect the performance of the model.
Table 1 lists the performance of FFCNN model with different numbers of input images during
training and testing.

Table 1. Effects of input number. (a) Performance on bunny object of 100 materials. (b) Performance
on sphere object of 100 materials. benchmark dataset. The red values illustrate the best performance.
The smaller the value of MAE means the better the model performs.

(a) Performance on bunny (MAE)

Variants Test with # images

Train with # images 4 8 16 32 48 64 100

4 19.88 14.33 10.1 8.19 7.99 8.09 8.38
8 16.95 10.93 6.79 5.08 4.82 4.82 4.93
16 17.40 9.59 5.36 3.77 3.49 3.44 3.50
32 20.54 9.31 4.93 3.34 2.98 2.9 2.86
48 22.01 9.54 5.02 3.44 3.01 2.9 2.86

(b) Performance on sphere (MAE)

Variants Test with # images

Train with # images 4 8 16 32 48 64 100

4 14.16 10.76 7.59 5.7 5.44 5.38 5.56
8 13.81 9.20 5.11 3.65 3.47 3.51 3.82
16 15.15 8.24 4.21 2.78 2.55 2.55 2.73
32 17.70 8.25 3.84 2.39 2.13 2.07 2.14
48 19.17 8.62 4.11 2.55 2.23 2.15 2.17
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For a fixed number of inputs during training, the performance of FFCNN basically
increases with the number of inputs during testing. When the number of input images
during testing is fixed and fewer than 32, FFCNN performs better when the number
of input images during training is 2 times that during testing. When the number of in-
put images during testing is fixed and not less than 32, FFCNN performs slightly better
when the number of input images is 32 during training. Considering the performance
of FFCNN for estimating the normal and the memory of the computer, we use 32 images
during training.

4.1.3. Effects of Feature Fusion

The L2 method performs poorly for non-Lambertian surfaces, especially for specular
reflection. However, the low frequency information in the image is very close to Lambertian
reflection, and the L2 method can estimate the normal map of this part well. The initial
normal obtained by L2 method provides useful prior information for FFCNN to extract
normal features from observation images. For specular reflection, the normal vector can be
regarded as the bisector of the viewing and light directions. The max-pooling operation
can extract these significant features and ignore the non-activated features of cast shadow.

Table 2 shows the comparison of the performance of FFCNN and FFCNN-Without-L2.
FFCNN-Without-L2 is the same as FFCNN but without the L2 normal feature extraction
module. As shown in Table 2, on both bunny and sphere, FFCNN performs better than
FFCNN-Without-L2. On the real-world object DiLiGenT benchmark dataset, FFCNN
performs significantly better than FFCNN-Without-L2 in terms of the average of MAE
on ten objects. The performance of FFCNN is obviously superior in most objects, and it
is inferior to FFCNN-Without-L2 in only three objects, but the difference is very small.
This means that our proposed feature fusion strategy is effective, especially on objects with
complex structures, such as the reading object.

Figure 5 shows the comparison of the performance of FFCNN and FFCNN-Without-
L2 on two objects, ball and reading. It can be seen from the ball object that the performance
of FFCNN is better than that of FFCNN-Without-L2 in the non-specular reflection area,
which also verifies our conjecture that the L2 method can estimate the normal map close
to the Lambertian region well, which provides prior information for FFCNN. Our feature
fusion method also performs well on the reading object with more complex surfaces and
more specular reflection areas.

Table 2. Effects of feature fusion. (a) Performance on synthetic data PS Sphere Bunny dataset.
The MAE is the calculated average value of performance on 100 materials. (b) Performance on the real-
world object data DiLiGenT benchmark dataset. The red values illustrate the best performance.
The smaller the value of MAE means the better the model performs.

(a) Performance on the PS Sphere Bunny dataset

model bunny sphere average

FFCNN-Without-L2 3.23 2.40 2.81
FFCNN 2.86 2.14 2.5

(b) Performance on the DiLiGenT benchmark dataset

Method ball cat pot1 bear pot2 buddha goblet reading cow harvest average

FFCNN-Without-L2 2.09 4.66 5.66 6.73 7.42 7.34 7.75 11.2 6.46 12.48 7.18
FFCNN 1.91 4.87 5.41 6.5 6.62 7.5 7.79 9.66 5.85 12.22 6.83
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Figure 5. Comparison of FFCNN and FFCNN-Without-L2 on two objects, ball and reading. The first
row shows the true values and a sample of observations. The second row shows the normal and
error maps estimated by the FFCNN method. The third row is the normal and error maps estimated
by the FFCNN-Without-L2 method.

4.1.4. Results on Different Materials

Specular reflection is a challenging problem in photometric stereo. The surface of many
materials has specular reflection characteristics, especially in the industrial field. Figure 6
compares FFCNN with L2 Baseline [12], PS-FCN+N [31] and FFCNN-Without-L2 on sam-
ples of sphere object that were rendered with 100 different BRDFs, which contain a large
number of materials with specular reflective properties.

Figure 6. Quantitative comparison of FFCNN and FFCNN with L2 Baseline [12], PS-FCN+N [31] and
FFCNN_without_L2. The horizontal axis from left to right represents the properties of the material
from diffuse reflection to specular reflection. Images in the upper-left corner show the corresponding
samples. Images A–H correspond to samples of the material marked in the horizontal coordinates.
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In Figure 6, the performance of FFCNN represented by the blue line is significantly
better than the other three methods. The material represented on the right of the horizontal
axis in this figure contains more intense specular reflection, and our method performs better
on these materials, indicating that our method can handle specular reflection surfaces well.

4.2. Benchmark Comparisons
4.2.1. Quantitative Comparison

We compare our method FFCNN with several other state-of-the-art photometric stere
solutions including IA-14 [23], ST-14 [22], HI-17 [27], TM-18 [38], CH-18 [29], SI-18 [28],
CA-21 [30], and CH-20 [31]. The source code and evaluation results for these methods are
publicly available. All 96 images are used to estimate the normal direction of the object.
The MAE of the normal map estimated by these methods on the DiLiGenT benchmark
dataset is shown in Table 3.

Table 3. Quantitative comparison of our proposed FFCNN model and state-of-the-art photometric
stereo methods on the DiLiGenT benchmark dataset. * indicates that we use all 96 images to estimate
the normal map of Bear, but the result shown in SI-18 [28] (Bear 4.1) was achieved by discarding
the first 20 input images. The red values illustrate the best performance. The smaller the value
of MAE means the better the model performs.

Method Ball Cat pot1 Bear pot2 Buddha Goblet Reading Cow Harvest Avg.

proposed 1.91 4.87 5.41 6.50 6.62 7.50 7.79 9.66 5.85 12.22 6.83
CH-20 [31] 2.67 4.74 6.16 7.72 7.15 7.56 7.88 10.98 6.70 12.42 7.40
CA-21 [30] 2.29 5.87 6.92 5.79 6.89 6.85 7.88 11.94 7.48 13.71 7.56
SI-18 * [28] 2.20 4.60 5.40 12.30 6.00 7.90 7.30 12.60 7.90 13.90 8.01
CH-18 [29] 2.82 6.16 7.13 7.55 7.25 7.91 8.60 13.33 7.33 15.85 8.39
TM-18 [38] 1.47 5.44 6.09 5.79 7.76 10.36 11.47 11.03 6.32 22.59 8.83
HI-17 [27] 2.02 6.54 7.05 6.31 7.86 12.68 11.28 15.51 8.01 16.86 9.41
ST-14 [22] 1.74 6.12 6.51 6.12 8.78 10.60 10.09 13.63 13.93 25.44 10.30
IA-14 [23] 3.34 6.74 6.64 7.11 8.77 10.47 9.71 14.19 13.05 25.95 10.60

L2 Baseline [12] 4.10 8.41 8.89 8.39 14.65 14.92 18.50 19.80 25.60 30.62 15.39

Our proposed FFCNN model achieved the best results on 10 real-world objects, with
a mean angle error of 6.83◦. For objects with strong specular reflection or complex geometric
surfaces, such as reading and cow objects, our model performs significantly better than
other methods. This illustrates that the proposed network can effectively deal with specular
reflection or complex geometric surfaces.

Please note that it was considered that the first 20 images of the bear object were
corrupted in SI-18 [28]. After discarding the first 20 images of the bear object, we compare
our method FFCNN with the method termed CNN-PS in SI-18 [28], as shown in Table 4.
Although our proposed method is slightly inferior to CNN-PS on the bear object, the overall
performance of our method on 10 objects is still significantly better.

Table 4. Quantitative comparison of our proposed FFCNN model and CNN-PS on the DiLiGenT
benchmark dataset with the first 20 images of the bear object discarded. The smaller the value of MAE
means the better the model performs.

Method Ball Cat pot1 Bear pot2 Buddha Goblet Reading Cow Harvest Avg.

proposed 1.91 4.87 5.41 4.52 6.62 7.50 7.79 9.66 5.85 12.22 6.64
SI-18 [28] 2.20 4.60 5.40 4.10 6.00 7.90 7.30 12.60 7.90 13.90 7.19

Table 5 compares the proposed FFCNN and CNN-PS in SI-18 [28] in terms of running
time. We repeat the estimation process 10 times and compute the average running time
(the forward time of the network). Following the setting in SI-18 [28], we set the number
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of different rotations for the rotational pseudo-invariance to 10. Since CNN-PS estimates
the normal map in a pixel-wise manner, while our method estimates the normal map
in a frame-wise manner, the running time of CNN-PS is much more than that of FFCNN.
Therefore, our proposed FFCNN is more suitable for applications in industrial fields where
high efficiency is required.

Table 5. Comparison of the running time of our proposed FFCNN model and CNN-PS on the corpped
DiLiGenT benchmark dataset.

Method
Running Time (s)

Ball Cat pot1 Bear pot2 Buddha Goblet Reading Cow Harvest Avg.

proposed 1.199 0.508 0.545 0.357 0.383 0.378 0.492 0.294 0.268 0.485 0.491
SI-18 [28] 9.858 25.608 32.555 23.631 14.070 25.414 10.430 11.087 10.563 32.263 19.548

4.2.2. Qualitative Comparison

Figure 7 shows some qualitative results on three real-world objects in the DiLiGenT
benchmark dataset. For the object ball, we use 96 images to estimate the normal map,
which means there will be 96 highlight areas. It can be seen from the estimated normal
map and the detailed view that our method can handle the specular reflection problem
well and estimate a more accurate normal map. For cow and reading objects, it can be
seen in the detail view and the error map that our proposed FFCNN model is capable
of estimating the normal map with richer details.

Figure 7. Qualitative comparison between proposed method FFCNN and the state-of-the-art method
PS-FCN+N [31] on three objects, ball, cow, and reading. The detailed view contains rich texture
information.
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4.3. Application in Industrial Field
4.3.1. The Setup of Photometric Stereo System

To validate the effectiveness of our FFCNN model in industry, we apply FFCNN to nor-
mal map estimation of the polished rail welding surface, which contains severe specular
reflections and complex reflection characteristics. Obtaining information of the product
surface is the first step in applying photometric stereo to industrial applications. However,
the geometric surface of the rail is complicated, the underside of the rail head and the upper
surface of the rail foot are difficult to be illuminated by multiple light sources as well as
reflected to the camera. Figure 8 is an illustration of the problem. Because of the spe-
cial geometry of the rail, the information gathering of the red and green marked areas is
challenging.

Figure 8. Appearance of the rail. The red and green marked areas contains cast shadows.

Therefore, we design a novel photometric stereo image data capture system to solve
this problem, as shown in Figure 9. The system consists of four parts, two identical surface
information acquisition systems are used to obtain information on the top surface of the rail
and information on the bottom surface of the rail namely IASa and IASb (IAS* represents
image acquisition system), two identical and symmetrical information acquisition mod-
ule to obtain information of the rail waist namely IASc and IASd. The module IASa or
IASb are composed of a fixed orientation camera and a number of LED lights around
the camera. The module IASc or IASd consists of three cameras and LED lights around
the camera. The upper and lower cameras in the module IASc or IASd are oriented towards
the underside of the rail head and the upper surface of the rail foot respectively to capture
information on the concave surfaces. The middle camera is perpendicular to the waist
of the rail. In addition, there is a two-degree-of-freedom guide rail on the side for the mod-
ule IASc or IASd to adjust the height of the module and the distance between the rail and
the module. The structure made of profiles supports the operation of the whole equipment.
We designed a circuit to control the collaboration between the LED lights and the camera.
We used Raspberry PI to send signals which control relays to switch each LED light on and
off individually, and the camera takes an image when the LED is turned on. A 5V constant
voltage power supply powers the Raspberry PI, and a 700mA constant current power
supply keeps the brightness of each LED light constant, as the surface normal can only be
solved by keeping the brightness of the LED lights constant.

With this equipment, we can collect information of the welded rail surface after
grinding from multiple perspectives.



Machines 2022, 10, 120 14 of 18

Figure 9. Illustration of the equipment. (a) Overall illustration of the equipment. It mainly contains
four information acquisition systems (IASa, IASb, IASc, IASd) and two linear guides and profiles. (b)
Each camera corresponds to a range of shots.

4.3.2. Result on Polished Rail Welding Surface

After obtaining the surface information of the polished rail, we use our proposed
FFCNN to estimate the normal map. Some examples of results on the top surface of the rail,
the waist of the rail and the upper surface of the rail foot are shown in Figure 10, Figure 11,
and Figure 12, respectively.

As shown in Figure 10, the normal map estimated by our method contains rich detailed
information, although the acquired image contains a large area of specular reflection.
Figure 11 compares the performance of FFCNN and PS-FCN+N [31] on two samples
of rail waist respectively. FFCNN performs significantly better than PS-FCN+N, especially
in detailed information, as shown in the red box marked area. The normal map estimated
by FCCNN contains more detailed information, while the important details in the normal
map estimated by PS-FCN+N are smoothed. Figure 12 compares the performance of FFCNN
and PS-FCN+N on two samples of the upper surface of the rail foot, respectively. Similarly,
FFCNN performs significantly better than PS-FCN+N, and the estimated normal map of PS-
FCN+N seems to be wrong. The normal map estimated by FFCNN performs well in terms
of details and textures, which can provide rich information for the subsequent detection
and evaluation of polishing quality, as shown in the red box in Figure 11.
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Figure 10. The normal map of upper surface of the rail estimated by FFCNN and the corresponding
topographic map. The color of the topographic map represents the height of the surface.

Figure 11. The comparison of different methods on the welded surface of the rail waist after grinding.
The region marked by the red box contains defects.
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Figure 12. The comparison of different methods on the upper surface of the welded rail foot af-
ter grinding.

5. Conclusions

In this paper, we propose a complete photometric stereo processing framework to esti-
mate the normal map of non-Lambertian surfaces, especially polished surfaces. We propose
a feature fusion neural network to regress the surface normal map, which uses the initial
normal map obtained by the L2 method as prior information, and fuses the features ex-
tracted from the original image with the features extracted from the initial normal map.
The proposed method makes full use of the low-frequency information close to the Lam-
bertian and the information of the specular reflection area to make the estimated normal
map more accurate. We have experimentally investigated and verified the performance
of our model. The proposed method performs better than the state-of-the-art methods
on both synthetic datasets and real-world object DiLiGenT benchmark dataset. Addition-
ally, the proposed method is used to estimate the normal map of the polished rail welding
surface, verifying the effectiveness of our method in the industrial field. We design a photo-
metric stereo information capture system with multi-view cameras and multi-angle lights
to obtain the surface information of polished rail welding surface with complex geometric
surfaces. The normal map of the polished rail welding surface estimated by our FFCNN
model contains rich texture information and detailed information, which can provide rich
information for surface quality evaluation. This demonstrates the effectiveness of our
method for industrial non-Lambertian surfaces, as well as specular reflective surfaces.
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