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Abstract: A sensible maintenance strategy must take into account the remaining usable life (RUL)
estimation to maximize equipment utilization and avoid costly unexpected breakdowns. In view
of some inherent drawbacks of traditional CNN and LSTM-based RUL prognostics models, a novel
combination model of the ConvLSTM and the Transformer, which is based on the idea of “Extracting
spatiotemporal features and applying them to RUL prediction”, is proposed for RUL prediction.
The ConvLSTM network can directly extract low-dimensional spatiotemporal features from long-
time degradation signals. The Transformer, based entirely on attention mechanisms, can deeply
explore the mapping law between deep-level nonlinear spatiotemporal feature information and
equipment service performance degradation. The proposed approach is validated with the whole-life
degradation dataset of bearings from the PHM 2012 Challenge dataset and the XJTU-SY public dataset.
The detailed comparative analysis shows that the proposed method has higher RUL prediction
accuracy and outstanding comprehensive prediction performance.

Keywords: remaining useful life; deep learning; convolution-based LSTM; transformer network

1. Introduction

With the development of mechanized massive production, the degree of automation
and complexity of mechanical systems are increasing. Under the influence of severe
operating conditions such as variable loads, strong excitation, and large disturbances,
mechanical components will inevitably produce a degradation of performance and health
status during long-term service, eventually leading to failure. Therefore, prognostics and
health management (PHM) technology has received a lot of attention in academia and
industry [1]. One of the essential components to achieving PHM is the accurate prediction of
remaining usable life (RUL). If the service life of mechanical components can be accurately
predicted in advance, it is possible to maintain or replace them in time and effectively avoid
accidents and economic losses [2].

Generally, there are three categories of RUL prediction methods: physics-based, data-
driven, and hybrid approaches [3]. It is certainly difficult to understand the mechanical
system’s degradation process and failure mechanism under a range of operating conditions.
Hybrid approaches can combine physics-based models and data-driven models and seem
to be a promising solution to solve the RUL prediction problem. However, finding a fusion
mechanism to effectively hybridize the two methods is a challenge. Determining how to
use the online data to update the model is also a big problem for this kind of method [4].
Data-driven approaches seek to use machine learning techniques to study the mapping
law between data features and remaining life rather than building complex physical or
statistical models. It is mainly based on a large amount of data obtained by sensors and
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does not require much of the inherent system failure mechanism, which is becoming a
current trend in RUL prediction.

Data-driven approaches based on shallow machine learning algorithms, such as sup-
port vector machine (SVM) [5], artificial neural network (ANN) [6], k-nearest neighbor
(KNN) [7], and the Markov model [8], require complex signal processing techniques and
a large amount of prior knowledge. In contrast, deep learning algorithms that have a
series of nonlinear transformation layers, such as the deep belief network (DBN) [9], deep
auto-encoder (DAE) [10], and convolution neural network (CNN), can deeply explore the
feature information contained in the big data without complicated signal pre-processing
techniques. Due to the strategy of using local receptive field and weight parameter sharing,
CNN has higher operational efficiency and the widest applications. Ren et al. [11] proposed
a bearing RUL prediction model based on CNN and adopted a smoothing technique to
solve the discontinuity problem of prediction results. Zhu et al. [12] constructed a multi-
scale CNN model for RUL prediction by employing convolutional operations with different
convolution kernel sizes. Deng et al. [13] presented another multi-scale CNN-based RUL
prediction model by fusing different sizes of dilated convolutions. Wang et al. [14] de-
veloped a prediction model combining deep separable convolution and a squeeze and
excitation unit, which is more efficient in operation. CNN has been demonstrated to have
powerful big data processing and spatial feature learning capabilities. However, mechani-
cal components usually undergo gradual degradation, thus the acquired monitoring data
are a long-time sequential signal. The RUL prediction results based on the CNN model are
highly random and have poor general applicability.

Recurrent neural networks (RNNs) can catch the temporal features of abnormal and
normal responses in the long-time sequence [15]. Long short-term memory (LSTM) is
an improved RNN with the ability of long-term memory, which can analyze temporal
information and explore the potential time-sequence features. Liu et al. [16] proposed an
LSTM-RNN-based service life prediction approach and applied regular interval sampling
and locally weighted scatterplot smoothing for data reconstruction. Li et al. [17] presented
a prediction model by combining the LSTM and Elman neural networks, in which the raw
signal is decomposed by the empirical mode decomposition (EMD) algorithm and then
fed into the network. The LSTM takes a serial processing mode that strictly relies on time
order, and the model operation efficiency is severely constrained. Moreover, it is unable
to extract the spatial correlation from two measurements within a single time step. Some
improved algorithms by integrating the CNNs and LSTM were presented to overcome the
aforementioned shortcomings [18–20]. To be specific, the long-time degenerate signals are
firstly fed into CNN architectures to extract the feature information, and then the extracted
feature vectors are fed into the LSTM to finally output the RUL prediction results. Although
these approaches take advantage of both CNN and LSTM, this kind of sequential connection
of CNN and LSTM is very rough. The process of feature extraction from raw data through
CNN and then input to LSTM leads to the loss of critical fault-sensitive information.

The Transformer is a recently proposed network model based entirely on self-attention
mechanisms [21]. Chiara et al. [22] put forward a temporal self-attention module based on
the Transformer self-attention operator, which is used for understanding intra-frame inter-
actions. Dai et al. [23] adopted a network architecture named Transformer-XL, which could
capture longer-term dependency to resolve the context fragmentation issue. Xu et al. [24]
presented a novel directed spatial-dependent dynamic network with self-attention to obtain
real-time conditions of traffic flows. Yu et al. [25] affirmed that attention is an important fac-
tor that is used for trajectory prediction and proposed a spatiotemporal graph transformer
model that is only based on attention mechanisms. The above studies have demonstrated
that the attention mechanism has a wide application prospect, but the attention mechanism
is still not extensively applied in the field of PHM. The network architecture of Transformer
is completely different from that of the CNN and RNN and adopts an encoder–decoder
structure using stacked self-attention. The Transformer has two outstanding advantages.
First, it achieves parallel training by removal of recurrent connections, since the frame of
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the input sequence of the decoder is available in parallel. The second is that self-attention
offers an opportunity to inject the global information of the entire sequence into each
input frame, directly establishing long-range dependencies. The Transformer has shown
noncomparable potency in the field of machine translation, image processing, and speech
recognition [26–30]. Although it has been proven to be superior to CNN and LSTM in terms
of prediction performance and operational efficiency, there are still some shortcomings that
limit its wide application in the field of mechanical equipment RUL prediction. (1) The
architecture of the Transformer completely relies on attention mechanisms to derive global
dependencies between inputs and outputs, which makes it lose the position information of
the time signal. Therefore, position embedding has to be included in the network structure.
The positional encoding operation will cause a dramatic increase in the dimensionality of
the input data, which makes the network training very difficult and prone to overfitting.
(2) Compared to CNN-based approaches, the Transformer suffers from the influence of the
self-attention structure and has a relatively poor ability to capture detailed features of the
analyzed signal, which affects the accurate extraction of valuable feature information to
some extent.

To address the above-mentioned issues, an effort is made to effectively combine the
CNN, LSTM, and Transformer based on the idea of “Extracting spatiotemporal features
and applying them to RUL prediction”. Inspired by this idea, this paper proposes a
novel combination network model for mechanical equipment RUL prediction by incorpo-
rating the advantages of convolution-based long short-term memory (ConvLSTM) and
Transformer, in which the ConvLSTM is employed to extract spatiotemporal features and
the Transformer is used for RUL prediction. The major contributions of the proposed
ConvLSTM-Transformer approach are summarized as follows.

(1) The ConvLSTM network is not a simple serial combination of CNN and LSTM. It
can achieve a deep integration of CNN and LSTM by the embedded convolutional
operation in the state transitions of LSTM and hence can capture spatiotemporal
correlation features from the long-time degradation signal of mechanical equipment.

(2) The ConvLSTM can directly extract the feature information reflecting the equipment
degradation from the raw data without any complex signal processing techniques
and prior knowledge. The transformation of high-dimensional raw data to low-
dimensional features is realized through the stacking of the deep ConvLSTM network.
It effectively reduces the data dimension of the raw data and ensures the efficient
operation of the Transformer.

(3) The Transformer network is constructed to perform RUL prediction analysis on the
extracted spatiotemporal features and deeply explores the mapping law between deep-
level nonlinear feature information and equipment service performance degradation.
It further improves the accuracy of RUL prediction results and successfully expands
the application of the Transformer in mechanical equipment RUL prediction.

The rest of the paper is structured as follows. The CNN, LSTM, and ConvLSTM
networks are briefly described in Section 2. The Transformer framework is described in
Section 3. The details of the proposed ConvLSTM-Transformer RUL prediction model
are presented in Section 4. Experimental validation results and comparison analyses are
illustrated in Section 5. Finally, conclusions are composed in Section 6.

2. Preliminaries
2.1. Convolutional Neural Network

CNN employs a feed-forward neural network framework, which mainly consists of
convolutional layers, pooling layers, and fully connected (FC) layers. In addition, the
batch normalization (BN) layer and the activation layer are also essential components
of the current CNN. The convolutional layer can extract complex detailed features to
the next layer by conducting convolution operations and activation operations on the
features of the previous layer, which is the key component of CNN. A convolutional layer
is composed of many feature maps which are convolved with one or more convolutional
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kernels. The convolution between the input feature map and the convolution kernel can be
represented as

xl = σ(∑
Mj

xl−1 × kl + bl) (1)

where xl is the output feature map in the lth convolutional layer, xl−1 is the input feature
map, kl is the convolution kernel, bl is the bias term, Mj is a collection of all output feature
maps, and σ(·) is the activation function, and the most commonly used are sigmoid, tanh,
and rectified linear unit (ReLU).

2.2. Long Short-Term Memory Network

LSTM is a variant version of RNN that is suitable for time series analysis, and it adopts
a gating mechanism to effectively tackle the vanishing and exploding gradient issues in
the training process. There are four gates named forget gate f, input gate i, control gate c,
and output gate o in the memory cell of the LSTM. The basic structure of the LSTM cell is
given in Figure 1, and it is composed of the output of previous memory cell Ct−1, the input
signal at each time step Xt, the output of current memory cell Ct, the output of previous
hidden unit Ht−1, and the output of current hidden unit Ht. The forget gate decides how
the contribution of the previous moment should be obtained, which will generate a value
in the range of 0-1 for each data point in the Ct−1. The input gate controls how much
input from the current moment will be kept in the memory cell. The control gate is used
to manage the update process of the memory cell contents from Ct−1 to Ct by accounting
for the output of f and i. The output gate determines how much the internal state at the
current moment affects the external state. The symbol ⊗ indicates the multiplication of
vector elements, ⊕ indicates the sum of vectors, and σ indicates the operation of activation
function. The mathematical expression of the update process for the LSTM’s four gates are
given as follows: 

ft = σ(Wx f xt + Wh f ht−1 + b f )
it = σ(Wxixt + Whiht−1 + bi)
ot = σ(Wxoxt + Whoht−1 + bo)
ct = ft × ct−1 + it × tanh(Wxcxt + Whcht−1 + bc)
ht = ot × tanh(ct)

(2)

where Wx f , Wxi, Wxo, Wxc, Wh f , Whi, Who, Whc are the corresponding weight matrices, b f , bi,
bo, bc are the corresponding bias vectors, and all of them will be updated in each update process.

Figure 1. Structure of LSTM cell.

2.3. ConvLSTM Network

The LSTM handles spatiotemporal data using full connections in the input-to-state and
state-to-state transitions, whereby none of the spatial information is encoded. Therefore,
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although the LSTM has been demonstrated to be powerful in dealing with temporal correla-
tion, it neglects spatial cues in the input data. The structure of the ConvLSTM cell is shown
in Figure 2. It can be observed that the ConvLSTM uses 3D data as its input. In contrast,
the input signal of the LSTM cell is 1D data. In addition, matrix multiplication is replaced
by a convolution operation at each gate in the ConvLSTM cell, by which underlying spatial
features can be captured by performing convolution operations in multi-dimensional data.
In a word, the ConvLSTM cell also employs the gating mechanism but differs from the
LSTM cell, it utilizes convolution operations rather than matrix multiplication to imple-
ment the input-to-state and the state-to-state transition [25], which is presented in Figure 3.
Similar to the LSTM cell calculation described in Section 2.2, the mathematical expression
of the ConvLSTM in the updated gates is given as follows:

ft = σ(Wx f ∗ xt + Wh f ∗ ht−1 + Wc f ∗ ct−1 + b f )
it = σ(Wxi ∗ xt + Whi ∗ ht−1 + Wci ∗ ct−1 + bi)
ot = σ(Wxo ∗ xt + Who ∗ ht−1 + Wco ∗ ct + bo)
ct = ft × ct−1 + it × tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc)
ht = ot × tanh(ct)

(3)

where ‘∗’ indicates convolution, ‘×’ indicates Hadamard product, and Wc f , Wci, Wco indi-
cate the weight matrices. All the weight matrices and bias vectors will be updated in each
update process.

Figure 2. Structure of ConvLSTM cell.

Figure 3. Inner structure of ConvLSTM cell.
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3. Transformer Neural Network

The RNN can process input data sequentially to acquire the cumulative representation
for the model input. The predicted result is only relevant to the input sequence at the
current moment and the previous moments. However, it should be noted that the RNN
takes a serial processing mode that strictly relies on time order. The sequential execution
process restricts the parallelization ability of the network in the training process and the
inference process. Although the gate mechanism structure adopted by RNNs, such as LSTM
and BiLSTM, alleviates the problem of long-range dependencies on long-time sequence
signals to some extent, RNN-based models are still unable to effectively overcome the
particularly long-term dependence phenomenon [30]. The Transformer network shows
great advantages in the prediction task for long-time series because it adopts parallel
computing, which is in line with the current computer hardware GPU environment. The
multi-headed self-attention mechanism can effectively learn long-range dependencies.

The model architecture of the Transformer mainly consists of two main parts, encoder
and decoder architectures, in which the recurrent layers most commonly used are replaced
by the multi-headed self-attentions. The structure of an encoder is shown in Figure 4.
Because the Transformer is a sequence-to-sequence network, which is entirely based on
self-attention mechanisms and does not contain recurrences and convolutions, the relative
or absolute position information must be injected into the input sequence to ensure that
the Transformer network utilizes the order of the sequence. Sine and cosine functions
which have different frequencies are used for positional encoding, and the process can be
expressed as: {

PE(pos,2i) = sin(pos/10, 0002i/dx)

PE(pos,2i+1) = cos(pos/10, 0002i/dx)
(4)

where pos denotes the position of the specified data point in the sequence, 2i and 2i+1
denote the channel index, and dx is the embedding dimension, generally dx = 512.

Figure 4. Structure of an encoder.

The positional encoding in each dimension corresponds to a sinusoid and the wave-
length is a geometric progression from 2π to 10,000−2π. The position information is
composed of sine and cosine functions of different frequencies alternating with each other.
In practice, the sequence after positional encoding is obtained by summing each vector in
the input sequence with the corresponding position information. It should be noted that
the dimension of the input sequence increases dramatically after the positional encoding
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operation. Assuming that the dimensions of the input data are M × N, M is the number
of data samples and N is the number of data points in the samples. The dimensions of
the input data increase to M × N × dx after the positional encoding. When M = 3 and
N = 4, the dimensionality increase process of positional encoding is shown in Figure 5. The
degradation of mechanical equipment is a long-term process, and the collected sample
signals are usually long-time sequences. That is to say, the values of M and N are often very
large. As a result, the data dimension after the positional encoding increases significantly,
and the number of model parameters increases dramatically, which makes the Transformer
training very difficult and prone to overfitting and other problems. For this reason, this
paper proposes to use the ConLSTM network to extract the low-dimensional spatiotempo-
ral feature vectors from the long-time degradation sequence, which effectively reduces the
amount of data fed into the Transformer network.

Figure 5. Process of dimensionality increase for positional encoding.

The first layer of the encoder is the multi-head attention composed of some attention
layers in parallel, which uses the attention “Scaled Dot-Product Attention” to implement
the mapping of the query matrix Q to the key matrix K and the value matrix V to obtain
the weighted sum of the values V:

Attention(Q, K, V) = Softmax(
QK√

d
)V (5)


Q = XtWQ

K = XtWK

V = XtWV
(6)

where WQ, WK, WV are the weight matrixes corresponding to Q, K, and V and d is the
dimension. First, the dot products of the query Q and all keys K are calculated, then
each are divided by

√
d and the softmax function is applied to acquire the weights on

values. The multi-head attention mechanism obtains the values in different subspaces by
concatenating several single attentions and finally obtains the attention information in
all subspaces after the parallel operation. The residual connection is employed around
each of the two sub-layers to extend the depth of the network and eliminate the vanishing
gradient problem.

The structure of a decoder is presented in Figure 6. Different from the encoder, the
first layer of the decoder is the masked multi-head attention, which is implemented by
the masking operation. The purpose of the masking operation is to make the decoder
only focus on the input sequence at the current moment and the previous moments. The
realization process of the masking operation is to generate an upper triangular matrix and
set the values of the upper triangle to zero and apply this matrix to cover each sequence
and achieve the purpose of concealing the future information. It works by adding to the
multi-head attention to prevent each position from appearing in future positions, which
effectively avoids the auto-regressive property. The process of the masking operation is
given in Figure 7. The input data of the decoder are y1, y2, y3 · · · yT , and the result after
positional encoding is α1, α2, α3 · · · αT in the figure. The shaded part of the matrix processed
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by the multi-head self-attention layer is the upper triangular matrix, and the covered values
are all set to zero. After that, the flowed information is processed by lay normalization as
the query Q and the output of the previous encoder as the key K and value V, which are fed
together into the next multi-head attention layer and finally output by a fully connected
feed-forward network.

Figure 6. Structure of a decoder.

Figure 7. Masking operation.

4. Convlstm-Transformer Model

The proposed ConvLSTM-Transformer model can fully integrate the advantages of
the CNN, LSTM, and Transformer networks. The ConvLSTM network is used to extract
spatiotemporal features from the long-time degradation signals and reduce the data dimen-
sionality of the input to the Transformer network. The Transformer is applied to perform
RUL prediction on the extracted multidimensional features. In actual engineering, we
cannot continuously monitor the whole operating life of the equipment but only sample at
intervals, which results in collecting a small amount of data for a single sampling signal
only related to the current degradation state of the equipment. To address this issue, a
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time step embedding strategy is used to process the collected raw signal samples after
normalization. The single-channel 2D matrix can be given as:

Xk = [xk; xk+1; · · · ; xk+t−1] (7)

where k is the serial number of the raw 1D bearing signal sample and t is the time step. The
time step of the proposed method is set to t = 5 according to the literature [14]. The 3D
input data that is fed into the ConvLSTM network is composed of multiple single-channel
matrices. The 3D input data of the proposed method is shown in Figure 8. The number of
the 3D data channel is set to n − 4, and n denotes the number of the raw 1D bearing signals.

Figure 8. The 3D input data.

The architecture of the proposed ConvLSTM-Transformer model is shown in Figure 9.
The ConvLSTM network consists of three ConvLSTM layers, two max pooling layers, and
three FC layers. The first ConvLSTM layer with a convolutional kernel size of 64 × 1 is
designed to extract spatiotemporal features of the input signals using a larger receptive
field, followed by two ConvLSTM layers with a small convolutional kernel size of 3 ×
1 to extract more detailed spatiotemporal feature information. The first two ConvLSTM
layers are followed by a max pooling layer, which can further compress the data dimension
and reduce the number of network parameters. At the end of the network are three FC
layers, in which the second FC layer contains eight neurons and its output is considered
to be the spatiotemporal feature vectors that are fed into the Transformer network. In
addition, the Dropout layer is added to the FC layers to enhance the robustness of the
network and avoid overfitting. The parameters of the ConvLSTM network are upgraded by
minimizing the training error, and the optimization process of the network model employs
the Adam algorithm. The Transformer network is composed of six sequentially stacked
encoder blocks and six decoder blocks. The spatiotemporal feature vectors obtained by the
ConvLSTM network are fed into the encoder block, and the ratio of the actual RUL values
of each sample signal to their respective whole lifetime is fed into the decoder block as the
labeled data. In practice, it is necessary to normalize the labeled data to be in the range of
[0, 1] to eliminate the influence of different bearings with very wide ranges of a lifetime.
The end of the Transformer network is an FC layer that outputs the RUL prediction result
using the softmax function. The training process of the Transformer network is equivalent
to solving a supervised multi-classification problem. The Mean Square Error (MSE) is
calculated as a loss function of the Transformer during training, and the Adam algorithm is
chosen to minimize the training error by iteratively updating the network parameters.
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Figure 9. Architecture of the proposed ConvLSTM-Transformer model.

5. Experimental Verification
5.1. PHM 2012 Bearing RUL Prediction

To validate the effectiveness of the proposed ConvLSTM-Transformer model in this
paper, the experimental verification is first carried out on the PHM 2012 Challenge dataset.
The PRONOSTIA accelerated aging test platform was used to simulate the process of the
bearing lifetime degradation, which is shown in Figure 10. The run-to-failure vibration
signals for the bearing’s whole life were collected on the platform. With an acquisition
time of 0.1 s, the signal was sampled at 25.6 kHz and recorded every 10 s. In the acceler-
ated aging test, there are three operating conditions for 17 tested bearings, and detailed
experimental information can be found in the literature [31]. The selection of the training
set and testing set in this paper is given in Table 1. Because these tested bearings are
subjected to horizontal loading during the testing, horizontal vibration measurements
provide more helpful information in tracking bearing degradation than vertical vibration
signals; therefore, horizontal signals are used for analysis.

Table 1. Detailed information of PHM2012 dataset.

Rotating Speed/Load
Operating Conditions

1800 rpm/4000 N 1650 rpm/4200 N 1500 rpm/5000N

Dataset Bearing1 (1_1–1_7) Bearing2 (2_1–2_7) Bearing3 (3_1–3_3)
Training set rest of Bearing1 rest of Bearing2 and Bearing3
Testing Set Bearing1_3 Bearing2_5 Bearing3_2
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Figure 10. Test platform of PHM 2012.

The whole-life vibration signals of bearing1_3, bearing2_5, and bearing3_2 in the PHM
2012 dataset are presented in Figure 11, respectively. As a whole, the waveform amplitudes
of the vibration signals are relatively small in the early testing phase, while the waveform
amplitudes increase sharply in the late fault phase when serious faults occur. However,
due to the complexity and high randomness of each bearing’s whole-life signal change
process under different operating situations, as well as the various types of damage failure
that eventually emerge, it undoubtedly increases the difficulty of the RUL prediction for
the testing bearings.

Figure 11. The temporal waveforms of whole-life signals in PHM 2012 dataset. (a) bearing1_3;
(b) bearing2_5; (c) bearing3_2.

The ConvLSTM network is constructed to obtain the spatiotemporal feature vectors
from the long-time degradation signals of the bearings, and then they are fed into the
Transformer network. Following the training of the model, the RUL prediction is performed
for each testing bearing, and the results are shown in Figure 12. The red dashed line in
this figure indicates the RUL prediction results of the proposed method, and the blue solid
line indicates the real RUL results of different testing bearings. It can be observed that
the RUL prediction results of these four tested bearings are mostly agreeable with the real
RUL results, and the trend and monotonicity changes are also identical, which confirms the
effectiveness of the proposed method.



Machines 2022, 10, 1226 12 of 20

Figure 12. RUL prediction results of the PHM2012 dataset. (a) bearing1_3; (b) bearing2_5;
(c) bearing3_2.

5.2. XJTU-SY Bearing RUL Prediction

The public XJTU-SY whole-life bearing dataset is also selected for experimental anal-
ysis to further confirm the effectiveness of the proposed method in this section. In the
experiments, the sampling frequency is set to 25.6 kHz, the sampling duration time is 1.28 s,
and the sampling interval time is 1min. The XJTU-SY bearing lifetime dataset contains a
total of 15 whole-life vibration signals of LDK UER204 rolling element bearings under three
operation conditions, and detailed information about this experiment can be found in the
literature [32]. The selection of the training set and testing set is presented in Table 2.

Table 2. Detailed information of XJTU-SY dataset.

Rotating Speed/Load
Operating Conditions

2100 rpm/
12 kN

2250 rpm/
11 kN

2400 rpm/
10 kN

Dataset Bearing1 (1_1–1_5) Bearing2 (2_1–2_5) Bearing3 (3_1–3_5)
Training Set rest of Bearing1 rest of Bearing2 and Bearing3
Testing Set Bearing1_3 Bearing2_3 Bearing3_3

The temporal waveforms of whole-life vibration signals for the three tested bearings
under different operation conditions are given in Figure 13. It can be seen from the figure
that even for the same type of bearings, their life ranges and waveform amplitude variations
are very different under three operating conditions. RUL results of the above three tested
bearings using the proposed method are shown in Figure 14. Although the number of
signal samples collected for each tested bearing in the XJTU-SY bearing dataset is smaller
than in the PHM 2012 bearing dataset, it can be observed that the proposed method still
gives accurate RUL prediction results for the tested bearings. It further confirms that the
proposed method could achieve high performance for different bearings under various
operating conditions.

The computational cost is an important influencing factor for the application of the
RUL prediction module in real industrial applications. All the experiments are tested on a
computer with an Intel Core i7-9700K CPU (Intel, Santa Clara, CA, USA) and NVIDIA RTX
2070 SUPER GPU (Nvidia Corporation, Santa Clara, CA, USA). The computational cost of
the proposed approach mainly consists of two parts, which are the computational costs
of the ConvLSTM and the Transformer. The computational cost results of the proposed
approach for part of the experiments are given in Table 3. The operation of the ConvLSTM
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module is more computationally expensive than the Transformation module. On the one
hand, to achieve the purpose of spatiotemporal feature extraction and data reduction, the
ConvLSTM is used to deal with the raw bearing whole-life signals. Therefore, the input
data of the ConvLSTM is considerably larger than the Transformer. On the other hand,
the Transformer has a high operation efficiency because it allows for more parallelization.
Moreover, the computation cost of test data from the PHM 2012 dataset is more expensive
than the XJTU-SY dataset. A possible explanation is that the XJTU-SY dataset has a small
amount of data. The number of collected bearing signal samples in the XJTU-SY dataset
is less than in the PHM 2012 dataset. On the whole, the execution time of the proposed
approach is acceptable.

Figure 13. The temporal waveforms of whole-life signals in XJTU-SY dataset. (a) bearing1_3; (b) bear-
ing2_3; (c) bearing3_3.

Figure 14. RUL prediction results of the XJTU-SY dataset. (a) bearing1_3; (b) bearing2_3; (c) bearing3_3.
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Table 3. Computation cost results of the propose method.

Computation Time (s)
PHM 2012 Dataset XJTU-SY Dataset

Bearing1_3 Bearing2_5 Bearing1_3 Bearing2_3

ConvLSTM 3760.15 2270.82 250.12 1209.1
Transformer 445.13 251.75 22.31 105.14

Sum up 4205.28 2522.57 272.43 1314.24

5.3. Spatiotemporal Feature Visualization Analysis

To better investigate the distribution characteristics of the spatiotemporal features
extracted by the proposed ConvLSTM network for the long-time degradation signals, a
nonlinear dimensionality reduction method named t-distributed stochastic neighbor em-
bedding (t-SNE) algorithm [33] is used to generate three-dimensional (3D) representations
of high-dimensional feature maps at different hidden layers of the ConvLSTM network.
The signal samples of Bearing1_3 in the PHM 2012 dataset are selected for visualization
analysis. There are 2731 signal samples in the whole-life period of Bearing1_3 after the
operation of five time-step embeddings, and all the signal samples are divided into five
groups according to chronological order. The visualization results of the high-dimensional
features at the network input, ConvLSTM1 layer, ConvLSTM2 layer, ConvLSTM3 layer, and
the second FC (FC2) layer of the proposed ConvLSTM network are shown in Figure 15. The
dots with different colors and different types in the figure represent five different clusters
of all the signal samples. At the input of the ConvLSTM network, all the feature dots are
completely gathered together and cannot be identified. With the increase in the network
layers, these feature dots corresponding to different sampling times start to be separated
gradually until the last FC2 layer. Although there are still slight pieces of overlap, the
majority of dots are clearly separated and clustered together in chronological order, which
confirms that the proposed ConvLSTM network is capable of learning the spatiotemporal
correlation features from the long-time degradation sequences of bearing.

Figure 15. Visualization results of the different layers for the ConvLSTM. (a) Network input; (b) Con-
vLSTM1 layer; (c) ConvLSTM2 layer; (d) ConvLSTM3 layer; (e) FC2 layer.

The CNN and LSTM with the same network framework are used for 3D repre-
sentations of high-dimensional feature visualization analysis. The visualization results
of the same data at the same stages of the CNN and LSTM networks are shown in
Figures 16 and 17, respectively. It can be observed that as the layers of the CNN and
LSTM networks increase, the feature dots corresponding to different sampling times start to
be gradually separated and clustered. However, these feature dots are heavily overlapped
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even until the output of the last FC2 layers of the CNN and LSTM networks. By visual-
ization comparative analysis, due to some inherent shortcomings of the CNN and LSTM
networks, it is difficult to categorize the features extracted from the long-time degradation
sequences in chronological order, which cannot accurately reflect the feature evolution
process during the whole-life cycle of bearings.

Figure 16. Visualization results of the different layers for the CNN. (a) Network input; (b) First
Convolution layer; (c) Second Convolution layer; (d) Third Convolution layer (e) FC2 layer.

Figure 17. Visualization results of the different layers for the LSTM. (a) Network input; (b) First
LSTM layer; (c) Second LSTM layer; (d) Third LSTM layer; (e) FC2 layer.

5.4. Comparison with the State-of-the-Art methods

In this section, five state-of-the-art network modules are used to predict the bearing
RUL for exhibiting the superiority of the proposed method, including deep separable
convolutional network (DSCN) [14], multi-scale deep convolutional neural network (MsD-
CNN) [34], convolutional bi-directional long short-term memory network (CBLSTM) [35],
the proposed ConvLSTM network, and attentive dense convolutional neural network (AD-
CNN) [36]. The RUL prediction results of the above comparison methods for the tested
bearing1_3 in the PHM 2012 dataset are given in Figure 18. Compared with the RUL result
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of the proposed method in Figure 10, although the overall tendencies of the RUL estima-
tions for all the methods are consistent, it can be observed that the predicted result of the
proposed method is most similar to the actual RUL result. Two commonly used evaluation
metrics in the field of RUL prognostics, the scoring function (SF) and root mean square
error (RMSE) [13,14,34,35], are employed to quantitatively assess the accuracy of the RUL
prognostic result for the above methods. The RUL prediction result is more accurate with a
lower SF value and RMSE value. The literature [14] provided a full explanation of how the
two metrics were calculated. It should be noted that each test was repeated five times to
improve the reliability of the RUL prediction results, and all the metric values appearing in
this paper are the average of the five test results. The SF and RMSE results of the above five
methods are shown in Figure 19. It can be clearly observed that the proposed method in
this paper has the smallest RMSE and SF values compared to the four comparison methods,
and the gaps of SF values and RMSE values with the four comparison methods are very
significant, which confirms that the proposed ConvLSTM-Transformer method has higher
accuracy in bearing RUL estimation.

Figure 18. PHM 2012 bearing1_3 RUL prediction results of different comparison methods. (a) DSCN;
(b) MsDCNN; (c) CBLSTM; (d) ConvLSTM; (e) ADCNN.

To further comprehensively evaluate the RUL prediction performance of the above
five prognostic models, three evaluating functions, correlation, monotonicity, and robust-
ness, are chosen to study the RUL prediction results of different methods. Correlation
describes how the prediction result varies with time, monotonicity reflects the increasing
or decreasing trend of the prediction result, and robustness represents the variability of
the prediction result with random fluctuations. The larger the three evaluating functions,
the better the comprehensive performance of the prognostic model. These three evaluating
functions can be computed as follows, and detailed information about them can be found
in the literature [37].

Corr(F, T) =

∣∣∣∣K∑
k

fT(k)tk −∑
k

fT(k)tk∑
k

tk

∣∣∣∣√[
K∑

k
fT(k)

2 − (∑
k

fT(k))2
][

K∑
k
(tk)

2 − (∑
k

tk)2
] (8)

Mon(F) =
1

K− 1

∣∣∣∣∣∑k
δ( fT(k + 1)− fT(k))−∑

k
δ( fT(k)− fT(k + 1))

∣∣∣∣∣ (9)
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Rob(F) =
1
K ∑

k
exp(−

∣∣∣∣ fR(k)
f (k)

∣∣∣∣) (10)

The results of these three evaluating functions for PHM 2012 beaing1_3 RUL prediction
result are shown in Figure 20. The correlation value and robustness value of the proposed
method are larger than those of the five comparison methods, and the monotonicity
values of the five methods are small and close to each other. Based on this analysis,
it can be concluded that the proposed approach has outstanding comprehensive RUL
prediction performance.

Figure 19. SF and RMSE comparison results for the PHM 2012 beaing1_3.

Figure 20. Comprehensive performance comparison of PHM 2012 beaing1_3 RUL prediction result.

5.5. Generalization Capability Analysis

The generalization capability of the proposed model is analyzed in this section. There
are mainly two groups of working conditions for model training and testing when the
experimental data are from the PHM 2012 dataset. The number of training bearing signal
samples in the first group is six, and that in the second group is eight. They are easily
obtained from Table 1. A preliminary conclusion can be drawn that when the number of
training signal samples from different working conditions is reduced from eight to six, the
proposed model test results still have good accuracy. Next, the generalization capability of
the proposed model is further verified by reducing the number of training signal samples
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in the first group, in which the Bearing1_3 signal is the test signal sample. The number of
training signal samples is set to five in the first group, including Bearing1_1, Bearing1_2,
Bearing1_4, Bearing1_5, and Bearing1_6. Then, the number of training signal samples is
set to four, including Bearing1_1, Bearing1_2, Bearing1_4, and Bearing1_5. Finally, the
number of training signal samples is set to three, including Bearing1_1, Bearing1_2, and
Bearing1_4. The SF and RMSE of the RUL prediction results for the above discussions are
given in Table 4. As can be seen from Table 4, the RUL prediction accuracy of the proposed
model is only slightly decreased when the number of training data samples was reduced
from six to four. The difference between them is not significant, which indicates that the
generalization capability of the proposed model is acceptable.

Table 4. Generalization capability analysis of the proposed model.

Training Data Samples Number 6 5 4 3

SF 4.76 4.80 4.89 5.20
RMSE 0.029 0.029 0.035 0.041

6. Conclusions

At present, convolution neural network (CNN) and long short-term memory (LSTM)
are the most commonly used deep neural networks, but they suffer from some inherent
drawbacks in their application to RUL prediction. CNN is not appropriate for analyzing
temporal signals and cannot learn time-sequence features. The LSTM is based on serial
processing mode and cannot extract spatial correlations from a long-time degradation se-
quence. Aiming at the above problems, a novel combination network model of ConvLSTM
and Transformer, which is based on the idea of “Extracting spatiotemporal features and
applying them to RUL prediction”, is proposed for mechanical equipment RUL prediction
in this paper. Rather than simply serially connecting a CNN to an LSTM, the ConvLSTM
network performs convolutional operations on both input-to-state and state-to-state tran-
sitions of the LSTM. It incorporates the advantages of CNN and LSTM and can directly
extract spatiotemporal features from long-time degradation sequences. The Transformer
based entirely on attention mechanisms can acquire the dependency information between
arbitrary vectors in long-time sequences and deeply explore the mapping law between
deep-level nonlinear feature information and equipment service performance degrada-
tion. The low-dimensional spatiotemporal feature vectors extracted by the ConvLSTM
network are fed into the Transformer network to guarantee efficient operation and yield
RUL prediction results.

The proposed ConvLSTM-Transformer is experimentally validated by using the PHM
2012 Challenge dataset and the XJTU-SY whole-life bearing dataset. The scoring func-
tion (SF) and root mean square error (RMSE) show that the proposed approach has a
higher accuracy of RUL prediction results through the comparative analysis. Furthermore,
comparative calculations of three evaluating functions of correlation, monotonicity, and
robustness demonstrate that the proposed approach has excellent comprehensive RUL
prediction performance. Although the ConvLSTM-Transformer model has achieved good
RUL prediction results, there are still some drawbacks that needed to be improved in the
future, such as simplifying the proposed network structure and improving the optimization
efficiency of the network training process.
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