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Abstract: This paper analyses some effective strategies proposed in the last few years to tackle contact
mechanics problems involving rough interfaces. In particular, we present Boundary Element Methods
capable of solving the contact with great accuracy and, at the same time, with a marked computational
efficiency. Particular attention is paid to non-linearly elastic constitutive relations and, specifically,
to a linearly viscoelastic rheology. Possible implications deal with all the tribological mechanical
systems, where contact interactions are present, including, e.g., seals, bearings and dampers.
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1. Introduction

In the last few decades, a variety of analytical, numerical and experimental approaches
have been implemented to understand what happens when two solids, with real rough
interfaces, come into contact. The reasons for such a marked attention in the rough contact
mechanics are different and both theoretical and applicative. In fact, there is certainly a
genuine academic interest in the problem due to its specific intricacy: the presence of the
roughness, whose spectrum covers several orders of magnitude and goes down to the
atomistic scales, introduces a huge number of space and time scales. On the other hand,
rough contact mechanics has a practical importance in the optimized design of engineering
systems and components: classical industrial applications include seals and dampers ([1,2]),
but a constantly increasing interest is rising in the frontiers’ fields, such as bio-adhesive
([3–6]), cellular scaffolds ([7,8]) and even touch-screen devices ([9]).

The first theoretical answer to the rough contact problem was given by Greenwood
and Williamson in 1966 in a pioneering paper where the first of the so-called multiasperity
theories has beeen introduced. Following such a contribution, a variety of models have
been proposed (see, e.g., [10–13]): basically, these models reduce the surface roughness
to a discrete distribution of asperities behaving as independent Hertzian punches, thus
neglecting the reciprocal interaction between the contact clusters. Due to this assumption,
multiasperity theories cannot match experimental results in terms of applied load and con-
tact area ([14]). In the last twenty years, Persson has developed a totally different approach,
where the contact pressure probability distribution is demonstrated to be determined by
a diffusive process, being dependent on the magnification at which the contact interface
is observed. This theory can be considered exact in full contact conditions, but provides
still qualitatively accurate information for partial contacts. On the other hand, to provide
quantitativelly reliable predictions as needed in applications, a number of numerical meth-
ods and, in particular, several Boundary Element approaches, implemented either in the
real ([15–20]) and in the Fourier space ([21–24]), have been developed. Nowadays, these
techniques are extremely accurate, but at the same time, in most cases were affected by a
significant limitation: they were developed for linear elastic contact mechanics.
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However, it should be pointed out that, in many cases, and, crucially, when soft
materials are involved in the problem, a marked non-elastic time-dependent mechanical
behaviour is evident. Specifically, in a number of systems of applicative interest, including
civil engineering ([2,25]) and biomechanics ([7,8,26]), soft matter can be described, with
good approximation, by a linearly viscoelastic rheology. Recently, due to the theoretical
and practical prominence of viscoelastic contact mechanics, a large amount of research
activities was dedicated to the topic ([27–35]): different cases, including constant sliding
velocity, reciprocating motion and lubricated contacts, have been investigated by some
of the authors of this paper and other research groups in the world ([27–41]). There are
still multiple issues to point out, but these studies have already properly demonstrated
how viscoelasticity alters the contact solution in terms of contact area, load, separation,
stiffness and, ultimately, friction compared to the elastic case. Results not only differ from
the orders of magnitude from purely elastic conditions, but also have a qualitative impact
on the global solution. To this extent, in this paper, we will review, inter alia, a point
that, given its theoretical and practical importance, has to be properly accounted for: this
is the anisotropy induced by the material viscoelastic rheology on the contact solution.
As shown in Ref. [33,42], when a rigid isotropic rough punch slides over a viscoelastic
layer, the contact solution, in terms of both contact clusters and displacement, is strongly
anisotropic. In fact, in each contact cluster, we have a different behaviour between the
leading edge and the trailing edge, where the material is not yet relaxed. Clearly when
the contacting surfaces are already anisotropic, as it often happens in real interfaces due
to the manufacturing treatment, the problem further complicates. All this has significant
practical consequences: for example, this is crucial for sealing systems as it intervenes on
the percolation phenomenon. In fact, most of the theories in the field ([43–46]) assume
that the contact patches distribution is perfectly isotropic, but clearly this assumption fails
when dealing with viscoelastic interfaces, thus leading to a potential underestimation of
the percolating flow in rubber-based viscoelastic seals.

Another issue to properly account for when dealing with rough contacts is the case
of coated bodies. Soft coatings offer the chance to tailor the resulting interface behavior
in terms of adhesive toughness, local contact stiffness, frictional behavior, etc. Similarly,
biological systems have also often evolved in order to exploit specific features of multi-layer
tissues such as, for instance, human skin. For these reasons, besides the aforementioned
classical investigations focusing on both adhesive [47–53] and adhesiveless [17,28,54–61]
contacts involving half-spaces, detailed studies have been led specifically focusing on
contacts of thin layers [35,62–66].

As a matter of fact, material dissimilarity between the contacting bodies (i.e., material
coupling) is the only source of interaction between the displacement fields in the directions
normal and tangential to the surface for half-space contacts [67,68]. This has been clearly
pointed out in a series of studies dealing with both homogeneous [69–71] and graded [72,73]
elastic materials. However, very little has been conducted with respect to the case of thin
bodies. In Refs. [74–76], the aforementioned coupling description has been proven to hold
true only for the case of semi-infinite contacts, whereas contacts involving deformable
layers of finite thickness behave differently. Indeed, in this case, a thickness-related source
of normal-tangential coupling exists, which has been defined as geometric coupling [77,78]
(notably, the latter term is negligible for very thick bodies). In Refs [77,78], it has been
demonstrated that the contact area is strongly affected by the geometric coupling in sliding
frictional contacts, with predicted values up to 10% larger than the expected values for
the uncoupled case. Electrical conductivity prediction [79], and wear estimation [80] are
side problems which could result to be worsened by neglecting geometric coupling effects.
Ref. [78] also shows that geometric coupling affects the overall frictional beahvior of the
interface by inducing an asymmetric normal pressure distribution also in purely eleastic
contacts. Similarly, the finite thickness of the deformable substrate is also expected to
impact the adhesive performance of the contact interface. It is the case, for instance, of thin
coatings in orthopedic implants [81,82], medical adhesive bands [83], and pressure sensitive
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adhesives [84–86], where the layer is comparable in thickness to the surface features size.
It has been demonstrated that, in this case, the specific boundary conditions applied to
the thin deformable layer may play a key role in determining the adhesive strength and
toughness at the interface, both in the case of adhesive contact mechanics against wavy
counterparts [64], and peeling detachment from flat substrates [87–90].

In this paper, we review the main approaches developed to tackle all the aforemen-
tioned issues and, in particular, to understand what happens in terms of pressure dis-
tribution, displacement and friction when rough interfaces are in contact. The paper is
structured as follows. Section 2 include the methodology developed for elastic interfaces,
while the following one is dedicated to the viscoelastic one. Results and final remarks
complete the manuscript.

2. BEM Formulation for Elastic Sliding Contacts

The system under investigation is shown in Figure 1, where a randomly rough rigid
surface is in steady-state sliding contact with a deformable solid backed onto a rigid
substrate. In the same figure, r(x) represents the surface roughness (with x being the
in-plane position vector) with periodicity λ, and h is, in general, the deformable thickness.
Notably, for h→ ∞, the behavior of the contacting solids asymptotically approaches the
half-space. Morevoer, as shown in Figure 1, we assume the rigid rough indenter to penetrate
the solid surface by a quantity δz, whereas with ūz and ∆ we indicate the mean normal
displacement of the solid surface and the mean penetration, respectively, so that:

δz = ∆ + ūz. (1)

In addition, Λ and λ indicate the roughness peak and fundamental wave-length,
respectively.
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Figure 1. The sliding contact between a rigid rough profile and a deformable layer of thickness h
backed onto a rigid substrate.

In order to generalize our contact model, we assume the presence of Amonton/Coulomb
friction at the contact interface, with friction coefficient µc, allover the contact domain Ω.
Indeed, the stress distribution acting along the x direction is given by

τx(x) = µc p(x); x ∈ Ω, (2)

where p(x) is the normal pressure distribution. 115

We assume that the relative sliding speed only occurs in the x direction. Furthermore, 116

µc does not depend on the relative sliding speed. Notably, the frictionless contact mechanics 117

behavior (i.e., purely normal indentation) is easily reseambled for µc = 0. 118

Figure 1. The sliding contact between a rigid rough profile and a deformable layer of thickness h
backed onto a rigid substrate.

In order to generalize our contact model, we assume the presence of Amonton/Coulomb
friction at the contact interface, with friction coefficient µc, all over the contact domain Ω.
Indeed, the stress distribution acting along the x direction is given by

τx(x) = µc p(x); x ∈ Ω, (2)

where p(x) is the normal pressure distribution.
We assume that the relative sliding speed only occurs in the x direction. And that, µc

does not depend on the relative sliding speed. Notably, the frictionless contact mechanics
behavior (i.e., purely normal indentation) is easily reseambled for µc = 0.
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Following the contact formulation given in Refs. [17,28,63,64], we formulate the contact
problem in terms of interfacial surface displacement vector v =

(
vx, vy, vz

)
and stress vector

σ = (µc p, 0,−p). In the reference system joint to the moving indenter, we have

v(x) = u(x)− ū =
∫

Ω
d2sΘ(x− s, h)σ(s); x ∈ Ω, (3)

where we applied the the coordinate transformation x−Vt → x. In Equation (3), u and
ū represent the total and mean surface displacement vectors, respectively, which can be
calculated following the procedure indicated in Refs. [17,28,63,64]. Notably,

ū =
1

λ2

∫

Ω
u(x)d2x (4)

with λ being the size of the periodic calculation domain. Moreover, the term Θ(x, h) in
Equation (3) represents the Green’s tensor, which depends on the specific thickness h of the
elastic body. Moreover, we define the mean contact pressure as

pm =
1

λ2

∫

Ω
p(x)d2x (5)

Notably, by means of Equation (3), the contact problem can be reduced to a Fredholm
equation of the first kind. Presently, let us focus our attention on the specific case of an half-
space and a frictionless contact. To numerically solve the contact problem, the penetration
depth ∆ is controlled, while the computational domain D is discretized with small squares
of non-uniform size. The unknown stress in each single square is assumed to be uniformly
distributed on it. Thus, we can discretize Equation (3) as the following linear system:

vi = Lijσj (6)

where σi is the normal stress uniformely acting on the square, vi is the normal displacement
at the centre of each square, and Lij is the elastic response matrix, that is, the matrix
provided by the discretized version of Equation (3). In the case of , Lij can be computed by
employing the Love solution (see [91]), which furnishes the elastic displacement due to a
uniform pressure on a rectangular area, and adding up the contribution of each elementary
cell D to account for the periodicity of the problem. Thus Lij = lij − lm, where:

lij =
1− ν2

πE

+∞

∑
k=−∞

+∞

∑
h=−∞




(
ξij + dj

)
ln




(
ηij + dj

)
+
[(

ξij + dj
)2

+
(
ηij + dj

)2
]1/2

(
ηij − dj

)
+
[(

ξij + dj
)2

+
(
ηij − dj

)2
]1/2




+
(
ηij + dj

)
ln




(
ξij + dj

)
+
[(

ηij + dj
)2

+
(
ξij + dj

)2
]1/2

(
ξij − dj

)
+
[(

ξij − dj
)2

+
(
ηij + dj

)2
]1/2




+
(
ξij − dj

)
ln




(
ηij − dj

)
+
[(

ξij − dj
)2

+
(
ηij − dj

)2
]1/2

(
ηij + dj

)
+
[(

ξij − dj
)2

+
(
ηij + dj

)2
]1/2




+
(
ηij − dj

)
ln




(
ξij − dj

)
+
[(

ξij − dj
)2

+
(
ηij − dj

)2
]1/2

(
ξij + dj

)
+
[(

ξij − dj
)2

+
(
ηij − dj

)2
]1/2








(7)
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and

lm =
1− ν2

πE
(

dj

λ
)2

+∞

∑
k=−∞

+∞

∑
h=−∞

{
λ(h + 1) ln

(
k + 1 +

[
(h + 1)2 + (k + 1)2]1/2

k− 1 + [(h + 1)2 + (k− 1)2]
1/2

)

+λ(k + 1) ln

(
h + 1 +

[
(k + 1)2 + (h + 1)2]1/2

h− 1 + [(k + 1)2 + (h− 1)2]
1/2

)

+λ(h− 1) ln

(
k− 1 +

[
(h− 1)2 + (k− 1)2]1/2

k + 1 + [(h− 1)2 + (k + 1)2]
1/2

)

+λ(k− 1) ln

(
h− 1 +

[
(k− 1)2 + (h− 1)2]1/2

h + 1 + [(k− 1)2 + (h + 1)2]
1/2

)}
(8)

where dj is the size of the elementary boundary element and ξij =
∣∣xj − xi

∣∣ + λh and
ηij =

∣∣yj − yi
∣∣+ λk.

Clearly, Equation (6) will be exploited to compute the interfacial stresses once the
displacements vi are known. As the problem under investigation belongs to the class
of mixed boundary problems, we need to determine the real contact area. This can be
performed iteratevely by implementing the following procedure: (1) fix the displacement ∆i,
(2) evaluate the so-called bearing area as the intersection between the deformed elastic layer,
calculated with respect to the elastic solution determined previously for the penetration
∆i−1 < ∆i, and the rigid rough punch, (3) compute the displacements in the contact clusters
as vi = hi − hmax + ∆, where hi = h(xi), hmax the maximum height of the rough profile,
(4) solve Equation (6) to assess the stress distribution σj in the contact areas, (5) determine
the displacements vi = Lijσj out of the contact areas, (6) update the contact area at each
iterative step by deleting the elements with negative pressure and adding those where there
exists compenetration. It should be noted that we invert the matrix Lij only for those points
belonging to the contact area: this leads to a strong reduction of the computational efforts.
The numerical inversion of the Equation (6) is made by means of an iterative method based
on a Gauss-Seidel scheme.

It should be noted that the scheme previously described can be employed only in the
adhesiveless case as negative values for the pressure distribution are discarded during
the iterative case. In the adhesive case, based on the energy balance defined in Refs. [63],
under isothermal and frictionless (i.e., µc = 0) conditions, for any given value of the contact
penetration ∆, the contact domain Ω can be calculated by requiring that, at equilibrium,

(
∂F
∂Ω

)

∆
= 0 (9)

where F = E +A is the total free energy, with

E =
1
2

∫

Ω
p(x)vz(x)d2x (10)

being the interfacial elastic energy stored into the deformable body, and

A = −∆γA (11)

being the adhesion energy with ∆γ being the work of adhesion, also referred to as the
Duprè energy of adhesion.

Notably, Equation (9) can be numerically calculated across infinitesimal variations of
the discretized contact domain Ω in the direction normal to the local boundary ∂Ω.

We also observe that the present formulation can be extended to the case of frictional
contacts by following the procedure defined in Refs. [49], and the fundamental solution
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derived in Ref. [92]. To this extent, let us focus on the case of a rigid 1D rough profile in
contact with a thin elastic layer of thickness h.

Morevoer, the term Θ(x) in Equation (3) takes the form

Θ(x) =
1
E

(
Gxx Gxz
Gxz Gzz

)
, (12)

where E is the Young’s modulus fo the elastic material, and according to Ref. [77] we have

Gxx(x) = −2
(
1− ν2)

π

[
log
∣∣∣2 sin

( q0x
2

)∣∣∣+
∞

∑
m=1

B(mq0h)
cos(mq0x)

m

]
, (13)

Gxz(x) = −Gzx(x) =
1 + ν

π

[
1− 2ν

2
[sgn(x)π − q0x]−

∞

∑
m=1

C(mq0h)
sin(mq0x)

m

]
, (14)

Gzz(x) = −2
(
1− ν2)

π

[
log
∣∣∣2 sin

( q0x
2

)∣∣∣+
∞

∑
m=1

A(mq0h)
cos(mq0x)

m

]
, (15)

with q0 = 2π/λ, and

A(mq0h) = 1 +
2mq0h− (3− 4ν) sinh(2mq0h)

5 + 2(mq0h)2 − 4ν(3− 2ν) + (3− 4ν) cosh(2mq0h)
, (16)

B(mq0h) = 1− 2mq0h + (3− 4ν) sinh(2mq0h)
5 + 2(mq0h)2 − 4ν(3− 2ν) + (3− 4ν) cosh(2mq0h)

, (17)

C(mq0h) =
4(1− ν)

[
2 + (mq0h)2 − 6ν + 4ν2

]

5 + 2(mq0h)2 − 4ν(3− 2ν) + (3− 4ν) cosh(2mq0h)
. (18)

3. BEM Formulation for Viscoelastic Sliding Contacts

In multiple applications, it is necessary to account for soft contacts and, specifically, for
a linear viscoelastic rheology for the solids into contact. To this end, let us briefly recall the
main features of linear viscoelasticity [93,94] throughout the following integral equation,
which correlates two time-dependent quantities, that is, the strain ε(t) and the stress σ(t):

ε(t) =
∫ t

−∞
dτJ (t− τ)

·
σ(τ), (19)

where J (t) is the creep function and the symbol ‘·’ refers to the time derivative. Now, if we
define the real quantities E0 and E∞ respectively as the rubbery and glassy elastic moduli
of the viscoelastic material, C(τ) as a the positive defined as creep spectrum [93], and τ is
the relaxation time distribution, the creep function J (t) can be written as:

J (t) = H(t)
[

1
E0
−
∫ +∞

0
dτC(τ) exp(−t/τ)

]
= H(t)

[
1

E∞
+
∫ +∞

0
dτC(τ)(1− exp(−t/τ))

]
(20)

whereH(t) is the Heaviside step function introduced so that J (t) can satisfy the principle
of causality and, thus, J (t < 0) = 0.

Now, Equation (20), let us understand what happens when viscoelastic bodies are
into contact. Due to the linearity of the system, as the geometrical domain is non-finite
and, thus, translational invariant [91], let us focus on the following integral equation
formulated to correlate the normal surface displacement u(x, t) and the normal interfacial
stress derivative σ̇(x′, τ):

u(x, t) =
∫ t

−∞
dτ
∫

d2x′Gtot
(
x− x′, t− τ

)
σ̇
(
x′, τ

)
, (21)

where x is the position vector, t is the time, Gtot is a global Green’s function. If we assume
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that we are dealing with a perfectly homogenous solid, we can factorize the integral
equation kernel in Equation (21) in two terms, thus writing:

u(x, t) =
∫ t

−∞
dτ
∫

d2x′J (t− τ)G
(
x− x′

)
σ̇
(
x′, τ

)
, (22)

where G(x) is a spatial Green’s function, which is defined in detail in Ref. [95]. It is crucial
to observe that, in Ref. [28], under steady-state assumptions, that means the punch is sliding
at constant v over the viscoelastic substrate, Equation (22) has been further developed. In
fact, we can introduce a speed parametrically dependent Green’s function G(x, v), thus
strongly simplifying Equation (22) as:

u(x) =
∫

d2x′G
(
x− x′, v

)
σ
(
x′
)

(23)

Similarly, in Ref. [36], reciprocating conditions are exploited: the rough rigid punch is
assumed in sinusoidal motion over the viscoelastic substrate. Indeed, in this case, we can
introduce a Green’s function, being parametrically dependent on the time t, and we can
write the following Equation:

u(x, t) =
∫

d2x′G
(
x− x′, t

)
σ
(
x′, t

)
(24)

When we reduce Equation (22) to Equation (23) or to Equation (24), respectively for
the steady-state or the reciprocating conditions, a dramatic reduction in the computational
complexity is obtained. As a result, multi-scale problems, where the roughness spectrum
covers several orders of magnitude, can be investigated. On the other side, as these
simplifications affect the generality of the kinematic conditions which can be investigated,
in Ref. [95] Equation (22) has been directly tackled. Although the computational complexity
has allowed the solution just for the 1D case, it has been possible to explore different
conditions, including normal indentation and transient contacts [95].

Another aspect to consider when approaching viscoelastic contact problems deals with
the case of thin viscoelastic layers. Let us focus here on the case of a 1D rough profile in
sliding contact with a thin viscoelastic layer under the assumptions of frictional interactions
at the interface (i.e., µc > 0). In this case, again other steady conditions, we can define a
speed parametrically dependent tensor ΘV as conducted previously in Equation (3) for
the purely elastic case. In particular, ΘV(x) ,with x being the position coordinate, can be
defined as follows:

ΘV(x) = J
(
0+
)[ Gxx(x) Gxz(x)

Gxz(x) Gzz(x)

]
+
∫ +∞

0+

[
Gxx(x + Vt) Gxz(x + Vt)
Gxz(x + Vt) Gzz(x + Vt)

]
J̇(t)dt, (25)

which, as expected, parametrically depends on the sliding velocity V. Specifically, in
Equation (25), the viscoelastic creep function J(t) is given by (20), and the G terms are given
by Equations (13)–(15).

Since the interface is adhesiveless, the solution strategy adopted to calculate the
unknow contact area domain is the same as previously introduced.

Notably, a very recent study has also demonstrated that adhesive viscoelastic contacts
in sliding conditions can be addressed by relying on an energy balance approach.

4. Results and Discussion
4.1. Two-Dimentional Viscoelastic Sliding Rough Contacts: The Role of Anisotropy

An aspect with really important implications from both a theoretical and an applicative
point of view is the anisotropy related to the contact area and on the deformation field
when a rigid surface is in sliding contact with a viscoelastic half-space [42]. A field, where
this can become crucial, is the fluid leakage: percolation is really influenced by the contact
anisotropic solution. To quantify all these effects, we can employ self-affine fractal rigid
surfaces generated with spectral components in the interval qr < q < qc, where qr = 2π/λ,



Machines 2022, 10, 1205 8 of 16

with λ being the side of the square punch equal to λ = 0.01 m, qr = Nq0 and N number
of scales (or wavelengths) [17]. Computations are carried out with N = 64. Moreover,
regarding the material properties, in the following developments, we employ a linear
viscoelastic material with a single relaxation time τ = 0.1 s, with a high frequency modulus
E∞ equal to E∞ = 108 Pa, the ratio E∞/E0 = 11 and the Poisson ratio equal to ν = 0.5.

Let us start showing in Figure 2 this anisotropic effect underlined for the first time
in Ref. [36]. Basically, when we focus our attention on the sliding contact mechanics of a
perfectly isotropic rough surface over a linearly viscoelastic solid, the contact area solution
results are anisotropic: in detail, each contact cluster, as zoomed in the inset, tends to shrink
at the trailing edge, where the material is still relaxing.Consequently, each contact area is
stretched perpendicularly to the speed.
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Figure 2. Contour plot of a pressure distribution for a perfectly isotropic surface sliding over a
linearly viscoelastic layer. In the zoomed inset, a single patch of the contact region: this results
streched perpendicularly to the speed.

We can quantify the anisotropy degree by introducing, in a certain range of wave
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Figure 2. Contour plot of a pressure distribution for a perfectly isotropic surface sliding over a
linearly viscoelastic layer. In the zoomed inset, a single patch of the contact region: this results in
being stretched perpendicularly to the speed.

We can quantify the anisotropy degree by introducing, in a certain range of wave
vectors ζ1q0 < |q| < ζ2q0, the symmetric anisotropy tensor for the deformed surface
M(ζ1, ζ2):

M(ζ1, ζ2) =
∫

ζ1q0<|q|<ζ2q0

d2qq⊗ qCd(q, ζ1, ζ2) (26)

where Cd(q; ζ1, ζ2) = (2π)−2 ∫ d2x〈u(0; ζ1, ζ2)u(x; ζ1, ζ2)〉 exp(−iq · x) is the power spec-
tral density of the deformed surface u(x; ζ1, ζ2) that is filtered. Crucially, the band-pass
filter in the interval [ζ1, ζ2] is defined to highlight the frequencies where the viscoelastic
effects are higher.

Now, let us notice that the quantity Mij =
∫

ζ1q0<|q|<ζ2q0
d2qqiqjCd(q), with i and

j = 1, 2 , is the second order moments of the filtered surface power spectral density of the
, i.e.,M11 = µ20 =

〈
u2

x
〉
,M22 = µ02 =

〈
u2

y

〉
,M12 = µ11 =

〈
uxuy

〉
, where ux = ∂u/∂x,

uy = ∂u/∂y (see also Ref. [96]). Thus, once we have defined the symmetric tensor M,
the quadratic form Q(x) =Mijxixj can be introduced. In a polar reference system with
x = r cos θ, and y = r sin θ, one may obtain:

Q(x) = r2|∇u · e(θ)|2 = r2µ2(θ)

where e(θ) is the unit vector (cos θ, sin θ) and

µ2(θ) = µ20 cos2(θ) + 2µ11 sin(θ) cos(θ) + µ02 sin2(θ) (27)



Machines 2022, 10, 1205 9 of 16

is, thus, the average square slope of the profile defined by carrying out a cut of the deformed
surface u(x; ζ1, ζ2) along the direction θ [33]. Thus, when plotting the quantity µ2(θ) in a
polar diagram, if the system is isotropic, µ2(θ) has to be circular; otherwise, there exists
a different elliptical shape. Furthermore, we can quantify the degree of anisotropy by
looking at the ratio γd = µ2 min/µ2 max between the minimum µ2 min and the maximum
µ2 max eigenvalues of the tensorM; furthermore, the principal direction of anisotropy can
be introduced by detecting the value of the angle θd maximizing µ2(θ), i.e., µ2(θd) = µ2 max.

Similarly, we can introduce the roughness anisotropy tensor M for the rigid surface
as M(ζ1, ζ2) =

∫
ζ1q0<|q|<ζ2q0

d2qq⊗ qC(q, ζ1, ζ2): its components are ,then, M11 = m20 =
〈

h2
x
〉
, M22 = m20 =

〈
h2

y

〉
, M12 = m11 =

〈
hxhy

〉
with hx = ∂h/∂x and hy = ∂h/∂y. As

conducted before, it is possible to associate to the tensor M the quadratic form Q and the
parameters γs and θs for the quantity m2(θ). The latter is the average square slope for the
profile cut on the rough surface h(x; ζ1, ζ2) along the direction θ [33].

If we focus on the isotropic surface sliding over a viscoelastic half-space as pointed
out in Figure 2, it is possible to plot m2(θ) and µ2(θ). In Figure 3, we observe that m2(θ)
is perfectly circular (with γs = 1), while crucially µ2(θ) is elliptical with γd = 0.37 and
θd is approximately π/2 . We quantify in this way what was clear in Figure 2: as the
contact clusters are perpendicular to the velocity direction, the maximum anisotropy angle
must be close to π/2. In Ref. [28], it was demonstrated that the contact area shrinkage
and the anisotropic shape for the spectral moment µ2(θ) are correlated: the shrinkage of
each contact cluster at the trailing edge applies a high-pass filter to the frequencies which
corresponds to the scales along the velocity direction: thus, as observed in Figure 3, the
spectral moment of the deformed profile reduces in such a direction. More details on the
generalization of the anisotropy induced by viscoelasticity can be found in Ref. [42].
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Figure 3. Polar plots of m2(θ) for the rigid surface (on the top) and µ2(θ) for the deformed half-space
(on the bottom). Calculations are carried out for a constant normal pressure p equal to p = 32 kPa and
a a dimensionless speed equal to vτ/L0 = 0.13.
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4.2. Adhesion in Elastic Contacts of Thin Layers

Another paradigmatic condition to consider when dealing with rough contact is the
presence of thin layers. In this case, in order to simplify the calculations, without any loss of
generality of the method employed, adhesive elastic conditions are investigated in the case
of a 1D rigid wavy profile (with single wavelength λ and amplitude Λ) in adhesive contact
against a linear elastic layer of thickness h. Moreover, since the elastic layer presents a finite
thickness, specific boundary conditions can be imposed to the layer surface opposed to the
contact interface. In this regard, we consider two different boundary conditions as reported
in the insets of Figures 4: the confined case, where a rigid constraint is applied to the layer
boundary (see Figure 4a); and the remote pressure case, which consider a free layer boundary
with uniform pressure applied (see Figure 4b).
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Figure 4 shows the dimensionless mean pressure p̃m as a function of the ∆̃.
Referring to the confined configuration, Figure 4a shows that the contact behaves

stiffer as the dimensionless thickness h̃ is reduced because of the presence of the upper
rigid constraint which hampers the elastic deformation of the layer. A different scenario
holds in the case of remote pressure configuration, which, at a relatively small value of h̃,
behaves like an Euler-Bernoulli beam. Indeed, as shown in Figure 4b, the contact stiffness
significantly reduces with h̃ reducing. This leads to a peculiar behavior as, in presence of
external loads, a threshold thickness hth exists below which partial contact cannot occur
(i.e., jump into full-contact occurs). Notably, in the confined configuration, complete contact
can occur only for h > Λ.

Figure 4 also allows to appreciate the different behavior of the two configurations
at pull-off, under load controlled conditions. Indeed, in the case of remote pressure con-
figuration, reducing the layer dimensionless thickness h̃ leads to lower pull-off pressure
and smaller (more negative) pull-off penetration. As shown in Ref. [64], this entails larger
adhesive toughness, thus suggesting safety applications, where large amount of energy
needs to be absorbed. On the contrary, the confined case shows increasing pull-off pressure
with h̃ decreasing, which is peculiarly suited for structural applications (e.g., adhesives).

4.3. Frictional Elastic/Viscoelastic Sliding Rough Contacts of Thin Layers

In the case of sliding contacts with frictional interactions at the sliding interface, the
elastic field in the deformable body depends on the distribution of the normal and tangential
tractions at the interface. In the usual assumption of half-space contacts (i.e., h� λ) with
rigid against incompressible (i.e., ν = 0.5) materials, the presence of in-plane stress (e.g.,
frictional) does not play any role, and the frictionless normal contact solutions still holds
true (uncoupled case). However, Equation (3) shows that in the case of non-vanishing out-
of-diagonal terms in the Green’s tensor Θ, the elastic fields caused by normal and in-plane
stress interact with each other, and the linear superposition of the contact solutions is no



Machines 2022, 10, 1205 11 of 16

longer possible (coupled case). In this case, the contact behavior depends on the specific
distribution of both normal and tangential stress. This is the case, for instance, of frictional
sliding contacts involving thin layers and/or compressible (i.e., ν < 0.5) materials.

The frictional contact of thin elastic layers can be investigated by exploiting the
formalism given by Equations (3) and (12)–(18). The same approach can be adopted
for the viscoelastic case, providing that the Green’s tensor component are calculated by
means of Equation (25). Specifically, in what follows we focus on the case of a 1D rigid
rough profile in contact with a thin layer of thickness h backed onto a rigid substrate (i.e.,
confined configuration). For most of the calculation, we assume incompressible material
for the layer, so that the only source of normal-tangential coupling arises from the finite
thickness of the deformable layer. In agreement with Refs. [77,78], we qualitatively refer to
this as to geometric coupling. The rigid profile presents a self-affine roughness spanning over
100 scales with a periodicity wavelength λ and Hurst exponent H = 0.8. We also assume
rrms = 10 µm, and ḡ = 0.13, as the profile root mean square height and slope, respectively.

Due to normal-tangential coupling, different interfacial displacements are expected
for frictional and frictionless contact conditions, given the same contact configuration. In
turn, this may give rise to a different value of the contact area a in the presence of interfacial
friction compared to the value a0 of the frictionless case. Indeed, Figure 5a shows the
contact area ratio a/a0 as a function of the dimensionless mean contact pressure p̃m, in the
presence of geometric coupling. We observe that, at low values of p̃m, the effect of coupling
on the contact area ratio is poor; whereas, for p̃m > 2, the contact area ratio significantly
increases by increasing the value of p̃m. Finally, at very high contact pressure, a saturation
of the value of a occurs, as the full contact conditions is approached both for frictional and
frictionless contacts. As expected, increasing the interfacial friction coefficient, leads to
enhanced coupling effects. Indeed, in highly frictional contacts (e.g., rubber contacts with
µc ≈ 1) the predicted contact area increase may raise up to 10% compared to the expected
value in frictionless case. Moreover, a closer look at Equations (14) and (17) shows that the
geometric coupling term is fast decaying with h̃ = q0h increasing. This is confirmed by the
data shown in Figure 5b, where we observe that the actual contact area increase predicted
for h̃ = 1.5 is of only 2 %, compared to the uncoupled conditions. A further increase in the
layer thickness leads to vanising coupling effects, as the confinement offered by the rigid
substrate is very poor.
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The frictional behavior of the interface is also affected by coupling. Indeed, from
Equation (14) we observe that, in the presence of geometric coupling (i.e., for thin layers),
the normal displacements on the layer surface under a normal point force are asymmetric
even in the case of a purely elastic material. Hence, in rough contacts’ conditions, an
asymmetric pressure distribution is expected on each contacting asperity, which eventually
entails an additional friction force opposing the relative sliding between the indenter and
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the deformable body. In the case of viscoelastic materials, as clearly shown in Refs. [62,66],
due to the delayed material relaxation, an asymmetric contact pressure distribution is
expected even in the case of vanishing coupling (i.e., for h � λ). Therefore, in contacts
involving thin viscoelastic layers, the pressure asymmetry can be ascribed to the combined
actions of both coupling and viscoelasticity [78]. The friction term resulting from the degree
of contact pressure asymmetry is usually referred to as interlocking friction. The overall
friction coefficient µ experienced by the contacting bodies can be calculated as

µ = µc + µa

where µc is the Coulomb friction coefficient at the sliding interface, and

µa =
1

λpm

∫

Ω
p(x)u′z(x)dx

is the interlocking friction coefficient due to either coupling and/or viscoelasticity, with u′z
being the spatial first derivative of uz.

Figure 6a shows the normalized friction coefficient µa/µc ḡ induced by the asym-
metry of the contact pressure distribution in purely elastic contacts as a function of the
dimensionless mean contact presssure p̃m, for different values of ν. For ν = 0.5, due to
geometric coupling, the degree of asymmetry of the contact pressure distribution is the
highest possbile; moreover, since the pressure eccentricity is shifted in the direction of
sliding, the resulting normalized friction coefficient µa/µc ḡ > 0. Consequently, under
these conditions, regardless of the specific value of p̃m, the overall contact friction is higher
than for uncoupled contacts (i.e., for incompressible half-space). For ν < 0.5, also material
coupling occurs between normal and tangential displacements fields. The contact pressure
eccentricity depends on the value of the contact mean pressure, therefore the frictional
behavior of the contact may result in being increased or decreased with respect to the
uncoupled corresponding case.
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(b) the normalized viscoelastic friction coefficient µa/ḡ as a function of the dimensionless sliding
velocity ζ = Vtcq0, in the frictional and frictionless case.

Figure 6b shows the normalized friction coefficient µa/ḡ as a function of the dimen-
sionless sliding velocity ζ = Vtcq0, for the frictional (µc = 0.8) and frictionless case (µc = 0).
In this case, the layer is assumed lineraly viscoelastic (with single relaxation time tc). Firstly,
we observe that at very high and very low values of the dimensionless sliding velocity, the
normalized friction coefficient µa/ḡ presents its minima. Indeed, under these conditions,
the viscoelastic hysteresis vanishes and the material response is barely elastic. We also
observe that the presence of geometric coupling leads to higher values of µa/ḡ compared
to uncoupled conditions. Moreover, since the coupling terms in Equations (14) and (17) do
not explicitly depend on ζ, non-vanishing values of µa/ḡ are reported even for ζ → 0 and
ζ → ∞ when coupling occurs.
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5. Conclusions

In this paper, we review a variety of methodologies dealing with rough contact
mechanics. In particular, we focus on Boundary Element methods: these have really
impacted the tribology community in the last fifteen years as they have provided a solution
for both purely elastic and viscoelastic normal and sliding contacts. In particular, for
viscoelastic solids, we find important practical implications in all the systems, where there
occurs relative motion between the contacting viscoelastic bodies: these include countless
possible applications, such as, for example, vibration isolators, dynamic seals, pick and
place devices. From a numerical point of view, given the translation invariance and the
linearity of these systems, these problems have been tackled by means of a convolution
integral, possibly accounting for the time and the space domains or relying on particular
kinetic conditions, such as steady-state or reciprocating motions. This has required one
to develop the ad hoc defined Green’s functions. In a wider sense, and specifically, when
thin layers are considered, an entire Green’s tensor has to be considered to account for the
coupling between normal and tangential actions: this can lead to an increase in the friction
force.

This paper demonstrates the necessity of developing proper numerical strategies,
such as the BEM introduced in this paper, to have accurate interfacial information, while
preserving computational efficiency.
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