
Citation: Maliuk, A.S.; Ahmad, Z.;

Kim, J.-M. Hybrid Feature Selection

Framework for Bearing Fault

Diagnosis Based on Wrapper-WPT.

Machines 2022, 10, 1204. https://

doi.org/10.3390/machines10121204

Academic Editor: Antonio J. Marques

Cardoso

Received: 14 November 2022

Accepted: 9 December 2022

Published: 12 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Hybrid Feature Selection Framework for Bearing Fault
Diagnosis Based on Wrapper-WPT
Andrei S. Maliuk 1 , Zahoor Ahmad 1 and Jong-Myon Kim 1,2,*

1 Department of Electrical, Electronics, and Computer Engineering, University of Ulsan,
Ulsan 44610, Republic of Korea

2 PD Technology Cooperation, Ulsan 44610, Republic of Korea
* Correspondence: jmkim07@ulsan.ac.kr; Tel.: +82-52-259-2217

Abstract: A framework aimed to improve the bearing-fault diagnosis accuracy using a hybrid
feature-selection method based on Wrapper-WPT is proposed in this paper. In the first step, the
envelope vibration signal of the roller bearing is provided to the Wrapper-WPT. There, it is initially
decomposed into several sub-bands using Wavelet Packet Transform (WPT), and a set out of nineteen
time and frequency domain features are individually extracted from each sub-band of the decomposed
vibration signal forming a wide feature pool. In the following step, Wrapper-WPT constructs a final
feature vector using the Boruta algorithm, which selects the most discriminant features from the
wide feature pool based on the important metric obtained from the Random Forest classifier. Finally,
Subspace k-NN is used to identify the health conditions of the bearing, thus forming a hybrid signal
processing and machine learning-based model for bearing fault diagnosis. In comparison with other
state-of-the-art methods, the proposed method showed higher classification performance on two
different bearing-benchmark vibration datasets with variable operating conditions.

Keywords: bearing; vibration; fault diagnosis; feature extraction; feature selection; Wavelet Packet
Transform; Boruta; hybrid technique; Subspace k-NN

1. Introduction

Bearings are the most common machine element in industry that serve to facilitate
rotational motion by minimizing friction between moving parts. They have a broad area of
application from industrial specialized machines, electrical machines, turbines, on-road ve-
hicles, air- or spacecraft to various home appliances. When used for supporting the rotating
parts in heavy machinery, bearings are often the parts that are the most affected by the heavy
loads and thus are prone to becoming a reason for machine failure. For example, according
to the statistics on electric motor exploitation, bearing faults are responsible for 45% of all
electrical machine failures, together with stator winding faults—35%, rotor bar faults—10%
and 10% of other faults. This fact states the reason for a profound study of the techniques
for bearing condition monitoring (CM) and fault diagnosis (FD) [1]. At the current moment,
with wide access to sensing technologies and computers, CM is performed by real-time
or close to real-time methods. Recent advances in Big Data and Internet of Things (IoT)
technologies pave the way for the construction of extensive condition-monitoring system
environments, which operate with massive amounts of plant data, making the development
of new data-driven fault diagnosis methods an extremely important task [2]. Utilization
of vibration data is prevalent in this field due to the ability to transfer intrinsic informa-
tion of mechanical systems and immediately react to changes. This allows bearing-fault
vibration data to be used for permanent and intermittent monitoring [3]. Apart from this,
vibration data utilization is the industry standard in the bearing-fault diagnosis field [4].
From the existing corpus of papers on FD of industrial equipment with the application
of machine learning, it may be concluded that all of the methods can be roughly divided
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into two main steps: feature extraction/selection and fault classification [5–7]. The early
bearing-fault diagnosis methods in the field utilized statistical features of the time-based
signal such as mean, variance, skewness, kurtosis and third-order statistical moment [5,8,9].
Later Fast Fourier Transform gained popularity to extract the features from the frequency
domain [10]. Feature extraction from the time-frequency domain became available thanks
to the signal decomposition methods such as short time Fourier transform (STFT), em-
pirical mode decomposition (EMD) and wavelet transform [11]. In recent years, Deep
Learning (DL) techniques have proven extremely useful for automatic feature learning in
the bearing-fault diagnosis field, allowing for the analysis of data without the insights from
human experts. DL techniques based on Convolutional Neural Networks, such as the novel
multiscale convolutional capsule network for discriminative feature learning proposed by
Long et al., have proven to be very powerful feature extractors [12,13]. Another powerful
feature extractor based on Deep Learning is the Deep Autoencoder, which can be also be
used for denoising [14] and feature extraction, including feature extraction from different
physical domains using a deep learning-based model supported by stacked autoencoder
as proposed by Saucedo-Dorantes et al. [15–17]. The main disadvantage of DNNs is that
they are used as a black box algorithm and the features extracted by them cannot be
fully understood, which leads to obstacles in improving the performance of these models
in subsequent research [11]. Therefore, this research focuses on the traditional feature
extraction approach.

Wavelet Packet Transform (WPT) can map non-stationary signals to a set of basic
functions composed of wavelet expansion and contraction [18]. Unlike Discrete Wavelet
Transform, it has a full 2n decomposition tree, thus it further decomposes the detailed
information of the signal, which allows for achieving equally high resolution throughout
all frequency regions. In recent literature on bearing Fault Diagnosis, WPT is widely used
for vibration signal processing and feature extraction. Chen et al. used WPT to decompose
the vibration signal of a roller bearing and used energy–entropy values calculated from the
coefficients as the features. The features were provided to the Multiclass Relevance Vector
Machine for classification [19]. Li et al. applied WPT to capture low-frequency information
of bearing vibration signals. To obtain features appropriate for a CNN, WPT coefficients
are transformed to gray-scale images [20]. In Ref. [21], Li et. al used WPT for signal
decomposition and calculated the normalized energy eigenvector from all reconstructed
sub-bands to use it as a feature vector. Zhu et al. used WPT to extract time-frequency
features forming a time-frequency characteristic matrix and then sorting out insensitive
features by Multi-Weight Singular Value Decomposition [22]. Bastami et al. [23] used WPT
for bearing-vibration signal feature-extraction. At the optimal decomposition level, only
one optimal node was selected based on the kurtosis value. Along with the utilization of
WPT for signal decomposition before feature selection, it has been used inside the hybrid
feature selection methods. Guo et al. [24] proposed a hybrid feature selection method,
which combined the extraction of the statistical features from the WPT reconstructed
coefficients and the EMD modes with minimum redundancy and maximum relevance
filter feature-selection together with analytic hierarchy process feature ranking. A hybrid
feature-selection method proposed by Lu et al. [25] uses de-noised wavelet coefficients in
combination with a distance correlation filter method and recursive feature elimination
with a cross-validation (RFECV) estimator based on Support Vector Regression.

After an intensive screening of the publications by keywords “Wavelet Packet Trans-
form” and “Feature extraction” the authors found several common pattern approaches
in the use of WPT for feature extraction irrespective of the field of application. The first
pattern approach uses energy or entropy of the decomposition nodes as features in various
configurations: obtaining a feature vector that would contain plain energy, entropy or
standard deviation values for each node or contain energy distribution in the decomposi-
tion level [19,25–34]. This pattern of approach apparently allows the achievement of good
classification performance and estimates the localization of the component of interest in the
signal spectrum. However, its disadvantage is that it only contains homogeneous features
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and will inevitably struggle to maintain its classification performance in the case when
two different classes have their main components of interest within the spectrum range
of one WPT node. The second less popular approach implies selection of the certain WPT
decomposition nodes—usually one—based on various parameters [35–38]. The most sig-
nificant WPT node can be selected either based on the calculated energy distribution in the
decomposition level when the selected node is the one with the highest energy/kurtosis of
the reconstructed signals or certain nodes at different levels are just hand-picked. Thereby,
selection of the data parts for further processing is completed using techniques which
have no ability to evaluate the selected node regarding the presence of discriminant
information and overall usability for classification. Nor do these techniques consider
the rest of the signal information anywhere in the future, thus arbitrarily ignoring large
chunks of information, which can reach 50% or more in the energy equivalent of the whole
signal—highest energy node does not imply it contains the absolute majority of the total sig-
nal energy. Eventually, this pattern of approach leads to decision-making based on partial
data, which can omit less energy components, that could highly benefit the classification
performance. The third approach implies decomposition of the signal to a certain level and
utilizing reconstructed signals from all coefficients [39–44]. This approach is mainly used
together with Deep Learning methods. However, even though this pattern approach can
achieve very high levels of classification performance, the sheer quantity of data under
operation increases with the power of two for each following decomposition level, which
makes the pattern approach slow and computationally expensive. Additionally, DNNs
lack feature interpretability and intuitive understanding; thus, can hardly be explained by
human experts.

The proposed method, however, is trying to alleviate the above-mentioned typical
disadvantages. Unlike pattern approach one, the proposed framework initially extracts
time and frequency-domain features from all eight WPT nodes at the third decomposition
level. The presence of heterogeneous features benefits the wide feature pool by its variety
of sensitivities to different fault signatures in the vibration signal. Secondly, unlike pattern
approach two, no premature decisions about exclusion of major chunks of data are made.
The features are extracted from each WPT node and combined into the wide feature pool
which compactly preserves all the relationships inside the original data, thus, no valuable
information is lost during the feature extraction step. Instead of the simple metrics for node
selection, the proposed method is using Boruta feature selection to precisely find the most
discriminant features from the wide feature pool. Thirdly, in contrast to pattern approach
three, the proposed method operates with the vibration data in an optimized way, accessing
each reconstructed signal solely for feature extraction, after which that reconstructed signal
is abolished and does not require any storage or computational resources for further
processing as only its features are stored. Furthermore, unlike pattern approach three,
here the extraction of the statistical features allows for total feature interpretability and the
ability to trace each extracted feature to its origin node.

Considering the above discussion, the contributions of the proposed framework can
be listed as follows:

(1) the proposed bearing feature-selection method based on Wrapper-WPT is constructed
to avoid the common disadvantage of homogeneous energy feature extraction from
the reconstructed signals by extracting a variety of heterogenous features with
various sensitivities;

(2) the proposed method allows the most discriminant information from the whole WPT
decomposition level to be obtained, without any premature decisions on the usability
of certain nodes for inter-class data separation based on various metrics at the signal
processing stage.

The rest of the paper is structured as follows: Section 2 presents the theoretical back-
ground on bearing faults; Section 3 describes the experimental setup and the process of
data collection, the datasets used for this work and their arrangement; Section 4 presents
the proposed methodology together with the technical background; the results and perfor-
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mance evaluation for fault identification are presented in Section 5; and the conclusions are
made in Section 6.

2. Bearing Faults Theoretical Background

The four basic parts of the bearing are inner race, outer race, bearing cage and rolling
elements. Among the reasons for bearing faults, the most common are considered to be:
flawed installations; heavy duty cycles; harsh working environment; improper loads; and
improper lubrication as well as the issues related to the manufacturing process [4].

When there is damage on the bearing race in the form of a crack or indentation,
rolling elements pass this damaged area and generate periodical impulses with a certain
rate called a fundamental defect frequency. Each of the main bearing parts has its own
fundamental frequency named the ball-pass frequency of the outer race (BPFO), ball-
pass frequency of the inner race (BPFI), ball spin frequency (BSF) and fundamental train
frequency (FTF). Fundamental frequencies depend on the bearing geometric parameters
and can be calculated using Equations (1)–(4):

BPFO =
NbSsh

2

(
1− db

Dp
cos φ

)
(1)

BPFI =
NbSsh

2

(
1 +

db
Dp

cos φ

)
(2)

BSF =
Dp

2db

(
1−

(
db
Dp

cos ϕ

)2
)

(3)

FTF =
Ssh
2
×
(

1−
Dp

db
cos φ

)
(4)

where Ssh is a shaft speed expressed in revolutions per minute (RPM); db is the diameter
of the rolling element and Dp states for the pitch diameter; Nb is the number of rolling
elements and theta is the angle of the load from the radial plane [45].

3. Experimental Setup and Data Collection

For the better evaluation of the proposed method, three different public bearing-fault
datasets were used. The first two datasets were obtained from the KAt-DataCenter of the
Chair of Design and Drive Technology, Paderborn University, Germany [46]—referred
to as the PU Real fault dataset and the PU Artificial fault dataset. The Case Western
Reserve University (CWRU) bearing dataset was used as a third dataset for evaluation of
the proposed method [47].

3.1. Paderborn University Bearing Dataset

The vibration data for PU dataset were collected from the modular test rig shown
in Figure 1, which consists of an electric motor, a measuring shaft, a bearing module, a
flywheel and a load motor.

The electric motor installed in the test rig is a 425 W synchronous type (Type SD4CDu8S-
009; Hanning Elektro-Werke GmbH & Co. KG, Oerlinghausen, Germany) with a permanent
magnet rotor. It is operated by a KEB Combivert 07F5E 1D-2B0A, which is an industrial
inverter with a 16 kHz switching frequency. The bearing module is a device that allows for
quick replacement of ball bearings with different types of damage. It serves to create vibra-
tion data for bearings with various fault types without the necessity for tedious machine
disassembly and assembly for each experiment.
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The generated vibration data can be divided into two major groups by the attribute of
inflicted damage types: artificial damage and damage caused by the accelerated lifetime
tests (real damage). In total, the dataset contains signals for 32 bearings. Out of them,
six bearings are healthy with different run-in periods from one to over 50 h. Out of the
12 bearings with artificial damage inflicted by drilling, manual electric engraving and an
electric discharge machine (EDM), 7 have these damages seeded in the outer ring and 5 in
the inner ring. The drilled holes in the bearing rings have diameters of 0.9 mm, 2 mm and
3 mm. The trenches created by using the EDM are 0.25 mm in length in the rolling direction
with a depth of 1–2 mm. The damages inflicted by the manual electric engraver have
lengths of 1–4 mm. A very abrupt sharp transition between the damaged and undamaged
raceway is apparent in the first two methods, hence these faults can hardly be correlated
to the real bearing faults. Nevertheless, the third type of artificial damage caused by a
manual electric engraver has an irregular surface structure and lower depth and thus can
resemble bearing pitting damage which occurs in the real environment. Out of the rest of
the 14 bearings damaged by accelerated lifetime tests, 5 have damage seeded in the outer
ring, 6 in the inner ring and 3 on both the outer and inner rings. Accelerated lifetime tests
are performed in the specifically developed apparatus with a spring-screw mechanism for
applying extensive radial load. Together with improper lubrication due to low viscosity
oil use, the special apparatus guarantees the quick appearance of the damages. The main
symptoms of these damages are described as fatigue which arises in the form of pitting in
70% of cases. The other damages are plastic deformations in the form of indentations. The
damages are combined as single, repetitive and multiple damages, arranged at random or
with no repetition and characterized as a single point or distributed. The extent of damage
was measured by the length of the damaged ring surface in the rolling direction. Based
on the ratio of damage length to pitch circumference, the damages were ranked into level
one (0–2%), level two (2–5%) and level three (5–15%). The bearings with the single damage
present on one ring are labeled according to the location of that damage as outer ring or
inner ring damage. The bearings with damages on both rings are labeled as inner + outer
ring damage. No damage was observed at the rolling elements.

The experiments for each bearing were performed in four different conditions with
varying rotational speed, load torque and radial force. These different conditions contained
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in the dataset allow us to build robust condition-monitoring methods invariant to rotational
speed and load changes. The characteristics of every condition are displayed in Table 1. To
collect the vibration data, the dataset authors used a piezoelectric accelerometer (Model
No. 336C04; PCB Piezotronics, Inc., Depew, NY, USA), attached at the top end of the
testbed bearing module and a charge amplifier (Type 5015A; Kistler Group Winterthur,
Switzerland) with a 30 kHz low-pass filter. After that, the signal was converted from analog
to digital with a sampling rate of 64 kHz. In this work, both signals with artificially induced
faults and faults induced by accelerated lifetime tests were used. They were arranged into
two sets: one three-class set, and one four-class set. The detailed dataset compositions with
the numbers of used bearings and class labels are displayed in Tables 2 and 3.

Table 1. Test rig operating conditions.

No. Rotational Speed (rpm) Load Torque (Nm) Radial Force (N)

0 1500 0.7 1000

1 900 0.7 1000

2 1500 0.1 1000

3 1500 0.7 400

Table 2. Arrangement of the PU dataset with artificially induced faults.

Bearing Type Bearing Code Class Label

Healthy

K001

H

K002
K003
K004
K005
K006

Outer Ring Damage

KA01

OR

KA03
KA05
KA06
KA07
KA08
KA09

Inner Ring Damage

KI01

IR
KI03
KI05
KI07
KI08

In both datasets, one sample is a one-second vibration signal. The dimensions of the
dataset with artificially inflicted faults are 5760 × 64,000 and the dimensions of the dataset
with accelerated lifetime faults are 6400 × 64,000. Time-domain plots for the artificial
bearing damage dataset and the real bearing damage dataset are displayed in Figure 2.
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Table 3. Arrangement of the PU dataset with faults inflicted by accelerated lifetime tests.

Bearing Type Bearing Code Class Label

Healthy

K001

H

K002
K003
K004
K005
K006

Outer Ring Damage

KA04

OR
KA15
KA16
KA22
KA30

Inner Ring Damage

KI04

IR

KI14
KI16
KI17
KI18
KI21

Outer + Inner Ring Damage
KB23
KB24 OR + IR
KB27
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3.2. Case Western Reserve University Bearing Dataset

The experimental setup for this dataset includes a 2 hp motor, accelerometers attached
to the motor and motor base, SKF6205 bearings installed at the drive end and fan end
of the motor and a torque transducer/encoder for speed and horsepower data collection.
The constructed testbed is shown in Figure 3. Vibration signals were collected using a
16-channel DAT recorder at 12,000 and 48,000 samples per second. The faults at the bearing
inner race, outer race and rolling element were seeded using electric-discharge machining
technology. The fault diameters range from 0.007 inches to 0.040 inches. Faults inflicted
upon the outer bearing ring have a stationary nature and the placement of the fault in
relation to the load zone of the bearing affects the vibration response of the system. To
quantify this effect, the experiments with faults located at 3 o’clock, 6 o’clock and 12 o’clock
were conducted for both fan and drive end bearings. Bearings with seeded faults were
reinstalled in the test motor. Not more than one faulty bearing with one faulty component
was installed in the motor during any of the experiments. Vibration data were collected
from the motor running at the speeds of 1720 to 1797 RPM with loads of 0 to 3 horsepower.
For this study, only 12,000 samples per second data were used. The recorded signals
were cut into one second segments and each segment was used as a sample in the final
dataset. The dimensions of the final CRWU dataset for this study are 1920 × 12,000. The
arrangement of the data for the evaluation of the proposed method is shown in Table 4.
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130–133
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Inner Ring Damage

056–059
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105–108
169–172
209–212

Ball Damage

048–051

B
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185–188
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4. Proposed Methodology

The workflow of the proposed methodology is depicted in Figure 4. The whole
implementation can be divided into three major steps, each step is described in a separate
subsection. In the bearing vibration signal preprocessing step, raw vibration signals are fed
across the envelope analysis for demodulation. Following that, the signals are provided
to the Wrapper-WPT framework input, where first the signals are decomposed to the
third WPT level, and then discriminant features are extracted from each reconstructed
WPT coefficient, forming a wide feature pool. Following that, the dimensionality of
the wide feature pool is reduced by selecting the best features using the Boruta feature-
selection algorithm and a final feature vector is obtained as an output of the Wrapper-WPT
framework. Selected features are further provided to the Subspace kNN to complete the
bearing-fault diagnosis task.
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4.1. Bearing Vibration Signal Preprocessing
Hilbert Transform Envelope

Since the raw bearing-vibration signal usually contains insufficient diagnostic infor-
mation, applying the envelope analysis became a traditional approach in bearing fault
diagnosis [45,48]. The Hilbert transform method used in this work mainly converts the
actual signal into an analytical signal as a first step. Then, the envelope is obtained by
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taking the modulus. The vibration signal x(t) is expressed in Equation (5), where the
amplitude modulation envelope is A(t) and the phase modulation function is ϕ(t):

x(t) = A(t) cos(2π f t + ϕ(t)) (5)

The Hilbert transform of the signal x(t) is expressed as a 90-degree phase shift of x(t):

x̂(t) = A(t) sin(2π f t + ϕ(t)) (6)

Then, the analytical signal is derived as a complex number:

Z(t) = x(t) + jx̂ = A(t)ejϕ(t); (7)

The envelope of the signal is obtained by calculating the modulus of Z(t):

|Z(t)| = A(t) (8)

4.2. Wrapper-WPT
4.2.1. Wavelet Packet Transform Base Theory

In contrast with the frequency-localized Fast Fourier Transform (FFT) that is tradi-
tionally used for signal processing, the Wavelet Transform (WT) creates a representation
of the signal in both the time and frequency domains [19,30]. Here, the more generalized
Wavelet Packet Transform (WPT) has even more advantages since, unlike the WT, it can
decompose the signal in both low-frequency and high-frequency bands. This makes it
possible to characterize the non-stationary information about bearing faults in the initial
step of the Wrapper-WPT framework.

During the signal analysis, the input signal is decomposed into a set of wavelet packet
nodes, which have the form of a full binary tree. Each WPT tree node is indexed as (j, n),
and the corresponding wavelet packet tree coefficient is dn

j , where j is the decomposition
level and n is the number of nodes in the decomposition level.

The original signal is located in the root node of the tree with index W(0, 0). In the
first decomposition level (j = 1), the original signal splits into two branches. The branch
on the left goes through low-pass filtering and the branch on the right goes through high-
pass filtering, resulting in a vector of approximation coefficients d0

1 and a vector of detail
coefficients d1

1. In the same manner, at every jth WPT decomposition levels there are 2j WPT
nodes. The WPT tree structure is displayed in Figure 5.
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The Wavelet Packet Transform consists of decomposition and reconstruction algo-
rithms. The relation between the orthogonal scaling function φ(t) and wavelet function
ψ(t) can be expressed as follows:{

φ(t) =
√

2∑k kkφ(2t− k)
ψ(t) =

√
2∑ kgk(2t− k)

(9)

where k is a transformation parameter and h(k) and g(k) are conjugate filters which are
low-pass filters and high-pass filter coefficients.

The following recurrence relationship defines the decomposition algorithm wavelet
filter formed by high-pass and low-pass filters in a pair:{

d2n
j+1[k] =

√
2∑l hl−2kdn

j [k]
d2n+1

j+1 [k] =
√

2∑l gl−2kdn
j [k]

(10)

where dn
j [k] are wavelet packet coefficients; d2n

j+1[k] are the approximation coefficients;

d2n+1
j+1 [k] are the detail coefficients; and hl−2k and gl−2k are the low-pass filter coefficients

for decomposition, respectively.
After decomposition by the wavelet packet, the reconstruction algorithm for the

wavelet packet coefficients is deduced as:

dn
j [k] = ∑l hk−2ld2n

j+1[k] + ∑l gk−2ld2n+1
j+1 [k] (11)

The result of the Wavelet Packet Transform primarily depends on the choice of decom-
position level and mother wavelet which would be the best suited for signal analysis.

The common convention for the WPT decomposition level based on the sampling
frequency and characteristic frequency of interest can be expressed as:

LBF =
fsample

2L+1 ≤ fchar ≤
fsample

2L = HBF (12)

where L denotes the level of WPT decomposition. The essential target of the decomposition
level selection is to find such an L that would be able to contain characteristic frequency
fchar between the Low Border Frequency (LBF) and High Border Frequency (HBF) of a
particular node. For the dataset used in this paper, the BPFO at Stage 1 is calculated to
be at 45.81 Hz. Thus, in order to isolate this characteristic frequency in the node, for a
signal with a 64 kHz sampling rate the decomposition level L will be equal to 11 with
LBF = 31.2 Hz and HBF = 62.5 Hz [49].

It is important to note that this convention works best only when several specific
nodes are implied to be selected for further analysis, which contradicts the idea of this
paper. The method developed in this work utilizes all WPT nodes with the aim to provide
information about the whole spectrum. However, a high number of nodes on the deeper
levels of decomposition would require excessive amounts of memory. For example, after
decomposing the artificial damages dataset to level 11, all signals in 2048 nodes will require
5.14 Tb storage memory, which would render the proposed method inexecutable. Thence,
in this work, the decomposition level L is set to 3, which allows the original signal to be
decomposed into eight nodes and will require 20.08 Gb of storage memory, making it the
compromise solution in the given circumstances.

4.2.2. Mother Wavelet Selection

The existing mother-wavelet selection approaches are usually categorized as qual-
itative or quantitative. Qualitative methods investigate the properties of wavelets such
as orthogonality, symmetry, compact support, regularity, vanishing moment, explicit ex-
pression, etc., to select the wavelet most suitable for the tasks [50]. Nevertheless, the
investigation of wavelet properties for mother wavelet selection can be intricate since a
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number of different wavelets can have identical properties and parameters. Shape match-
ing is the alternative qualitative approach that was developed thanks to the analysis of
the geometric shape of the wavelets. It was discovered that signal components can be
extracted more effectively when the mother wavelet has a similar shape as the target signal
feature component. However, matching the shape of the signal with the mother wavelet is
a mundane and time-consuming task since it lacks automatization and is performed by
visual comparison; thus, it is generally complicated.

Quantitative methods were intensively studied in an effort to evade the deficiencies
of qualitative methods. To select the best mother wavelet, these methods use quantitative
measures that can be based on Shannon entropy, Fishlow’s measure, Emlen’s modified
entropy measure, cross-correlation, distribution error criterion, etc. The wavelet selection is
completed based on the wavelet’s output quantitative measure score.

In this work, the mother wavelet was chosen with the help of a quantitative method
based on the Maximum Energy to Shannon Entropy Ratio Criterion, which is widely used
in current time research works [19,36,51,52].

The energy contained in the signal can serve as a criterion for mother wavelet selection.
For fault diagnosis applications, it is evident that the efficient wavelet transform of the
signal would have a higher energy content extracted from the defect-induced transient
vibrations. For the discrete-time signal x(i), its energy is expressed as:

Ex(i) =
N

∑
i=1
|x(i)|2 (13)

However, it is important to mention that the signals with the same energy can have
different frequency distributions in the way that one of the signals will have clear major
frequency components with a high value for feature selection, while the second signal
will have a wide spectrum that is virtually useless for feature selection. Shannon entropy
allows us to quantitatively describe the energy distribution of the signal and is calculated
as follows:

Eentropy(s) = −
N

∑
i=1

pi· log2 pi (14)

where pi is the energy probability distribution of the wavelet coefficients, which is given
as follows:

pi =
|wt(s, i)|2

Eenergy(s)
(15)

Thus, the Energy to Shannon Entropy ratio can be defined as:

R(s) =
Eenergy(s)
Eentropy(s)

(16)

This ratio is calculated for every candidate wavelet, using all the nodes in the third
decomposition level. A candidate mother wavelet that achieves the highest R(s) value is
selected as the most appropriate for successful fault diagnosis.

In this work, mother wavelets were chosen individually for each of the two datasets.
As described previously, the R(s) ratio was computed for the bearing vibration dataset
with artificially inflicted damages and the bearing vibration dataset with damages inflicted
by accelerated lifetime tests. The decompositions necessary for the experiments were
performed using MATLAB. The R(s) ratio was calculated for each mother wavelet provided
in the Wavelet Packet Decomposition library. The R(s) ranking plots of the mother wavelets
for each dataset are shown in Figures 6 and 7. According to these plots, the biorthogonal
3.1 wavelets were chosen as the mother wavelet for the decomposition of signals contained
in the dataset with artificial damages. Similarly, biorthogonal 2.2 was chosen as a mother
wavelet for the dataset with real damages.



Machines 2022, 10, 1204 13 of 25
Machines 2022, 10, x FOR PEER REVIEW 14 of 26 
 

 

 

Figure 6. Energy to Entropy ratio for artificial damage data. 

 

Figure 7. Energy to Entropy ratio for real damage data. 

4.3. Feature Extraction and Selection 

Real-life data for bearing fault diagnoses, such as vibration, acoustic emission or cur-

rent data, are collected for a prolonged time with very high sampling rates, resulting in a 

complex dataset with a high number of variables, which requires additional memory and 

computation power. Thus, the application of machine learning techniques to the raw data 

is impractical.  

Feature extraction (FE) serves to resolve this predicament. It is a process of data di-

mensionality reduction by which an initial raw dataset is reduced to one of a smaller size, 

reducing the number of resources necessary to describe the given data. Extracting quality 

features helps to achieve better generalization and avoids overfitting of the classification 

algorithm. The dataset obtained as a result of feature extraction is called the feature vector. 

For the second step of the Wrapper-WPT framework, 19 significant statistical features 

were extracted from the vibration data: 16 were extracted from the time domain and 3 

were extracted from the frequency domain. These statistical features are omnipresent in 

the bearing fault diagnosis field and are used in different combinations to create a com-

pressed representation of the vibration data. It is challenging to predict the importance of 

certain features for fault diagnosis prior to feature selection. Thus, the list of features as-

sembled for this research work is meant to encompass as many statistical features as can 

be found in the literature. The names of these features are: peak value; root-mean-square; 

kurtosis; crest factor; clearance factor; impulse factor; shape factor SMR; entropy; skew-

ness; square mean root; fifth normalized moment; sixth normalized moment; mean; shape 

factor RMS; peak-to-peak value; kurtosis factor; the energy of the signal; frequency center; 

RMS frequency and root variance frequency. The set of 19 features is extracted individu-

ally from each reconstructed WPT coefficient forming a wide feature pool of 152 features. 

The equations for each of the features are presented in Table 5.  

Figure 6. Energy to Entropy ratio for artificial damage data.

Machines 2022, 10, x FOR PEER REVIEW 14 of 26 
 

 

 

Figure 6. Energy to Entropy ratio for artificial damage data. 

 

Figure 7. Energy to Entropy ratio for real damage data. 

4.3. Feature Extraction and Selection 

Real-life data for bearing fault diagnoses, such as vibration, acoustic emission or cur-

rent data, are collected for a prolonged time with very high sampling rates, resulting in a 

complex dataset with a high number of variables, which requires additional memory and 

computation power. Thus, the application of machine learning techniques to the raw data 

is impractical.  

Feature extraction (FE) serves to resolve this predicament. It is a process of data di-

mensionality reduction by which an initial raw dataset is reduced to one of a smaller size, 

reducing the number of resources necessary to describe the given data. Extracting quality 

features helps to achieve better generalization and avoids overfitting of the classification 

algorithm. The dataset obtained as a result of feature extraction is called the feature vector. 

For the second step of the Wrapper-WPT framework, 19 significant statistical features 

were extracted from the vibration data: 16 were extracted from the time domain and 3 

were extracted from the frequency domain. These statistical features are omnipresent in 

the bearing fault diagnosis field and are used in different combinations to create a com-

pressed representation of the vibration data. It is challenging to predict the importance of 

certain features for fault diagnosis prior to feature selection. Thus, the list of features as-

sembled for this research work is meant to encompass as many statistical features as can 

be found in the literature. The names of these features are: peak value; root-mean-square; 

kurtosis; crest factor; clearance factor; impulse factor; shape factor SMR; entropy; skew-

ness; square mean root; fifth normalized moment; sixth normalized moment; mean; shape 

factor RMS; peak-to-peak value; kurtosis factor; the energy of the signal; frequency center; 

RMS frequency and root variance frequency. The set of 19 features is extracted individu-

ally from each reconstructed WPT coefficient forming a wide feature pool of 152 features. 

The equations for each of the features are presented in Table 5.  

Figure 7. Energy to Entropy ratio for real damage data.

4.3. Feature Extraction and Selection

Real-life data for bearing fault diagnoses, such as vibration, acoustic emission or
current data, are collected for a prolonged time with very high sampling rates, resulting in
a complex dataset with a high number of variables, which requires additional memory and
computation power. Thus, the application of machine learning techniques to the raw data
is impractical.

Feature extraction (FE) serves to resolve this predicament. It is a process of data
dimensionality reduction by which an initial raw dataset is reduced to one of a smaller size,
reducing the number of resources necessary to describe the given data. Extracting quality
features helps to achieve better generalization and avoids overfitting of the classification
algorithm. The dataset obtained as a result of feature extraction is called the feature vector.

For the second step of the Wrapper-WPT framework, 19 significant statistical features
were extracted from the vibration data: 16 were extracted from the time domain and 3
were extracted from the frequency domain. These statistical features are omnipresent in the
bearing fault diagnosis field and are used in different combinations to create a compressed
representation of the vibration data. It is challenging to predict the importance of certain
features for fault diagnosis prior to feature selection. Thus, the list of features assembled for
this research work is meant to encompass as many statistical features as can be found in the
literature. The names of these features are: peak value; root-mean-square; kurtosis; crest
factor; clearance factor; impulse factor; shape factor SMR; entropy; skewness; square mean
root; fifth normalized moment; sixth normalized moment; mean; shape factor RMS; peak-
to-peak value; kurtosis factor; the energy of the signal; frequency center; RMS frequency
and root variance frequency. The set of 19 features is extracted individually from each
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reconstructed WPT coefficient forming a wide feature pool of 152 features. The equations
for each of the features are presented in Table 5.

Table 5. Formulas of statistical features extracted from the vibration signal.

Statistical Feature Formula Statistical Feature Formula

Peak value Xp = max
i
|xi| Fifth normalized moment

HOMn5 =

1
n

N
∑

i=1
(xi−µ)5

(√
1

N−1

N
∑

i=1
(xi−µ)2

)5

Root-mean square XRMS =

√
1
N

N
∑

i=1
x2

i
Sixth normalized moment

HOMn6 =

1
n

N
∑

i=1
(xi−µ)6

(√
1

N−1

N
∑

i=1
(xi−µ)2

)6

Kurtosis
Xkurtosis =

1
N

 N
∑

i=1
(xi−µ)4

σ4

 Skewness
Xkurtosis =

1
N

 N
∑

i=1
(xi−µ)3

σ3


Crest factor C f =

Xp
XRMS

Shape factor RMS SFRMS = XRMS
µ

Clearance factor L =
Xp(

(1/N)
N
∑

i=1

√
|xi |
)2 Peak-to-peak value xptp = max|x| −min|x|

Impulse factor L = max{|xi |}(
(1/N)

N
∑

i=1
|xi |
) Energy of signal e =

N
∑

i=1
x2

i

Shape factor SMR SFSMR = XSMR
µ

Frequency center
FC =

∞∫
0

f s( f )d f

∞∫
0

s( f )d f

Entropy H(x) = −
N
∑

i=1
P(xi) · log2 P(xi)

RMS frequency
RMSF =

√√√√√
∞∫
0

f 2
i s( fi)d f

∞∫
0

s( fi)d f

Mean µ = 1
N

N
∑

i−1
xi

Root variance frequency
RVF =

√√√√√
∞∫
0
( fi−FC)2s( fi)d f

∞∫
0

s( fi)d f

Square mean root
XSMR =

 N
∑

i=1

√
xi

N

2

4.3.1. Boruta Feature Selection

Feature selection is a crucial step in the building of machine learning classification
algorithms. It is a process of selecting the most significant and relevant features that would
be the best description of the vast set of original features in the dataset. Feature selection
allows for faster training of the ML algorithm, reduction in model complexity and reduction
in overfitting. Thus, this step is present as a final step of the Wrapper-WPT framework for
bearing fault diagnosis.

Wrapper-based feature selection methods are generally considered to be the most
efficient for their ability to extract correlations and dependencies between the features. They
utilize a certain classification algorithm as a black box, which then returns the ranking of the
features. Usually, it is preferable to use computationally efficient and simple classification
algorithms without user-defined parameters for higher practicality.

The main kinds of wrapper feature-selection algorithms are forward selection and
backward elimination. The forward selection wrapper method is an iterative method that
starts with zero features and with each iteration adds a feature that best improves the
model until any new additional features do not improve the performance of the model.
Backward elimination starts with the whole set of features and with each iteration removes
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the least significant feature enhancing the model performance until removing any more
of the remaining features brings no further improvement. Recursive feature selection is a
backward elimination subcategory method that aims to find the subset of features with the
best performance. It iteratively fits a supervised model with the given set of features and
performs a greedy search by evaluating all the random feature combinations against the
evaluation criterion. Finally, it selects the best performing set with the optimal result for
the specifically chosen machine-learning algorithm [27].

Boruta is a recursive wrapper feature-selection method built on the Random Forest
classification algorithm. It is a quick classification algorithm that can yield a numerical
estimate of the importance of a certain feature. Random Forest is an ensemble method,
which means that it operates by creating a multitude of unbiased weak decision trees and
the classification result depends on individual voting of each decision tree, with each of
these trees being developed on different bagged samples of the training set [53,54].

Prior to running Boruta feature selection, all the features are normalized between zero
and one using min–max scaling. It subtracts the minimum value in the feature and divides
it by the range. The range is the difference between the original maximum and original
minimum. The scaled features are calculated using Equation (17) to alleviate possible
feature scaling sensitivity problem during classification:

X′ =
X− Xmin

Xmax − Xmin
; (17)

The Boruta algorithm working steps are as follows:

1. The Boruta algorithm creates several copies of all original attributes—Shadow At-
tributes (SA);

2. Then, the attributes are shuffled and permutated to remove their correlation with the
response. The obtained randomized feature set is added to the original feature set to
bring randomness to the feature attributes, constructing the Extended Information
System (EIS);

3. The Random Forest classifier is fitted to the EIS several times. The SA within the EIS is
randomized for each run. Thus, every SA part of the EIS is unique for every iteration;

4. The importance of every feature attribute, called the Z score, is computed for each run.
In order to compute the Z scores, the EIS is divided into several bootstrapped sets of
samples (BSSs) equal to the number of decision trees used for training the Random
Forest algorithm. Accordingly, the same number of the out of the bag samples (OBSs)
are used for testing the performance of each corresponding decision tree. The number
of votes for the correct class is recorded for every attribute from the EIS. After that,
the values of the OBSs are permutated and the class votes of the DTs are recorded
once again. The importance value for the attribute for each DT—mean decrease in
accuracy (MDA) is calculated as follows:

MDA = CorrectVotesoriginal − CorrectVotespermutated; (18)

The importance of the attribute values for the whole Random Forest are calculated
as follows:

Vi =
1
N

(
N

∑
n=1

MDAn

)
(19)

The final importance score is calculated as:

Z =
Vi

σVi
(20)

5. The maximum Z score among shadow attributes (MZSA) is found. A hit is assigned
to every real attribute with a Z score higher than MZSA;
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6. The real attributes that scored significantly lower than MZSA are deemed as non-
important and eliminated;

7. The real attributes that scored significantly higher than MZSA are deemed
as important;

8. All Shadow Attributes are removed;
9. The procedure is repeated until the importance is assigned to each attribute or the

algorithm has reached the user-defined limit of Random Forest runs.

The overall Boruta feature-selection algorithm scheme is shown in Figure 8.
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4.3.2. Selected Feature Set Analysis

Since Boruta is the wrapper feature-selection algorithm, all the selected features can
be justified by a Random Forest classifier which makes them easily interpretable. Analysis
of the set of features selected by the Boruta algorithm for their WPT node affiliation shows
that the extracted features belong to different nodes of the Wavelet Packet Transform, which
can be seen in Figure 9.
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artificial damages; (b) Dataset with real damages.

In [4], the authors calculated the fundamental frequencies for these data using Equa-
tions (1) and (2) and showed that the bearing fault components from the first to tenth
harmonic, recognizable with human eye in the envelope spectrum, can be contained within
the 0–1250 Hz frequency range. Thus, the conclusion can be made that in this research,
the WPT node (3,0) contains all bearing fundamental frequencies due to its frequency
range of 0–8000 Hz. For that reason, the majority of the selected features belong to the
node W(3,0). However, as can be concluded from the plot of feature affiliation to the
WPT nodes after feature selection, the other nodes that represent higher frequency bands
also contain components significant for fault diagnosis. These components discovered
by the Boruta feature-selection algorithm would have been omitted when using methods
with low-pass filtering or methods that precisely target the fault characteristics frequen-
cies [4]. The diagrams in Figure 9 show the number of features selected by Boruta and their
node affiliation.

The score of each feature category on the diagram in Figure 10 shows the number of
nodes in which this certain feature was selected by the Boruta algorithm for the final dataset.
The features which are shown in Table 5, but not present here, were not selected. Some
feature families proved to be sensitive for both datasets. However, there is not enough
evidence to claim any inherent higher sensitivity properties of certain features.

The above explanation means that, based on the feature distribution in the nodes,
it is possible to find frequency bands that are the most useful for fault diagnosis with
precision doubling with every deeper WPT decomposition level. Here, considering that
the signal under analysis is 1 s long with a sampling frequency of 64 kHz, each of the WPT
decomposition nodes represents 8 kHz wide bands, in particular: W(3,0) is 0–8 kHz; W(3,1)
is 8–16 kHz; W(3,2) is 24–32 kHz; W(3,3) is 16–24 kHz; W(3,4) is 56–64 kHz; W(3,5) is 48–54
kHz; W(3,6) is 48–56 kHz; W(3,7) is 56–64 kHz. The number of features affiliated with the
nodes arranged in ascending frequency order are shown in Figure 11.
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Figure 11. Number of features selected by the Boruta algorithm from each WPT node (in the ascending
order): (a) Dataset with artificial damages; (b) Dataset with real damages.

As an output from the Wrapper-WPT feature-selection framework, twenty-three fea-
tures were obtained for the artificial damage dataset and twenty for the real damage
dataset. The selected feature sets are labeled according to the fault types and provided to
the Subspace k-NN classifier.

Additionally, the authors performed feature selection using a filter Chi-square test
method. The Chi-square test was used to extract the same number of features from artificial
and real fault datasets as Boruta. For both datasets, the most popular feature was the energy
of signal: six out of 22 for artificial faults and six out of 20 for real faults. Other features
for the artificial damage dataset were: root mean square—three features; square mean
root—three; frequency center—four; RMS frequency—four and root variance
frequency—three features. For real faults: root mean square —three; square mean
root—three; frequency center—four; RMS frequency—four and root variance
frequency—three. The main difference between the sets selected by Boruta and Chi-squared
test is the predominance of entropy feature in the first case and energy of signal in the latter
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case. Configuration of the proposed method with Chi-squared test feature-selection was
tested and the results are shown and discussed in Section 4.1.

4.4. Subspace k-NN

For the final step of the proposed bearing fault diagnosis method, the Subspace k-NN
classifier was selected.

Generally, the nearest neighbors algorithm is a supervised learning classifier that
finds a group of k objects in the training set that are the closest to the object in the testing
set and assigns the same label to this object as the majority of the closest k objects in
the training set. The k-NN algorithm is an instance-based non-parametric classifier with
conceptual simplicity, easily understandable and interpretable output, and the assertion
that the classification error of the general k-NN method is bounded above by twice the
optimal Bayes error, which makes it the best choice when it is necessary to evaluate a new
feature engineering approach [55].

The main principles of this algorithm can be explained using Figure 12. First, the
algorithm calculates the distances between the test object example x′ and the training
samples xi. Second, it sorts out all the calculated distances and takes only k into considera-
tion. Lastly, majority voting is applied to decide which label to assign to the test example.
Figure 12 shows the importance of choosing the correct k: if k = 3, the test example would
be assigned to Class 2, however, if k = 10, the test example would be assigned to Class 1.
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However, despite being a rather simple algorithm, k-NN is costly to calculate on large
data and high-dimensional data. Additionally, with the growing number of dimensions,
the ratio of the closest distance to the average distance approaches 1, which significantly
decreases the predictive capabilities of the algorithm [56].

Subspace k-NN, however, uses high dimensionality to its advantage by systematically
constructing and combining a set of mutually semi-independent classifiers. To construct
each classifier, it uses a stochastic process that randomly selects components from a given
feature vector. So, when a test example object is compared to the prototype, only selected
features have a non-zero contribution to the distance.

The algorithm computes a new set of k nearest neighbors each time a random subspace
is selected. Then, in each subspace, these k nearest neighbors are assembled for majority
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voting on test example object-class membership. The same training sample may appear in
more than one subspace if it happens to be one of the k nearest neighbors.

Described formally, when given a set of N points in an n-dimensional feature space:

{ (x1, x2, . . . , xn)|xi is real for all 1 ≤ i ≤ n}, (21)

only m-dimensional subspaces are considered:

{ (x1, x2, . . . , xn)|xi = 1 for i ∈ I, xi = 0 for i /∈ I}, (22)

where I is a subset of m-elements of {1, 2, . . . , n}, and m < n. To choose a subspace in every
iteration, I is randomly selected from C{n, m} choices. All points are projected onto the
chosen subspace. Using Euclidean distance, for each testing point, the k nearest neighbors
(1 ≤ k ≤ N) are found among the projected training points. The class labels of those k
neighbors {c1, c2, . . . , ck} are appended to a list C. The test point is assigned to the class
that has the most frequent occurrences in list C [57]. In this work, Subspace k-NN was set
to use 20 learners and 7 subspace dimensions as the most optimal set of parameters. The
number of neighbors was set to k = 3.

5. Results and Performance Evaluation for Fault Identification

In this section, the performance of the proposed method is evaluated using the data
from the testbed described in Section 2. The evaluation is performed using three described
datasets: a PU dataset with artificial bearing damages labeled in three classes; a PU dataset
with real bearing damages labeled in four classes and CWRU dataset labeled in four classes.
The datasets are split into training and testing sets in 80/20 manner. For validation of
the proposed method performance, the 10-fold cross-validation method was used. It is
executed by randomly shuffling and splitting the dataset into 10 groups. One group is held
out as test data, while the others are used to train the model. In such a way, 10 experiments
are performed each time using the next holdout set for testing with a rule that each data
sample can only be used for one holdout set.

Then, the trained model is tested on unseen data using the testing set. Equations
(23)–(26) show the expressions used to calculate recall, precision, F1-score and total fault
identification accuracy (FIA). The confusion matrices are shown in Figure 13.

Recµ =
∑K

k=1 TPk

∑K
k=1(TPk + FNk)

× 100 (23)

Precµ =
∑K

k=1 TPk

∑K
k=1(TPk + FPk)

× 100 (24)

F1µ = 2×
(
Precµ × Recµ

)
/
(
Precµ + Recµ

)
(25)

FIA =
∑K

k TPk

N
× 100, (26)

The class labels for the confusion matrices are set as follows: H—Healthy bearing;
OR—Bearing with outer ring fault; IR—Bearing with inner ring fault; OR + IR—Outer +
Inner ring bearing fault; B—ball fault. The labels are encoded using Scikit Learn Label
Encoder. The precision, recall, F1-score and FIA performance metrics shown in Table 6
describe the performance of the proposed method on the three datasets—two from PU
set and CWRU set. Table 6 contains comparisons of the performance accuracy metrics
of the proposed model with published methods using the same PU bearing real-fault
vibration dataset.
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Figure 13. Confusion matrix for fault classification: (a) PU dataset with artificial damages; (b) PU
dataset with real damages; (c) CWRU dataset.

Table 6. Performance metrics for each dataset.

Dataset Precision Recall F1-Score FIA

PU Artificial faults 99.39% 99.39% 99.39% 99.39%

PU Real faults 99.92% 99.92% 99.92% 99.92%

CWRU 98.77% 98.77% 98.77% 98.77%

Performance Comparison

The method proposed in this study was compared with six established methods. The
paragraphs in this section are numerated and correspond to the number of the comparison
methods presented in Table 7. The classification accuracies from lowest to highest corre-
spond to the color spectrum from green to red. Each method was tested on three datasets
used for this paper:

(1) Yan et al. [18] extracted energy features from a WPT decomposed signal and used the
Random Forest algorithm for classification. After extracting the same energy features
from the decomposed signal using the PU experimental data and applying Random
Forest, we obtained a 99.70% accuracy result for the real fault data and 94.10% for the
artificial data, which is less than the proposed method, though this method has the
closest performance levels among the comparison methods. This can be explained
by the fact that both the proposed method and the method developed by Yan et al.
utilized a powerful Random Forest algorithm, inside the Boruta feature selection for
the first and as a classifier for the latter. However, the drawback of the comparison
method is that there is no feature variability. The single energy feature compared to a
set of different statistical features from time and frequency domain lacks sensitivity
and thus yields less discriminant information;

(2) For the second comparison, as demonstrated in the method developed by Surti
et al. [58], the bearing vibration signal from the PU experiment data was decomposed
using WPT and the statistical features from Table 5 were extracted. Classification
was completed using k-NN with five nearest neighbors. The method yielded 92.12%
accuracy for real fault data and 90.19% for artificial fault data. The underperformance
of this method in comparison with the proposed method can be attributed to the
absence of feature selection and thus presence of the less discriminant or possibly
junk features detrimental for classification performance in the method’s feature vector.
Additionally, the simple k-NN algorithm is known as a weaker classifier compared
with Subspace k-NN;
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(3) The method developed by Yadavar Nikravesh [30] et al. decomposed the bearing
vibration signal using WPT, extracted energy features and forwards the feature set to
a Gaussian kernel SVM for classification. To make a correct comparison, the energy
features were extracted from WPT decomposed experimental data bearing vibration
signal and classification was executed by the Gaussian kernel SVM classifier. Accuracy
yielded by the comparison method with real fault data is 89.96% and accuracy with the
artificial fault data is 90.76%, which is lower than the proposed method for the reason
of low feature variability similarly to the method developed by Yan et al, meaning
that this comparison method is likely to show a better performance on the feature
vector that would contain features of different domains;

(4) For the fourth comparison method, the best energy node out of the third decompo-
sition level was selected, then statistical features from Table 5 were extracted and
the resulting feature set was forwarded to the Subspace k-NN for classification. The
accuracy result for the real fault data is 93.07% and 91.58% for the artificial fault data.
The lower accuracy in comparison with the proposed method can be explained by
not utilizing the whole WPT decomposition level, which means leaving a significant
amount of fault-related information untouched. Then, for the same reason, utiliza-
tion of the whole WPT decomposition level by the proposed method becomes an
advantage and is considered as a part of the proposed method contribution;

(5) The proposed method together with Chi-Squared test for feature selection instead of
Boruta algorithm showed slightly lower accuracies for two PU datasets; however, it
performed better on the CWRU dataset. This close performance can be explained by
the fact that this comparison method shares most of the structure with the proposed
method and only differs in the feature selection step; however, we observed that the
feature pools created by this algorithm for all datasets contain energy of signal feature
as a predominant one which strongly resembles the feature pools of comparison
method one and three, which utilized only energy of signal features;

(6) The last comparison method is the Deep Learning Attention Stream Network. This
method showed very high classification performance without any signal preprocess-
ing. However, the authors believe that if WPT signal processing had been considered,
the accuracy of this method on given data would have reached 100%.

Table 7. Classification accuracy comparison with other methods. The classification accuracies from
lowest to highest correspond to the color spectrum from green to red.

Number Method
Accuracy

(PU Real Fault
Data)

Accuracy
(PU Artificial
Fault Data)

Accuracy
(CWRU Data)

Proposed 99.92% 99.39% 98.77%

1
WPT Energy

Feature + Random
Forest [18]

98.70% 94.10% 98.62%

2 WPT + k-NN [58] 92.12% 90.19% 91.51%

3
WPT Energy

Feature + Gaussian
kernel SVM [30]

89.96% 90.76% 88.87%

4 Best Energy WPT
Node + Subspace k-NN 93.07% 91.58% 94.71%

5 Proposed + Chi-
Squared test 99.35% 98.35% 99.02%

6 Attention Stream
Network [59] 99.37% 99.28% 99.60%

6. Conclusions

In this paper, a hybrid feature-selection framework for bearing fault diagnosis based on
Wrapper-WPT was proposed. The authors have addressed the problem of diagnosis of the
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roller element bearing under variable rotational speed. Using WPT to automatically detect
the most significant frequency nodes for fault diagnosis may lead to the neglect of other
important bands, which have smaller amplitudes. To ensure reliable fault-feature extraction
without premature conclusions on the significance of fault information contained in the
node at the signal processing stage, the Wrapper-WPT framework utilized the whole WPT
decomposition level in contrast to optimal node selection with the intention of not losing
any fault-related information prior to feature extraction. Furthermore, a compound of WPT
and the Boruta feature-selection algorithm allowed the extraction of the highly discriminant
features from the wide feature pool, forming a novel hybrid feature-selection technique.
The analysis of the feature distribution obtained from the Wrapper-WPT framework allows
us to find the vibration frequency bands that are the most useful for fault diagnosis. After
obtaining the discriminant features, the bearing condition was identified by subspace
k-NN. The proposed framework was tested with two different datasets obtained from
real-world bearing testbeds. The results obtained from the proposed method showed
excellent classification performance in comparison with the reference methods in terms of
classification accuracy.

As a main disadvantage of this work, the authors can mention that the proposed
method lacks the baseline consensus on how deeply the dimensionality of the wide fea-
ture pool should be reduced and what should be the optimal number of features in the
final feature vector. In other words, the max depth Boruta parameter is a hand-picked
hyperparameter with the intention of maximizing the classification performance on the
validation set. Future work will focus on overcoming this drawback using various op-
timization techniques such as a deeper analysis of WPT decomposition capabilities and
increasing the precision of the frequency bands with meaningful components, together with
the incorporation of complex ensemble feature-selection methods for the Wrapper-WPT
feature-selection framework performance enhancement.
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