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Abstract: The main steps involved in a fault-tolerant control (FTC) scheme are the detection of
failures, isolation and reconfiguration of control. Fault detection and isolation (FDI) is a topic of
interest due to its importance for the controller, since it provides the necessary information to adjust
and mitigate the effects of the fault. Generally, the most common failures occur in the actuator
or in sensors, so this article proposes a novel model-free scheme for the detection and isolation
of sensor and actuator faults of induction motors (IM). The proposed methodology performs the
task of detecting and isolating faults over data streams just after the occurrence of the failure of an
induction motor (IM), by the occurrence of either disconnection, degradation, failure, or connection
damage. Our approach proposes deep neural networks that do not need a nominal model or generate
residuals for fault detection, which makes it a useful tool. In addition, the fault-isolation approach
is carried out by classifiers that differentiate characteristics independently of the other classifiers.
The long short-term memory (LSTM) neural network, bidirectional LSTM, multilayer perceptron
and convolutional neural network are used for this task. The proposed sensors’ and actuator’s fault
detection and isolation scheme is simple. It can be applied to various problems involving fault
detection and isolation schemes. The results show that deep neural networks are a powerful and
versatile tool for fault detection and isolation over data streams.

Keywords: deep neural network; LSTM; BiLSTM; MLP; CNN; classification; induction motor

1. Introduction

In recent years, fault-tolerant control systems have attracted the interest of academics,
professionals and industry due to the increasing complexity of the systems to be con-
trolled and different system components that cause uncertainties, threats and disturbances,
among other phenomena of stress [1,2].

Fault-tolerant control (FTC) schemes are used to mitigate the effects caused by faults.
Their relevance lies in the fact that this approach provides security and reliability, main-
taining the overall performance and stability of the system despite system failures or
breakdowns. In general, the FTC approach is divided into two phases [3,4]:

(1) Fault detection and isolation (FDI): its objective is to process input/output data,
in order to detect the existence of a fault, to isolate it from other faults or alterations of
the system [5];

(2) Tolerant control algorithm: its objective is to adjust the controller to compensate for
the effect of a fault, based on the information provided by the fault detector [3].

This work deals with the first task concerning the FTC, which is the identification and
detection of existing faults also called the diagnostic problem. This problem can be divided
into two stages: a failure-detection stage and fault-isolation stage. In the failure-detection
stage, it determines if a failure has occurred, in addition to distinguishing the moment in
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which the system has been subject to a failure [6]. On the other hand, the fault-isolation
stage focuses on determining the component in which the fault originated [6].

Mainly, there are three kinds of faults in induction motors: actuator faults, machine
faults and sensor failures. In industrial applications, the FTC for sensor failures is cru-
cial, since the sensors keep under observation the system state variables—some of the
components with the greatest potential for failure. In fact, as mentioned in [7], analyzing
the observations made by the sensors is a challenging task. Additionally, the actuators
represent a connection between the control algorithm and the system, so if there is a fault in
the actuator, the operating capacity is reduced compared to normal operation. Among the
principal applications of fault detection and isolation is to guarantee reliability and safety,
such as for high-speed trains [7].

In general, FDI approaches are classified as model-free and model-based paradigms.
Model-based schemes use redundancy from mathematical models of the system. However,
it has the disadvantage that it ignores variable parameters and noise. Furthermore, it
is not always possible to obtain the nominal model of the system. Among the works
that use model-based FDI schemes, we can mention observers based on the Kalman filter,
adaptive observers and sliding mode observers [8–14]. In contrast, model-free approaches
include techniques that do not depend on nominal models of the underlying system. Most
of the model-free FDI schemes published were designed based on artificial intelligence
approaches [1,15,16]. As mentioned in the work published in [17], the traditional approach
to detecting and diagnosing faults is carried out in five steps. These are data acquisition,
data processing, feature extraction, dimensional reduction and classification. This implies
that finding the right techniques at each step is of the utmost importance and a process of
trial and error is mandatory. Due to this, different works use unique approaches to address
the each particular application.

For example, in [18], a distributed system for the detection and diagnosis of sensor
failures is proposed using an automatic encoder that reduces the dimensions of the input
signal, which serves as input to a support vector machine (SVM)) for classification as normal
or defective. In [19], two model-based fault diagnosis methods are proposed to estimate
the residual current dynamics. In the first method, a differential algebraic estimation of
the failure dynamics is performed; in the second, a combination of an algebraic approach
and the robust integral sign of error (RISE) observer are used. Then, upon detecting that
a fault has occurred, it goes to a logic-based decision unit to identify the faulty sensor.
In another recent work [20], the multi-headed 1D convolutional neural network (1D CNN)
was used to detect and diagnose six different types of faults in an electric motor using
two accelerometers; the results shown are from offline tests, so real-time tests were ruled
out. Regarding detection and diagnosis of faults in real time, we can mention [21], which
presents a machine learning approach. The study involved data from a 3D machine
simulation system with faulty and non-faulty conditions. The main disadvantage is that
this model needs 70% of data for training and only 30% for testing. This work was limited
to fault detection only and did not take fault isolation into account.

In another work [22], an FDI methodology that allows fault diagnosis for sensors and
actuators proposes the modeling and inversion of non-linear systems using recurrent neural
networks which are used to build predictive models and generate residuals. It is sensitive
to a set of failures and insensitive to the rest, which generates the classification of the failure;
nevertheless, the online implementation was ruled out. Deep neural networks do not need
a combination of techniques at each step; rather, deep layers are generated for feature
learning. In this sense, fault detection and isolation tasks can be based on artificial neural
networks (ANNs). However, there are not many results regarding online fault detection
and isolation with ANNs. Moreover in [23], an ANN was used along with a deterministic
finite-state automaton to detect and isolate the faults and anomalies in the manufacturing of
programmable logic controllers (PLCs). To automate detection of the failures in the control
process, the ANN is in charge of the anomalies that do not affect much the state transition
behavior of the PLC. Similarly, reference [24] used an MLP network as an autoregressive
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model with exogenous inputs, having the ability to model the dynamic system based on
time series data. Hybrid models such as [25] use a combination of techniques. In the case,
for preprocessing the data, the wavelet packet transform, and then, they are passed as
the input into an autoencoder to extract the fault features, followed by the equilibrium
optimizer algorithm and long short-term memory for fault detection and classification.

Deep neural networks have been used for classification tasks in different areas, such
as the medical field for early detection of diseases, including Parkinson’s disease [26] and
heart faults [27], and detection of faults in sensors of medical equipment [28] employing
an LSTM. In industry, they are normally used for the detection of faults in equipment to
make the production efficient [29]; in the detection of incorrect assemblies, avoiding the
cost of delivering an unusable finished product [30]; and for improving the maintenance
with early detection of faulty machinery gears [31]. The electrical field needs the detection
of faults in circuits or motors, which could be the sources of accidents, using the current,
vibration or voltage as input for the model [31–33].

In general, the aforementioned works explored offline classification. In fact, an interest-
ing review shows exhaustive research about fault detection and isolated work for traction
systems in high-speed trains [7]. Here, a compilation of numerous papers with different
methodologies for diagnosis and detection is presented, among which are mentioned signal
analysis-based, model-based and data-driven (or model-free) methods. As mentioned
in this paper, strategies developed for the use of fault-tolerant controllers are a topic of
interest for researchers; however, there are not many works related to FDI schemes with the
purpose of being used in controllers. However, for real-time applications, it is necessary to
have a reliable classifier that works online along with a fault-tolerant controller. This paper
proposes a novel methodology for the online diagnosis of actuator and sensor faults in an
induction motor test bench, only with data measured without knowledge of the nominal
model or prior knowledge other than the data with which the ANN were trained. This
methodology was implemented with four deep neural network architectures, and their
performances were tested with experimental data. The main contributions are:

1. Four online neural classifiers are proposed to deal with actuator and sensor faults;
2. Classifiers are tested online with experimental data;
3. A real-world problem for actuator and sensor fault classification is included;
4. A detailed comparative analysis was performed for the four proposed classifiers to

deal with actuator and sensor faults;
5. Proposed methodology can be easily extended to different real-world fault diagnosis

and classification problems.

This paper is organized as follows, Section 2, includes a review of the induction motor
used to test the proposed methodology. Then, Section 3 includes an explanation of the
neural networks proposed to deal with faults classification. After that, in Section 4, the pro-
posed methodology is presented for the detection and isolation fault scheme. In Section 5,
the results are presented, along with the discussion about obtained results, and finally,
in Section 6, conclusions and future work are stated.

2. Review of the Analyzed System

Rotatory induction motors (RIM) are widely used in multiple types of applications,
e.g., in electric vehicles, electric elevators, compressors, robotics, machine tools and the
aerospace industry, among others. RIM uses different approaches for control. One of the
most used is using the α–β coordinates; due to this model being a coordinate system that
is based on α–β axes, the base is static, so the transformed voltage vector rotates at the
power supply frequency and its components are projected on α–β axes. Figure 1 represents
the test bench configuration used. Measured signals were obtained from voltage, current
and position sensors, and data acquisition was performed with a DSPACE©DS1104 board.
Then, such information was processed and classified according to the four online neural
classifiers proposed in this work. The isolation task was performed through the control
algorithm using the output D/A channels.
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Figure 1. Rotatory induction motor test bench configuration for sensor fault classification.

The proposed fault detection and isolation methodology was applied to a three-phase
induction motor through the test bench shown in Figure 2, which included the following
components: a three-phase induction motor, an autotransformer, a DSPACE©DS1104 board,
current sensors, an IGBT module, an external power supply, a TTL-CMOS converter and
a computer for programming and supervision. Data tests were acquired through the
DSPACE©DS1104 board, using Hall effect sensors and the encoder to measure currents
and position, respectively. The experimental faults were introduced via software in order
to test the applicability of the proposed methodology.

Autotransformer

IGBT’s Module

Induction 

motor

with

encoder
Personal 

computer

External 

power 

supply

DS1104

connectorCurrent

sensors

Software for

supervision

Figure 2. Rotatory induction motor test bench for sensor fault classification.

FDI model-based schemas use observers to monitor the sensors in cases of failures.
Then, observers generate a difference to compare it with a threshold and decide if the
sensors are failing or not [8]. However, observers rely on a nominal model of the system,
which can neglect time-varying parameters and noise and rely on measurements made
by fault-prone sensors (voltages, currents and rotor position). For this work, we used
deep neural networks which are capable of learning the characteristics of the sensors
when they are healthy and characteristics when they show faults without the need for the
nominal model.
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3. Deep Neural Networks

For real-world applications, there is a need to develop fault diagnosis methods with
the ability to analyze large amounts of data for automatic fault detection accurately and
quickly. Frequently, the fault detection for the IM is based on observers; however, its main
disadvantage lies in its great dependence on precise mathematical models corresponding
to the system. This is not completely effective in real applications because the system’s
parameters often vary during the process, and the disturbances are unknown, which can
cause false alarms [34]. However, neural networks that have been adopted for intelligent
fault diagnosis have shallow architectures [35]. This limits the ability of ANNs to learn
complex nonlinear relationships, so it is necessary to establish a deep architecture network
for this purpose.

Deep neural networks contain multiple layers of nonlinear operations for handling
complex structures. These layers are connected to the previous one, in such way that
the parameters (weights) are adjusted to abstract representations of real applications [36].
DNNs capture complex functions through training of the multiple levels of abstraction,
with only the knowledge of raw sensor data, since the neural network can learn the
characteristics of the sensor both in failure conditions and in a healthy state.

DNNs have attracted the attention of researchers in different fields and have shown
to be very effective for complex real-world problems such as classification, image process-
ing [37], speech processing [38], language models [39] and sequential data [40]. However,
deep neural networks are relatively new to the task of detecting and isolating system faults.
However, DNNs have the potential to overcome the sensor failure diagnostic deficiencies of
the current methods due to their deep architectures. The use of DNN will help to develop
better and more reliable fault diagnosis systems.

In this work, we propose four networks for classification of sensor and actuator faults
of an induction motor, in a fast and precise way. These are multilayer perceptron neural
network, long short-term memory (LSTM), bidirectional LSTM and convolutional neural
network methods. All of them are described below.

3.1. Multilayer Networks

The multilayer perceptron (MLP) neural network is one of the most influential network
models and has been widely used in various problems [41,42]. MLP gained popularity in
classification problems because it is an efficient, flexible neural network [42]. The MLP
structure consists of an input layer, one or more hidden layers and an output layer. Hidden
layers contain several nodes. These nodes are connected with other nodes of contiguous
layers through weights.

The sum of the m neurons in the hidden layer multiplied by their nodes of input un
are multiplied by the connection weights. W generates the output of the neural network yp,
as described by the following Equation (1):

yp = σ(∑ Wnmσ(∑ Wnnun + b1) + b2) (1)

where m represents the number of neurons, un is the input, σ is the activation function, Wnn
represents the weight matrix of the first layer and Wnm represents the weight matrix of the
second layer.

3.2. Long Short-Term Memory Recurrent Neural Network

A popular recurrent neural network (RNN) in the field of deep learning is the LSTM
proposed in [40]. The RNN presents the difficulty of learning long-term dependencies,
but the LSTM network was proposed with the aim of solving said long-term dependency
problem through the introduction of an input gate, an output gate and a forget gate [43].
The three gates control the memory of past states. Among the works that have used the
LSTM as a classifier, we can name [44–46]. LSTM is implemented by Equations (2)–(7):
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it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (2)

ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f ) (3)

C̃t = tanh(Wxcxt + Whcht−1 + bc) (4)

Ct = ftCt−1 + itC̃t (5)

ot = σ(Wxoxt + Whoht−1 + WcoCt + bo) (6)

ht = ottanh(Ct) (7)

where i is the input gate, f is the forget gate, o is the output gate, C is the activation cell,
σ is the logistic sigmoid function and ht the hidden state vector as a representation of the
output gate value between −1 and 1. bi, b f , bc, bo are the learned biases. W are weight
matrices; that is, Wxi, Wx f , Wxc, and Wxo are the weights that connect the input layer with
the input gate, forget gate, activation cell and output gate, respectively. Whi, Wh f , Whc, and
Who connect the hidden layer with the input gate, forget gate, activation cell and output
gate. Wci, Wc f , and Wco connect the activation cell with the input, forget and output gates .
Finally, tanh scales the values into the range of −1 to 1.

3.3. Bidirectional LSTM

The bidirectional recurrent neural networks (BRNNs) proposed in [47] divide the
state of the neurons of the RNN into two parts, the forward state (positive direction) and
the backward state (negative direction). Each is independent from the other [47]. Then,
the bidirectional structure is applied to the LSTM, allowing LSTM cells to access the forward
and backward states. The Bi-LSTM is implemented by Equations (8)–(10):

−→
ht = H(W

x
−→
h

xt + W−→
h
−→
h

−→
h t−1 + b−→

h
) (8)

←−
ht = H(W

x
←−
h

xt + W←−
h
←−
h

←−
h t−1 + b←−

h
) (9)

yt = W−→
h y

−→
h t + W←−

h y

←−
h t + by (10)

where h is the hidden state of the LSTM cell,
−→
ht is the hidden layer from the forward state

and
←−
ht is the hidden layer for the backward state. Then, forward and backward states are

combined to produce the output yt. H is the activation function. The weight matrices W
are: Wxh are the weights that connect the input layer and the hidden layer; Whh connect the
hidden layer and the previous hidden states; Why connect the hidden layer and the output;
finally, b−→

h
, b←−

h
and by, represent the bias vectors.

3.4. Convolutional Neural Network

There are several deep neural network architectures, including the so-called convo-
lutional neural network (CNN), whose advantages are weight sharing and minimized
computation in comparison with a regular neural network. The CNN applications have fo-
cused on object recognition [48], image classification and time series [49,50] and have been
used for fault detection in recent years [51,52]. The graphical representation of applying a
CNN for time series classification is shown in Figure 3.
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Figure 3. Representative diagram of the structure of CNN for the classification of time series, where
m is the number of classes.

4. Proposed Method Based on Deep Neural Networks

Current real-time requirements for the immediate processing of data, in addition to
the variation of behavior patterns in the data observed by the sensor over time, mitigate
the effectiveness of conventional machine learning methods. In addition, uncertainties,
non-linear elements and the variability of the nature of the sensor data, which serve as
valuable information in monitoring processes to capture the relationship between time
series data, require a novel approach to fault classification. These approaches should be
computationally efficient and have high levels of prediction accuracy and precision.

Among the main contributions of this work is generating accurate and reliable model-
based FDI schemes using deep neural networks capable of being implemented in model-free
fault-tolerant control schemes. Thus, we can model the system with faulty sensors and an
actuator such as in Equation (11).

x̄(t + 1) = F(x̄(t), ū(t)) + d(t) (11)

y(t) = Cx̄(t) (12)

where x ∈ Rn is the system state vector, u ∈ Rm, F ∈ Rn×Rm → Rn is a nonlinear function,
C ∈ Rp×m is the output matrix and d ∈ Rn is the perturbation vector. We can rewrite (11)
in its component-wise form:

x̄i(t + 1) = Fi(x̄(t), ū(t)) + di(t) i = 1, 2, . . . , n (13)

The sensor and actuator failures are defined as:

x̄(t) = ρi(xi(t), δi(t)) (14)

ũ(t) = ϕi(ui(t), δi(t)) (15)

where δi is the vector of uncertainties; ρi and ϕi are nonlinear functions considered unknown
but bounded and represent the loss of sensor and actuator efficiency caused by external
inputs being either unmeasurable, biased, drifted or showing loss of precision over time t∗i .
Then, xi(t) is considered measurable, and its measure is x̄i(t). A Schematic representation
of (11) can be appreciated in Figure 4.

Figure 4. Components of a fault-tolerant control that are prone to failure. u(t) is the control signal,
ū(t) the actuator signal, x(t) the system signal, x̄(t) the sensor signal and t the current sample.
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For FDI purposes, the intrinsic values of x̄ and ū vectors of the internal dynamics of
system (11) can result in only two possible outcomes: faulty or healthy. Then, this can be
considered as a classification problem described by

ρi(xi(t), δi(t)) =
{

f ailure, ρi(∗) ∈ S
non- f ailure, ρi(∗) /∈ S

(16)

Similarly,

ϕi(ui(t), δi(t)) =
{

f ailure, ϕi(∗) ∈ S
non- f ailure, ϕi(∗) /∈ S

(17)

where S is the subset of all possible fault modes. Then, the subset S is considered only
partially known due to the nonlinear system being difficult to entirely define.

If the full state x(t) of the system is available and there exists a data structure with the
dynamics of (16) and (17) that can be identified as features in a time series, then we can say
that it is possible to identify a fault scenario in the system by combining all signal inputs in
a multivariate time series.

For this work, we consider the deep networks described above to perform the classifi-
cation task (16) and (17), so the problems of fault detection and isolation are separated into
two stages: the signal isolation stage and the fault classification stage. The methodology is
described below.

4.1. Fault-Isolation Logic

The data set obtained by the actuator or sensors can be considered as a time series
that has a relationship between current and past data, so it can corroborate trends. We can
define a time series as a vector X made up of real values measured by failure-prone sensors
x̄(k), as defined in (18):

X = [x̄(0), x̄(1), . . . , x̄(n)] (18)

The size of the vector corresponds to the number of samples observed, n. Then, there
are different ways of approaching the FDI problem: on the one hand using multivariate time
series (data collected from measurements of multiple sensors or variables) classification
techniques, and on the other univariate time series (data collected from measurements of
the same variable).

It should be noted that in order to detect a failure in time, each sample must be
monitored as it is obtained from the sensors and the actuator. For multivariate time series,
the classification problem can be addressed through dynamic time warping and features
extracted from time series data [53]. The main disadvantage of these methods is the
computational cost, which complicates online classification. Among the works that have
used multivariate time series data for classification tasks are [44,54–58].

Additionally, fault detection and diagnosis schemes are limited to recognizing the
existence of a fault; however, for the purposes of use in fault-tolerant controllers, it is also
necessary to isolate the fault. To this end, data-driven schemes use neural networks in the
fault-isolation stage. However, this approach for fault detection and isolation rules out
closed-loop control purposes [23,24].

Thus, to reduce the computational cost, it is more convenient to deal with univariate
time series, and for model-free FDI schemes, it implies less complex architectures compared
to those used for multivariate time series. In this way, to isolate the fault (fault-isolation
stage), the different signals are separated. Then, each signal is considered a channel.
Each of these channels has a block of a neural classifier that learns the corresponding
characteristics individually.

Thus, N different univariate X(k) time series, such as Equation (18), can be seen
as multivariate time series consisting of X = [X(1), X(2), . . . , X(N)]. Then, the data set
D = {(X(1), Y(1)), (X(2), Y(2)) , . . . , (X(N), Y(N))} is a collection where X(k) is a time
series univariate and Y(k) is its class label vector. The length of Y(k) corresponds to the
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number of classes i, where each element j ∈ [1, k] is equal to 1 if the class of X(k) is j and
0 otherwise.

4.2. Fault-Detection Logic

A univariate time series presents the problem of incorporating information because
only one signal is considered available. In the case of deep neural networks, the context
and the information provided are of great importance. Thus, incorporating context for
neural networks in univariate time series it can be done in two ways: one can use recur-
sive connections to model the time flow directly or collect inputs in overlapping time
windows [44].

The extraction of information from past observations is known as sliding window
or time delay embedding. This approach has been used in understanding the nature of
attractors of dynamic systems in addition to verifying nonlinearity and chaotic behavior in
the dynamics of the electroencephalogram, electrocardiogram and electromyogram [59].

Here, the sliding window implemented online is explored. For this, We consider
X as a function defined on an interval of the observed time series {x̄(0), x̄(1), . . . , x̄(t)}.
Thus, the sliding-window embedding X(t) is a delay vector generated by extracting local
information of the time series defined up to the current time t. This is Equation (19).

X(t) = [x̄(t− (d− 1)), . . . , x̄(t− 1), x̄(t)] (19)

where {1, 2, . . . , d− 1} are the sampling lag and d is the array dimension. Then, the vector
X(t) is the input to the neural networks to predict the class Y(t). The graphic representation
is shown in Figure 5. This process is repeated for each new sample that is observed.

Figure 5. The sliding-window embedding extracted of the time series, which serves as the input to
neural networks.

Different dimensions of the delay vector were tested to find the appropriate number
of dimensions that reduces the classification error according to the complexity of the signal.

4.3. Architecture of the Proposed NN Classifier

The fault classification problem is addressed for the actuators and sensors of the fault-
tolerant control scheme. Our proposal is to separate the FDI into two blocks, one for actuator
fault detection and a classification block for system sensors, as shown in Figures 6 and 7,
respectively. Then, the observed signals are separated into different channels (isolation
stage). These are: p position, iα current, iβ current, actuator voltage uα and actuator voltage
uβ. Delay vectors of dimension d are generated that serve as input to the neural classifiers.
The output of the classifier represents the class of the fault it predicts. Figures 6 and 7
represent the configurations used for the online classification of sensors and the actuator
signals with the various neural networks. The labels for faults of the sensor block and
actuator are shown in Tables 1 and 2, respectively.
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Figure 6. Configuration of all neural networks used to classify faults of sensed data. Iα(t) = [iα(t− (d−1)), . . . ,
iα(t)] and Iβ(t) = [iβ(t− (d− 1)), . . . , iβ(t)] are delayed vectors.

Figure 7. Configuration of all neural networks used to classify faults of actuator data. Uα(t) = [uα(t− (d−1)), . . . ,
uα(t)] and Uβ(t) = [uβ(t− (d−1)), . . . ,uβ(t)] are delayed vectors.

Table 1. Fault labels in sensors.

Label Fault

0 Healthy

1 None

2 Position

3 Current iα

4 Current iβ

5 Position and current iα

6 Position and current iβ

7 Current iα and current iβ

8 None

9 Position, current iα and current iβ

Table 2. Fault labels in actuator.

Label Fault

0 Healthy

1 Voltage uα

2 Voltage uβ

3 Voltage uα and voltage uβ
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The architecture of the neural networks used for each channel is described below:

Position channel neural classifier architecture: For the fault classification of the position sensor,
the four proposed neural networks were tested. Each neural network has two inputs,
corresponding to the delayed vector [p(t− 1), p(t)] that is generated to add context to the
classification. All neural networks have one output. The hidden layers and neurons for
each neural network are as follows: MLP has 2 hidden layers with 20 neurons in each
layer; LSTM contains 1 hidden layer with 15 LSTM cells; BiLSTM contains 1 layer with
15 LSTM cells for the forward state and 15 neurons for the hidden backward state layer;
finally, the CNN contains 1 convolution + ReLu layer with 20 filters, followed by 1 pooling
and 2 dense layers.

Current channel neural classifier architecture: In the current sensors, different dimensions
are explored for the delay vectors. These are dimension d = 8, the delay vector
Iα(t) = [iα(t−7), iα(t−6), . . . , iα(t)]; and dimension d = 10, Iα(t) = [iα(t−9), iα(t−8), . . . , iα(t)],
where t is the current sample. Therefore, the numbers of inputs of the neural networks are 8
and 10, and there is only 1 output. The numbers of hidden layers and neurons are the same as
the aforementioned for all inputs for the MLP, LSTM and BiLSTM. The CNN has a convolution
+ ReLu layer, a pooling layer and two dense fully connected layers; the numbers of filters and
neurons per layer are as shown in Table 3:

Table 3. CNN architecture.

Inputs Convolution + ReLu Dense Dense Outputs+ Pooling Layer Layer 1 Layer 2

8 20 140 100 1

10 20 180 100 1

Actuator voltage channel neural classifier architecture: Similarly, for the actuator voltages, the delay
vector dimensions of 8 and 10 were used, so the vectors were u(t) = [u(t− (7)), . . . , u(t)] and
u(t) = [u(t− (9)), . . . , u(t)]. Since the actuator voltage channel signals are similar to the
current channel signals, the same architecture was used.

5. Results

Figure 8 shows the training that was carried out offline with completely different data
than the test data. It should be noted that the sliding windows were generated at different
dimensions in order to find the best number of dimensions regarding the classification error.
For its part, the real-time implementation used the adjusted parameters in the training of
the neural networks.

The results were obtained using the four neural networks with their respective archi-
tectures mentioned above. The neural classifiers were trained individually for each channel;
20,000 samples were used. Half of the samples did not present faults, and the other half
presented faults. Figure 9 represents the data used for validation of the sensor block, and
Figure 10 represents the data used for validation in the actuator block.

Figure 9 shows Channels 1, 2 and 3. A total of 100,000 samples were used in the
validation. The position channel shows failure at samples 70,023–75,032, and the current
channel iα shows failure from sample 20,002 to sample 25,005. Finally the current channel
iβ shows failure from sample 50,006 to sample 55,011. The actuator data are shown in
Figure 10, for Channels 4 and 5. The voltage uα channel shows a fault at 53,008 to 58,013.
For its part, the voltage uβ presents the fault in the interval 60,013–65,022.
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Figure 8. Flowchart of the offline and online processes.
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Figure 9. Sensor channel data set from the induction motor.

To compare the different neural classifiers’ performances, we used classification accu-
racy (CA), the confusion matrix (CM) and the graphs of the ROC curves (receiver operating
characteristic curve). The classification precision equation indicates the relationship be-
tween the number of correct predictions and the total number of samples, which is obtained
by Equation (20).

Accuracy =
True positive

True positive + False positive
(20)
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The ROC curve is used to evaluate the discriminative ability of two or more methods
to differentiate between classes, and different cutoff points to compare the rates of true pos-
itives and false positives. The line where true positives equal false positives means random
sorting performance. The higher the line on the ROC chart, the better the classification
performance. The classification method is capable of separating all the positive cases from
the negative ones if the curve passes through the point of true positives equal to 1 and false
positives equal to 0 [60].

The confusion matrix is a detailed summary of the classification results. It takes into
account true positives (positive predictions that were correct), true negatives (predictions
of the negative class that were correct), false negatives (cases assigned to the negative class
that were incorrectly classified) and false positives (negative cases that were incorrectly
classified as positives).
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Figure 10. Actuator channel data set from the induction motor.

The ROC curves of the four neural networks for different channels are shown in
Figures 11–15. The CA and average time that each neural network takes to classify a sample
are shown in Table 4. The different dimensions of the delayed vector used are presented.
CA indicates the accuracy obtained. The area under the curve (AUC) of the ROC curve is
given. Figure 16 shows the confusion matrix of all neural networks for Channel 3, the more
complex Channel, using a 10-dimensional delay vector. Then, Figures 17 and 18 show the
confusion matrix for Channels 4 and 5, respectively, using a 10-dimensional delay vector.
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Figure 11. Comparison of failure classification.



Machines 2022, 10, 1198 14 of 20

Table 4. Results obtained with all the proposed neural networks.

Neural Network MLP LSTM BiLSTM CNN

Channel Sensor d AUC CA AUC CA AUC CA AUC CA

1 Position 2 1 1 1 1 1 1 1 1

2 Current iα
8 0.9790 0.9665 0.9864 0.9778 0.9873 0.9381 0.9845 0.9665
10 0.9783 0.9666 0.9791 0.9675 0.9787 0.9318 0.9965 0.9909

3 Current iβ
8 0.9867 0.9741 0.9954 0.9892 0.9914 0.9823 0.9878 0.9731
10 0.9862 0.9718 0.9961 0.9896 0.9902 0.9821 0.9983 0.9942

4 Voltage uα
8 0.9801 0.9678 0.9971 0.9905 0.9962 0.9887 0.9963 0.9807
10 0.9758 0.9759 0.9972 0.9907 0.9964 0.9890 0.9987 0.9957

5 Voltage uβ
8 0.9883 0.8737 0.9973 0.9911 0.9971 0.9907 0.9920 0.9753
10 0.9846 0.8823 0.9972 0.9845 0.9965 0.9909 0.9985 0.9930
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Figure 12. Comparison for Iα with different d values.
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Figure 13. Comparison for Iβ with different d values.
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Figure 15. ROC curve for uβ.
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Figure 16. Confusion matrix plot for Channel 3 with 10-d delayed vector. True positive: Neuronal
classifier correctly predicted no failure. True negative: Neuronal classifier correctly predicted failure.
False positive: Neuronal classifier incorrectly predicted no failure. False Negative: Neuronal classifier
incorrectly predicted failure.

It can be seen that the larger the number of dimensions d of the delayed vector,
the better the classification results. However, too large a number of dimensions of the
delayed vector will not improve the classification error much more; it can even increase the
classification error. This is due to the nonlinear nature of data. Therefore, for this work, the
results are only presented up to d = 10, which are good.
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Figure 17. Confusion matrix plot for Channel 4 with 10-d delayed vector.
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Figure 18. Confusion matrix plot for Channel 5 with 10-d delayed vector.

Discussion

The results obtained from the position channel show that all the neural networks are
capable of predicting the true class, each having an AUC of 1 and a CA greater than 99%.
According to the results obtained from the confusion matrix, the CNN neural network
performs better than the rest of the neural networks in predicting the true class. It presented
an AUC greater than 0.99 in all channels; it also presented a CA greater than 99%.
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In addition, the ROC curves for the MLP, LSTM, BiLSTM and CNN networks produced
true positives equal to 1, which shows that in general, the neural networks perform well.
For the channels, the current channels (2 and 3) proved to be the most complicated channels
to classify, since it is where the lowest performances for the neural networks occurred.
On the other hand, the actuator channels (4 and 5) of the LSTM, BiLSTM and CNN networks
had good classification performance, showing a CA above 99%.

Despite all neural networks having excellent results, by implementing them in real
data, the MLP neural network had the worst classification results because it is not too
deep; however, adding more layers to the MLP would increase the cost in computational
terms. In this way, the best options are the LSTM neural network and convolutional
neural network.

To improve the classification performance, a combination of neural networks can be
used, since no network will be the best in all channels if its performance depends on the
complexity of the classified signal. In general, the results are good considering that the
only information that we consider available is the observed signals of the sensors (position,
current iα and iβ) and the actuator voltage (uα and uβ).

6. Conclusions

Time series classification is a topic of interest in real world applications, such as in the
medical and industrial fields. Most of the traditional methods are implemented offline due
to their high computational costs and the complexity of the systems, and in many cases
with low performance.

In this work, the detection and isolation of faults of sensors and the actuator of an
induction motor were carried out based on neural classifiers, without the need for a math-
ematical model of the system or sensor redundancy. A simple structure is implemented,
where the different signals are considered channels, in which neural classifiers learn to clas-
sify univariate time series individually. The incorporation of context into neural networks
was carried out by generating a delay vector.

Deep neural networks are widely used in image classification, yet little is explored in
data stream fault classification. However, they have shown to be able to learn characteristics
from the observed data, to differentiate healthy samples from samples that present failures,
with excellent results. This presents an alternative to conventional methods, which have
the main disadvantage of depending on the nominal model of the system in addition to
the input signals of the system or sensor redundancy. It should be noted that the proposed
method does not need prior processing, and therefore, includes noise, measurement errors,
data loss, quantization effects, discretization effects and outliers.

As future work, it is intended to use the closed-loop neural classifier with a fault-
tolerant control law, so that the performance of the motor remains optimal. In addition,
it is intended to continue exploring the classification of time series in data streams with
medical applications, for the data obtained by means of sensors.
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