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Abstract: In order to optimize the additive manufacturing process and find the process parameters
affecting the mechanical properties of the parts, an additive manufacturing simulation model of
Ti-6Al-4V titanium alloy was established, and the effects of ambient temperature, substrate thickness
and wire temperature on the stress field and residual stress field were analyzed. The results show
that the ambient temperature is inversely proportional to the residual stress of the cladding layer,
while the substrate thickness and wire temperature are positively correlated to the residual stress
of the cladding layer. When the ambient temperature increases from 0 ◦C to 600 ◦C, the maximum
residual stress decreases by 36.0%, the maximum residual stress increases by 10.0% when the substrate
thickness increases from 25 mm to 55 mm and the maximum residual stress increases by 7.48% when
the temperature increases from 0 ◦C to 600 ◦C. The influence of the three parameters on the maximum
residual stress is as follows: ambient temperature > substrate thickness > wire temperature. The
research results can provide reference for stress control during actual manufacturing.

Keywords: additive manufacturing; process parameters; residual stress; Ti-6Al-4V titanium alloy

1. Introduction

Additive manufacturing (AM) technology is mainly the process of melting materials
and stacking them layer by layer to form required parts by making use of various energies,
also known as “the third industrial revolution” [1–3]. At present, there are dozens of
kinds of AM technologies, involving many fields such as industry, education, medicine,
etc. Meanwhile, the materials used in AM are various as well, such as steel, titanium
alloy, aluminum alloy in industrial fields, various kinds of cells in the medical industry,
etc. [4]. Compared with traditional manufacturing methods, AM has advantages of saving
molds and additive materials, low cost, short cycle, wide range of applicable materials and
applicability for steel materials that are hard to process by traditional methods. In addition,
the parts used have the advantages of fine grain, dense structure, excellent performance in
mechanical properties and uniform composition [5,6].

The AM parts made by AM also have many shortcomings, such as large residual
stress, high surface roughness and cracks [7,8]. Therefore, it is very necessary to carry
out relevant research on optimizing AM technologies. Sun et al. [9] studied the impacts
of different scanning routines on sheet deformation during arc AM, and created the S-
value discriminant method for sheet deformation degree, which was applied to the AM
process of solid parts. By taking 5356 aluminum alloy as the welded object of AC argon
tungsten arc welding, Shen et al. [10] studied the impact of different intervals on the
cladding layer and microstructure. The results show that various intervals can produce
better parts. Through numerical simulation and experiments, Ogino et al. [11] studied
the impact of cooling and welding direction in arc welding, and the results show that
under appropriate cooling conditions, the shape of the deposited layer becomes larger
and thinner, and for the linear and cylindrical deposition, the welding direction has an
obvious impact on forming quality. Through the mutual verification between experiments
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and simulation, Daniel et al. [12] analyzed the life, width and depth of a molten pool
under different electron beam powers, scanning speeds and energies, and stimulated the
temperature distribution during the selective melting process of the electron beam by
using the finite element simulation tool which was developed by them independently. The
results show that the life of the molten pool increases linearly along with linear energy,
while the size of the molten pool is nonlinear, related to linear energy. Zinoviev et al. [13]
established the evolutionary mathematical model of grain structure in each component
used for prediction of the laser melting process, and simulated the selective laser melting
process. In the simulation, the growth and structure formation of grains during laser
additive manufacturing (LAM) were fully described. Chu [14] established the simulation
model of laser cladding Al2O3 aluminum alloy, and carried out research on the roles
of preheating and slow cooling on the laser cladding and the influence law of different
process parameters on the temperature gradient. Loh et al. [15] created a selective laser
melting simulation model taking the transformation from powder to solid into account,
and carried out research on the relationship between laser power, scanning speed and melt
size, melting and evaporation of powder and temperature change rate. By comprehensively
taking free surface, temperature, component concentration and molten pool flow velocity
into consideration, Dubrov et al. [16] established the dynamic equation for the laser melting
process of metal powder, and provided its numerical implementation algorithm, and
tested calculation results of the temperature field, flow structure of the molten pool, solute
distribution and geometric characteristics of the object to be formed. Zhao et al. [17]
analyzed the influence law of thermal cycle and cladding direction on AM part quality
during AM of sheet parts. Miranda et al. [18] conducted research on the impact of the
relative position of wire feeder and substrate and ratio of laser radius to wire radius on
the forming quality. The results show that the former has impacts on the transfer mode
of molten metal and the pressure of the wire tip on the molten pool, while the latter has
an influence on procedure efficiency. The two parameters control the surface finish of the
parts. Zhan et al. [19] discussed the effect of process parameters on residual stress. The
results show that the residual stress is positively correlated with the laser power, and it is
negatively correlated with the scanning speed and powder feeding. Fan et al. [20] analyzed
the residual stress field of TC4/TC11 FGM fabricated via LAM using the finite element
method. Samodurova et al. [21] developed a methodology for manufacturing titanium
alloy products and studied the microstructure of the obtained details and measured the
microhardness of the samples. Products made according to the developed technique do
not have visible defects and pores.

There are many elements causing residual stress of AM parts. Three parameters were
selected, which are studied rarely at present but very important in real processing. The
research results can provide a significant theoretical basis for residual stress control in
LAM. Due to advantages such as relatively better high-temperature resistance, oxidation
resistance and corrosion resistance, at present, Ti-6Al-4V titanium alloy is mainly used in
the aerospace and maritime fields [6]. Based on the simulation of the AM process, this
research describes the change in internal properties of the cladding layer, manufactured by
laser adding material with titanium alloy wire.

AM is a process of “rapid heating and rapid cooling”, and the formed cladding layer
is heated unevenly and the temperature changes dramatically, so the cladding layer will
produce thermal stress due to expansion with heat and contraction with cold. When this
thermal stress exceeds the yield and tensile strength of Ti-6Al-4V titanium alloy, it is easy
to deform the cladding layer and substrate. Therefore, the mechanism and action law of
thermal stress in AM are a difficult problem.

2. Modeling of LAM
2.1. Finite Element Model

In this paper, the simulation model of laser wire additive manufacturing is established
by ABAQUS, and the function of MODEL CHANGE in ABAQUS is used to simulate the



Machines 2022, 10, 1197 3 of 12

addition of Ti-6Al-4V titanium alloy material. In order to make the numerical simulation
results more accurate, this paper determines the simulation process parameters according
to the actual experimental data [22]. The parameters are as follows. Laser scanning speed
is 6 mm/s. Laser power is 180 W. Laser diameter is 0.8 mm. Simplified finite element
model of the substrate is set to 60 mm × 14 mm × 5 mm. In addition, the length, width
and thickness of the cladding layer are 50 mm, 0.85 mm and 0.54 mm. The four corners of
the substrate are completely fixed.

As displayed in Figure 1, the substrate is meshed, and the area near the cladding layer
is densely meshed, with 40,680 nodes and 34,582 elements.
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Figure 1. Grid diagram of substrate and cladding layer in AM.

In the finite element model of the cladding layer and the substrate, the surface heat
transfer coefficient and thermal radiation coefficient are set according to Equations (1)–(3)
to simulate the actual heat dissipation process. The initial temperature of the cladding layer
and the substrate is set at 20 ◦C and the ambient temperature is set at 20 ◦C. In addition, a
birth–death element strategy is used to simulate the material addition process.

The heat production equation is

∂(ρcPT)
∂t

+∇(ρcPvT)−∇(K∇T) = Q (1)

in which Q is heat generation of laser heat source; K is thermal conductivity of titanium
alloy; cp is specific heat capacity; ρ is density of titanium alloy; t is laser heat source action
time; v is laser scanning speed.

The initial condition of the heat conduction equation of the laser heat source is

−K(∇Tn)|Ω =

{
αI(x, y, z, t)− h(T − T0)− εtσ

(
T4 − T4

0
)

if Ω ∈ Γ
−hc(T − T0)− εtσ

(
T4 − T4

0
)

if Ω /∈ Γ
(2)

in which n is the normal vector of the cladding layer and substrate surface; I (x, y, z, t) is
the energy distribution of the cladding layer and substrate surface; α is laser absorption
coefficients of Ti-6Al-4V titanium alloys; hc is convection coefficient of the cladding layer
and substrate; εt is radiance of the cladding layer and substrate; σ is Stefan–Boltzmann
constant; Ω is cladding layer and substrate surface; Γ is laser heating surface; T0 is ambient
temperature.

The boundary condition is {
T(x, y, z, 0) = T0
T(x, y, z, ∞) = T0

(3)

2.2. Basic Assumption

In this paper, the following assumptions are made for the simulation process of LAM.

• The interaction between laser heat source and material follows the traditional heat
transfer theory [23].

• The materials in this paper are considered as isotropic and the effect of temperature
on density is not considered.

• The influence of molten pool flow and vaporization on temperature is neglected.
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• Since the deformation of the material has little effect on the temperature, the effect of
material deformation on temperature is neglected.

• The effect of substrate deformation on the relaxation of the residual stresses is neglected.

2.3. Heat Source Model

In the actual laser AM process, the energy of the heat source acting on the cladding
layer gradually decreases from center to periphery. At the same time, due to the continuous
movement of the laser heat source, the energy distribution is different before and after.
Therefore, the double ellipsoid heat source is selected to simulate the loading process of the
laser heat source, and the coordinate directions of the finite element model are defined by
the coordinate directions of the heat source. The double ellipsoid heat source is shown in
Figure 2 [24].
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in which Q1 and Q2 are the quantity of heat generated by the laser heat source; p is laser
power; ω is the energy absorption efficiency of Ti-6Al-4V titanium alloy; a1, a2, b and c are
shape parameters of the double ellipsoid heat source; x0, y0 and z0 are position coordinates
of the starting point of the cladding layer.

2.4. Material Model

The physical parameters of titanium alloy change with the change in temperature,
so the setting of thermal physical parameters of titanium alloy is a major factor affecting
the accuracy of the results. The line chart of thermophysical performance parameters of
titanium alloy is shown in Figure 3.

In the finite element simulation experiment, the materials of the substrate and wire
are Ti-6Al-4V titanium alloy, and their chemical compositions are listed in Table 1.

Table 1. Chemical compositions of Ti-6Al-4V wire and substrate.

Composition Al V Fe C Ti

wire 5.8 3.8 0.09 0.01 Bal
substrate 5.5 4.8 0.4 0.2 Bal
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3. Analysis of Thermal Stress Field of LAM
3.1. Model Validation

In order to verify the authenticity of the established model, the material is set as the
material used in the experiment of reference [22] for AM simulation without changing other
parameters. The temperature curves at different points are obtained through selecting three
points at equal intervals between cladding layers, which are compared with experimental
results and shown as Figure 4. From the simulation results in Figure 4b, it can be seen
that all temperatures at each point of the cladding layers have two processes of increasing
and decreasing. When the laser heat source arrives, the temperature of the cladding layer
increases rapidly, and when heat source leaves this point, the temperature of the cladding
layer decreases rapidly and the cooling speed is slower than the speed of temperature
increase. In addition, along with the consistent processing of the laser cladding, the heat
dissipation capacity of the substrate and cladding layers gradually decreases, meaning the
temperature peak values at all points are continuously increased. The above conclusions
are consistent with the temperature data shown in Figure 4a. Among them, the error of
maximum temperature at 1–3 points of the cladding layer is less than 10%, which proves
the accuracy of the simulation model.
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temperature curve at different points of cladding layer.

3.2. Results of Stress Field

The middle point of the cladding layer is selected for analysis and defined as point
A. Figure 5 shows the stress cloud diagram and stress curve diagram of point A when
the laser heat source moves to point A. It can be seen from Figure 5a that when the laser
heat source passes through the substrate, the titanium alloy wire and the substrate melt to
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form a liquid molten pool, so the internal equivalent stress is the minimum, which is in the
zero-stress state. At the front of the molten pool, due to the action of the laser heat source,
the substrate and the wire are heated and expanded to produce a large area of thermal
stress. Additionally, at the back end of the heat source, due to the heat dissipation and
distance away from the heat source, the heat-affected area of the cladding layer gradually
decreases. Therefore, the stress is concentrated near the cladding layer. It can be seen from
Figure 5b that when the heat source gradually approaches point A, the stress increases, and
when the molten pool is formed the stress decreases to zero. After the heat source passes
through the substrate, the molten pool changes from liquid to solid, and then a large stress
is formed.
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The residual stress distribution has a significant effect on the quality of the laser
cladding layer and life of the workpiece. Figure 6 shows the residual stress distribution
after the cladding layer is cooled for 900 s. It can be seen from Figure 6 that during the laser
forming process, not only is residual stress generated in the cladding area, but also in the
surrounding area without melting. However, the stress near the cladding layer is greater
than that at other positions.
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Figure 7 shows the residual stress curve along the path of AM after the cladding
layer is cooled for 900 s. It can be seen from Figure 7 that the residual stress in the middle
of the cladding layer is much greater than that in the beginning and end positions. The
main reason is that there is no constraint at the beginning and end positions, and the
residual stress can be released well. However, in the middle of the cladding layer, due to
the constraints of the substrate and the cladding layers, a large residual stress is generated,
which increases the risk of cracks and other defects.
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4. Influence of Different Parameters on Stress Field of Formed Parts
4.1. Ambient Temperature

During the research on the influence of ambient temperature on the stress field of
formed parts, the ambient temperatures of 0 ◦C, 200 ◦C, 400 ◦C and 600 ◦C are selected.
Taking point A as the research object, the stress and stress component curve are obtained
at different ambient temperatures, which is shown as Figure 9. From Figure 9a, it can be
found that the variation trends of von Mises stress of point A at each ambient temperature
are almost the same. However, along with the increment in ambient temperature, the peak
value of stress is gradually decreased. It is decreased by 80 MPa and about 14.5% from
552 MPa at 0 ◦C to 472 MPa at 600 ◦C. From the stress curve of Figure 9b,d, it can be seen that
the stress in the x direction and z direction is basically over time. The relationship between
stress and ambient temperature is a negative correlation. From the curve of Figure 9c, the
stress of the y direction basically has a downward trend, and lower temperature the higher
formed pressure is. Therefore, since the stress in the x direction is the largest among all
directions, cracks are more likely to occur in the vertical direction of this direction.

Figure 10a shows the curve of residual stress of the cladding layer at different ambient
temperatures. Comparing the residual stress curves at 0 ◦C, 200 ◦C, 400 ◦C and 600 ◦C, it can
be seen that the residual stress of the cladding layer decreases as the ambient temperature
increases. Figure 10b shows the line chart of maximum residual stress of the cladding layer
at different ambient temperatures. With the increase in ambient temperature, the maximum
residual stress is decreased linearly. It is decreased by 254 MPa and about 36.0% from
706 MPa to 452 MPa. Therefore, ambient temperature has a great influence on the residual
stress of the formed parts.
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4.2. Substrate Thickness

During the research on the influence of substrate thickness on stress field, four vari-
ables of substrate thickness of 25 mm, 35 mm, 45 mm and 55 mm are selected. Figure 11
is the equivalent stress and stress component curve of point A. From Figure 11a, it can be
seen that along with the increment in substrate thickness, the von Mises stress increases
gradually, which is increased about 15.9% from 511 MPa at substrate thickness of 25 mm
to 592 MPa at substrate thickness of 55 mm. However, in the actual process, a relatively
obvious deformation would happen when substrate thickness is decreased to a certain
thickness [25]. Figure 11b,d show that the stress in the x direction and z direction increases
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with the increase in substrate thickness. From the curve of Figure 11c, the pressure of the y
direction is basically increased over time.
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Figure 12a shows the curve of residual stress of the cladding layer under different
substrate thicknesses. Comparing the residual stress curves at 25 mm, 35 mm, 45 mm
and 55 mm, it can be seen that the residual stress of the cladding layer increases as the
substrate thickness increases. Figure 12b shows the line chart of maximum residual stress
of the cladding layer under different substrate thicknesses. With the increment in substrate
thickness, the maximum residual stress is gradually increased. It is increased by 67 MPa
and about 10.0% from 733 MPa to 666 MPa. Therefore, substrate thickness has a certain
influence on the residual stress of the formed parts.
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4.3. Wire Temperature

In the research of wire temperature, the wire temperatures of 0 ◦C, 200 ◦C, 400 ◦C and
600 ◦C are selected. Figure 13 is the equivalent stress and stress component curve of point
A. From Figure 13a, it can be seen that along with the increment in wire temperature, the
von Mises stress increases gradually, which is increased by 106 MPa and about 20.5% from
518 MPa at 0 ◦C to 624 MPa at 600 ◦C. Figure 13b,d show that the stress in the x direction
and z direction increases with the increase in wire temperature. Figure 13c shows that the
pressure of the y direction is basically increased over time.
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Figure 14a shows the curve of residual stress of the cladding layer under different wire
temperatures. Comparing the residual stress curves at 0 ◦C, 200 ◦C, 400 ◦C and 600 ◦C, it
can be seen that the residual stress of the cladding layer increases as the wire temperature
increases. Figure 14b shows the line chart of maximum residual stress of the cladding layer
under different wire temperatures. With the increase in wire temperature, the maximum
residual stress is gradually increased. It is increased by 50 MPa and about 7.48% from
718 MPa to 668 MPa. Therefore, wire temperature has little effect on the residual stress of
the formed parts.

By comprehensively comparing the effects of ambient temperature, substrate thickness
and wire temperature on the stress field, it can be found that ambient temperature has the
greatest effect on the residual stress of formed parts, and wire temperature has the least
effect on the residual stress.
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5. Conclusions

1. In the AM process, in a certain range of clamping conditions, temperature and sub-
strate thickness, the residual stress basically increases first, then decreases and finally
gradually increases and tends to be stable. The residual stress of the forming direction
has the most influence on von Mises stress.

2. When the temperature increases from 0 ◦C to 600 ◦C, the maximum residual stress
of the cladding layer basically decreases linearly. The maximum residual stress is
decreased about 36.0% from 706 MPa to 452 MPa. When the substrate thickness is
increased from 25 mm to 55 mm, the maximum residual stress of cladding layers is
gradually increased by 10.0%. When the wire temperature increases from 0 ◦C to
600 ◦C, the maximum residual stress of the cladding layer is increased by 7.48%.

3. Through the comprehensive comparisons of residual stress of final formed parts
affected by ambient temperature, substrate thickness and wire temperature, it can
be found that the ambient temperature has the most influence, then the substrate
thickness, and the wire temperature has the least influence.
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