
Citation: Chang, J.; Yu, D.; Zhou, Z.;

He, W.; Zhang, L. Hierarchical

Reinforcement Learning for

Multi-Objective Real-Time Flexible

Scheduling in a Smart Shop Floor.

Machines 2022, 10, 1195. https://

doi.org/10.3390/machines10121195

Academic Editor: Jose Machado

Received: 26 October 2022

Accepted: 7 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Hierarchical Reinforcement Learning for Multi-Objective
Real-Time Flexible Scheduling in a Smart Shop Floor
Jingru Chang 1,2,3, Dong Yu 2,*, Zheng Zhou 1,2, Wuwei He 1,2 and Lipeng Zhang 1,2

1 University of Chinese Academy of Sciences, Beijing 100049, China
2 Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China
3 Department of Software Engineering, Dalian Neusoft University of Information, Dalian 116023, China
* Correspondence: yudong@sict.ac.cn

Abstract: With the development of intelligent manufacturing, machine tools are considered the
“mothership” of the equipment manufacturing industry, and the associated processing workshops are
becoming more high-end, flexible, intelligent, and green. As the core of manufacturing management
in a smart shop floor, research into the multi-objective dynamic flexible job shop scheduling problem
(MODFJSP) focuses on optimizing scheduling decisions in real time according to changes in the
production environment. In this paper, hierarchical reinforcement learning (HRL) is proposed to
solve the MODFJSP considering random job arrival, with a focus on achieving the two practical goals
of minimizing penalties for earliness and tardiness and reducing total machine load. A two-layer
hierarchical architecture is proposed, namely the combination of a double deep Q-network (DDQN)
and a dueling DDQN (DDDQN), and state features, actions, and external and internal rewards
are designed. Meanwhile, a personal computer-based interaction feature is designed to integrate
subjective decision information into the real-time optimization of HRL to obtain a satisfactory
compromise. In addition, the proposed HRL framework is applied to multi-objective real-time
flexible scheduling in a smart gear production workshop, and the experimental results show that the
proposed HRL algorithm outperforms other reinforcement learning (RL) algorithms, metaheuristics,
and heuristics in terms of solution quality and generalization and has the added benefit of real-
time characteristics.

Keywords: smart shop floor; flexible job shop scheduling; multi-objective; hierarchical reinforcement
learning; real-time optimization

1. Introduction

Intelligent manufacturing is the core of the new scientific revolution, which is achieved
through the use of information technology to achieve the rapid development of productivity
and solve social problems such as energy consumption. The future outlook and direction
in terms of the development of digitalized, networked, and intellectualized manufacturing
is intelligent manufacturing, which is essentially the achievement of “smart workshops”
that are based on cyber-physical production systems (CPPS) [1]. Machine tools [2] are the
“mothership” of the equipment manufacturing industry, and it is impossible to achieve
intelligent manufacturing without the intelligence of machine tools.

In line with the ANSI/ISA-95.00.02-2018 standard [3], modern factories have become
closely integrated with actual workshop production scenarios based on the structure of
enterprise resource planning (ERP), manufacturing execution systems (MESs), and process
control systems (PCSs) as prototypes and manufacturing operations management (MOM)
consisting of production, maintenance, quality, inventory, etc. Machine tool workshops are
becoming more flexible and intelligent alongside the development of cloud computing,
the Internet of Things [4], big data [5], machine learning, and other advanced technologies.
Because of the wide combination and deep penetration of automation hardware, such

Machines 2022, 10, 1195. https://doi.org/10.3390/machines10121195 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10121195
https://doi.org/10.3390/machines10121195
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://doi.org/10.3390/machines10121195
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10121195?type=check_update&version=2

Machines 2022, 10, 1195 2 of 25

as robots, CNC machine tools, stackers, and sensors with intelligent MOM, visualization
system (WVS), and logistics management system (WMS) software, a manufacturing shop
has the capabilities of autonomous perception, analysis, decision making, and processing.
Referring to the GB/T 37393-2019 standard [6], which mentions the digital workshop
system structure, an intelligent workshop system integrating the physical production–data
acquisition–recipe control–execution flow has been built, such as in the example of a smart
gear workshop structure in Figure 1 [7].

Machines 2022, 10, x FOR PEER REVIEW 2 of 25

advanced technologies. Because of the wide combination and deep penetration of auto-

mation hardware, such as robots, CNC machine tools, stackers, and sensors with intelli-

gent MOM, visualization system (WVS), and logistics management system (WMS) soft-

ware, a manufacturing shop has the capabilities of autonomous perception, analysis, de-

cision making, and processing. Referring to the GB/T 37393-2019 standard [6], which men-

tions the digital workshop system structure, an intelligent workshop system integrating

the physical production–data acquisition–recipe control–execution flow has been built,

such as in the example of a smart gear workshop structure in Figure 1 [7].

Figure 1. The model architecture of the smart gear workshop.

Due to the dynamic configuration of production methods required to achieve flexible

production in the workshop, the core of intelligent manufacturing, MES, is the focal point

of intellectualization transformation upon which other functional requirements can be ex-

tended. Based on the classic decision-making activity of the flexible job shop scheduling

problem (FJSP) in MES, this paper analyzes the current challenges of scheduling algo-

rithms (the key technology of intelligent manufacturing) and provides theoretical and

practical solutions to intelligently match the dispersed resources (manpower, materials,

processing equipment, etc.) of the workshop in real time to meet the needs of diversifica-

tion, customization, and small-batch production.

Compared to the classical job shop scheduling problem (JSP) [8], the FJSP breaks

through the uniqueness restriction of production resources and has been proven to be a

strong NP-hard problem [9] whose real-time optimization improves production efficiency

while reducing costs. From Figure 1, with real-time monitoring, data collection, machine

tool machining, and the rapidly changing production state of the smart workshop, the

FJSP presents the following characteristics. Firstly, production dynamics: various uncer-

tain events occur, such as random job arrival, machine failures, and delivery date changes,

all of which require rescheduling to adapt to dynamic changes in the production environ-

ment. Secondly, human–machine interaction constraints: when solving production sched-

uling, a decision maker has a preference for order arrangement and production targets.

Without holographic modeling, the handling of unexpected events still requires the sub-

jective opinion and judgment of decision makers.

Figure 1. The model architecture of the smart gear workshop.

Due to the dynamic configuration of production methods required to achieve flexible
production in the workshop, the core of intelligent manufacturing, MES, is the focal point
of intellectualization transformation upon which other functional requirements can be
extended. Based on the classic decision-making activity of the flexible job shop scheduling
problem (FJSP) in MES, this paper analyzes the current challenges of scheduling algorithms
(the key technology of intelligent manufacturing) and provides theoretical and practical
solutions to intelligently match the dispersed resources (manpower, materials, process-
ing equipment, etc.) of the workshop in real time to meet the needs of diversification,
customization, and small-batch production.

Compared to the classical job shop scheduling problem (JSP) [8], the FJSP breaks
through the uniqueness restriction of production resources and has been proven to be a
strong NP-hard problem [9] whose real-time optimization improves production efficiency
while reducing costs. From Figure 1, with real-time monitoring, data collection, machine
tool machining, and the rapidly changing production state of the smart workshop, the
FJSP presents the following characteristics. Firstly, production dynamics: various uncertain
events occur, such as random job arrival, machine failures, and delivery date changes, all
of which require rescheduling to adapt to dynamic changes in the production environment.
Secondly, human–machine interaction constraints: when solving production scheduling, a
decision maker has a preference for order arrangement and production targets. Without
holographic modeling, the handling of unexpected events still requires the subjective
opinion and judgment of decision makers.

At present, the traditional methods of solving the dynamic FJSP (DFJSP) are mainly
heuristic and metaheuristic algorithms. Heuristic methods, such as first in first out (FIFO)

Machines 2022, 10, 1195 3 of 25

and first in last out (FILO), etc., are simple and efficient, but they have poor universality and
uneven solution quality due to different scheduling rules applicable to different types of
scheduling problems and production objectives. Metaheuristic methods, such as the genetic
algorithm (GA) [10] and particle swarm algorithm [11], improve solution quality through
parallel searching and iterative searching, but their time complexity is poor and they do not
have the required characteristic of real-time scheduling optimization in a smart workshop.

With the advance in artificial intelligence and machine learning, Zhang et al. [12]
solved the JSP in 1995 using a temporal difference algorithm, which was the first time
reinforcement learning (RL) was applied in the scheduling field. The core idea of using
RL in solving the scheduling problem is to transform the dynamic scheduling process
into a Markov decision process (MDP) [13]. When an operation is finished or random
events occur, a scheduling rule is determined according to the production state. Because
different production objectives correspond to different reward functions and scheduling
rules, traditional RL cannot simultaneously optimize all objectives to solve the multi-
objective DFJSP (MODFJSP) [14]. Hierarchical reinforcement learning (HRL) [15–17] has
long held the promise of learning such complex tasks, in which a hierarchy of policies
is trained to perform decision making and control at different levels of spatiotemporal
abstraction. A scheduling agent is trained using the two-layer policy, in which a higher-
level controller learns a goal policy over a longer time scale and a lower-level actuator
applies atomic actions to the production environment to satisfy the temporary objective.
Therefore, HRL maximizes external cumulative return in the long run while achieving a
satisfactory compromise considering multiple production objectives.

In the actual production environment of machine tool processing, the swift completion
of products results in higher inventory pressure, whereas delays in completing the job
result in financial damage [18]. The total machine load not only affects financial costs
but also involves energy saving and emission reduction. For the real-time optimization
and decision-making of multi-objective flexible scheduling in a smart shop floor, an HRL
method is proposed in this study to solve the MODFJSP considering random job arrival so
as to minimize penalties for earliness and tardiness as well as total machine load. The four
contributions of this research are as follows:

(1) To the best of our knowledge, this is the first attempt to solve the MODFJSP with
random job arrival and minimize the total penalties for earliness and tardiness, as
well as total machine load, using HRL. The work can thus fill a research gap regarding
solving the MODFJSP using HRL.

(2) A key problem in multi-objective optimization is solved by one human–machine inter-
action feature, i.e., the scheduling expert or management decision maker assigns the
relative importance of the two objectives, which are combined with subjective decision
information in the algorithmic optimization process to obtain a compromise solution.

(3) The HRL-based scheduling agent consists of a single-stream double deep Q-network
(DDQN) as a high-level controller and a two-stream dueling DDQN (DDDQN) as a
low-level actuator. This ensures the effectiveness and generalization of the proposed
method under the premise of the agent’s learning speed.

(4) To balance and optimize the two production scheduling targets in real time, four state
indicators are designed for the high-level goal, and each state indicator corresponds
to an external reward function to maximize the cumulative return during training.

The overall structure of the study takes the form of six sections, including this in-
troductory section. Section 2 introduces a brief review of RL-based dynamic scheduling
methods. The mathematical model for the MODFJSP with random job arrival in a smart
machine tool processing workshop is established in Section 3. Section 4 presents the back-
ground of DDQNs and DDDQNs, and the implementation details are provided. Section 5
provides a case study of the proposed HRL algorithm in the flexible production scheduling
of gears and presents the results of numerical experiments. Conclusions and future research
directions are summarized in Section 6.

Machines 2022, 10, 1195 4 of 25

2. Related Works

To intelligently match the dispersed production resources of the smart workshop in
real time, more and more researchers and practitioners have been paying attention to RL
algorithms, software, and frameworks to solve production scheduling problems.

Fonseca et al. [19] applied Q-learning to study the flow job shop scheduling problem
(FSP) for minimum completion time. He et al. [20] solved the dynamic FSP (DFSP) for
minimum cost and energy consumption, in the context of the textile industry, using multiple
deep Q-network (DQN) agents. Shahrabi et al. [21] solved the dynamic JSP (DJSP) to
minimize average flow time via Q-learning, dynamically adjusting the parameters of
a variable neighborhood search algorithm. Kuhnle et al. [22] proposed a framework for
design, implementation, and evaluation of on-policy RL to solve the JSP with order dynamic
arrival in order to maximize machine utilization while minimizing order delivery time.
Wang et al. [23] solved an assembly JSP with random assembly times for minimum total
weighted earliness penalty and completion time using dual Q-learning agents, where the
top-level agent focused on the scheduling policy and the bottom-level agent optimized
global targets. Bouazza et al. [24] used intelligent software products to solve the partially
FJSP with new job insertions to minimize makespan through the use of a Q-learning
algorithm. Luo et al. [14] proposed a two-layer deep reinforcement learning model where
the high-level DDQN determines the optimization objective and the low-level DDQN
selects the scheduling rule to solve the FJSP with minimum total delay and maximum
average machine utilization. Johnson et al. [25] proposed a multi-agent system and applied
multiple independent DDQN agents to solve the FJSP in a robotic assembly production
cell with random job arrival to minimize makespan. Table 1 summarizes the differences
between the aforementioned studies and our work.

Table 1. Existing RL methods for dynamic production scheduling problems.

Work Type Objective Algorithm Agent State Action Space Interaction

Fonseca et al. [19] FSP Makespan Q-learning Single agent Discrete 1 No

He et al. [20] FSP Cost, energy
consumption DQN Multiple

agents Continuous 3 No

Shahrabi et al. [21] JSP Mean
flow time Q-learning Single agent Discrete 8 No

Kuhnle et al. [22] JSP

Machine
utilization,
lead time
of orders

Trust
region policy
optimization

Single agent Continuous 4 No

Wang et al. [23] JSP

Total earliness
penalty,

completion
time cost

Dual
Q-learning

Multiple
agents Discrete 4 No

Bouazza et al. [24] FJSP
Total weighted

completion
time

Q-learning Multiple
agents Discrete 4 No

Luo et al. [14] FJSP
Total tardiness,

machine
utilization rate

HRL Single agent Continuous 6 No

Johnson et al. [25] FJSP Makespan DDQN Multiple
agents Continuous 12 No

Our work FJSP

Penalties for
earliness and

tardiness, total
machine load

HRL Single agent Continuous 10 Yes

Machines 2022, 10, 1195 5 of 25

From the above literature review, research has mainly focused on using RL to solve
single-objective DFSPs, DJSPs, and DFJSPs. Use of RL to solve multi-objective DFJSPs
has not been deeply explored in research. Additionally, there is currently no RL method
that considers the dynamic preference of decision makers toward production targets via
human–computer interaction.

Studies in the literature [19,21,23,24] have used RL with linear value function ap-
proximation, which forces state discretization when dealing with continuous-state prob-
lems. Refined perception of the environment leads to an explosion in the number of
discrete states [26], with vast increases in the computational requirements of the model
(e.g., state–action pair Q-tables) and reduced agent learning speed. Therefore, to reduce
computational complexity, simple discretization discards some critical information about
the state of the domain structure, which ultimately affects the quality of the agent’s deci-
sion making.

In the work of Luo et al. [14], an HRL-based agent was utilized to solve the MODFJSP,
as opposed to a DDQN which learns slowly with the increased number of actions [27].
Because there is not a single heuristic rule that performs well in all production scheduling
problems, this study expands the action space by increasing the number of scheduling rules
and applies a combination of DDQN and DDDQN hierarchical reinforcement learning
to solve the MODFJSP so as to improve the learning efficiency and generalization of
the algorithm.

3. Problem Formulation
3.1. Problem Description

There are several production lines in a smart machine tool processing workshop,
and each production line includes multiple production units due to the division of labor.
Each production unit is regarded as an independent processing machine. We describe the
DFJSP with random job arrival in a smart machine tool processing workshop using symbols
defined as follows: There are m independent processing machines M = {M1, M2, · · · , Mm},
which can machine n independent jobs J = {J1, J2, · · · , Jn} with successive arrival time
A = {A1, A2, · · · , An} and due date D = {D1, D2, · · · , Dn}. Each job Ji consists of hi
predetermined operations. The jth operation of job Ji is denoted as Oij, which can be
machined on a compatible set of machines Mij

(
Mij ⊆ M

)
. tijk is the processing time of

Oij on independent machine Mk. In this study, the assumptions and constraints were
as follows:

(1) Each operation can be processed by only one independent machine at a time with-
out interruption.

(2) There are precedence constraints among the operations of one job, and the order of
precedence of operations belonging to different jobs is not being followed.

(3) There is no priority assigned to any job.
(4) The setup time of the machine tool, the time for the robot to grasp the workpiece and

move it to the fixture, the time the stacker takes to transfer job frames, the scanning
time of the two-dimensional code on the job, and the breakdown time of the machine
tool are negligible.

(5) It is assumed that three-dimensional warehouses and loading stations are unlimited.

3.2. Mathematical Model

A mathematical model of the MODFJSP with random job arrival in a smart machine
tool processing workshop was established. All notations used to describe the problem are
summarized in Table 2 in line with the literature [18]. For each job Ji, its due date Di can
be calculated as Di = Ai + fi ×∑hi

j=1 tij, where tij = meank∈Mij
tijk represents the average

processing time of Oij on its compatible machine set Mij [14].

Machines 2022, 10, 1195 6 of 25

Table 2. Related mathematical notations and their definitions.

Symbol Definition Symbol Definition

Indices
k Index of machine tools,

k = 1, 2, · · · , m j,t
Index of operations belonging to

Ji and Jr,
j = 1, 2, · · · , hi; t = 1, 2, · · · , hr

i,r Index of jobs, i, r = 1, 2, · · · , n

Constants

m The number of independent
processing machines n The number of independent jobs

tijk
The processing time of Oij

on Mk
hi The operation number of job Ji

Mij
The suitable machine set

for Oij
fi

The delivery relaxation factor
of Ji

we
i

Unit (per day) earliness cost
of Ji

wt
i Unit (per day) tardiness cost of Ji

Ai The arrival time of Ji Di The due date of Ji

tij
The average processing time of

Oij on Mij
nini The number of initial jobs

nadd
The number of newly

added jobs Eave

Average value of exponential
distribution between two

successive job arrivals

Sets
M Set of processing machines,

M = {M1, M2, · · · , Mm}
J Set of jobs, J = {J1, J2, · · · , Jn}

Mij
Set of compatible machines for

Oij, where Mij ⊆ M

Variables

xijk
If Oij is assigned to Mk,

xijk = 1, else xijk = 0 yijrtk
If Oij is processed on Mk before

Ort, yijrtk = 1, else yijrtk = 0
sij The starting time of Oij cij The completion time of Oij

Ci The completion time of Ji CTk(t)
The completion time of the last

operation on machine Mk at
timestep t

OPi(t)
The current number of

completed operations of Ji at
timestep t

Machine_T(t)[k]
The processing time of each

operation processed by machine
Mk at timestep t

MT[k] The load of machine Mk at
timestep t Loadr

The current estimated remaining
processing time at timestep t

UCjob(t)
The uncompleted job set at

timestep t

Production
situation

observation

Um(t)
The average utilization rate of

the machines at timestep t Fe(t)
Estimated total machine load at

timestep t

ETe(t)
Estimated earliness and

tardiness rate at timestep t Pe(t)
Estimated earliness and

tardiness penalty at timestep t

Imp(t) The relative importance of
objectives at timestep t

In this study, the production objective was to obtain a real-time flexible schedule with
the lowest total weighted penalties for earliness and tardiness (TWET) and the lowest
total machine load (Fuhe). Based on the notations of parameters and decision variables
above, the objective functions are given by Equation (1), and some constraints are given in
Equations (2)–(5).

Objective:

min

{
TWET = ∑n

i=1

(
we

i ×max{Di − Ci, 0}+ wt
i ×max{Ci − Di, 0})

)
Fuhe = ∑n

i=1∑
hi
j=1∑

m
k=1tijk × xijk

(1)

Subject to
sij ≥ 0, (si1 − Ai)× xi1k ≥ 0 ∀i, j, k (2)

Machines 2022, 10, 1195 7 of 25

sij + tijk × xijk ≤ si(j+1) ∀i, j, k (3)

sij + tijk ≤ srt + Z×
(

1− yijrtk

)
∀i, r, j, t, k (4)

∑
|Mij |
k=1 xijk = 1 ∀i, j (5)

Equation (2) ensures that each job cannot be machined until it arrives. Equation (3)
ensures that the precedence constraints between the operations of the same job must be
satisfied. Equations (4) and (5) indicate that a job can only be processed by one machine
tool at a time without interruption and at the same time, respectively, where Z is a large
enough positive number.

4. Proposed HRL
4.1. Background of DDQNs and DDDQNs

Since DQNs [28] first combined RL with nonlinear value functions in 2013, repre-
senting a milestone, RL has been rapidly developed and become widely applicable. In
RL, an agent interacts with environment E at each t of a sequence of discrete time steps,
perceives state st, st ∈ S (set of all states), and selects action at from possible action set
A under its policy π, where π is mapping probability p from st to at. Responding to at,
the environment E presents new state st+1 and assigns scalar reward rt to the agent. They
interact until the agent reaches a terminal state. The agent obtains the total accumulated
return Rt = ∑∞

k=1 γk × rt+k, 0 < γ ≤ 1, where discount rate γ trades off immediate and
delayed rewards. Solving an RL task means finding an optimal policy, π∗, to maximize
the expected accumulated return from each state, st, over the long run. The recursive
expression of the state–action value function Q(st, at) is shown in Equation (6), which turns
Bellman equations into updated rules for improving approximations of the desired value
functions and obtaining the dynamic programming algorithm.

Qπ∗(st, at)
def
= maxπQπ(st, at)

= E
[
rt + γ×maxa′Qπ∗(st+1, a′)

]
= ∑

st+1,rt

p(st+1, rt | st, at)×
[
rt + γ×maxa′Qπ∗(st+1, a′)

] (6)

On-policy RL is attractive in continuous control, but off-policy RL provides more gen-
eralized, stable, and efficient learning methods in discrete control [15]. In the DQN, the pa-
rameters, θt, of the neural network are adjusted by randomly sampling state–action–reward
transition tuples (st, at, rt, st+1) at each time step t. The iterative updating formulas of
θt and the target yt

DQN are shown in Equations (7) and (8), respectively, where η is the
learning rate used by the gradient descent algorithm. It is clear that the state–action values
from the same neural network are used in selecting and evaluating an action. Therefore,
the predicted value of Q is substantially overestimated, which may reduce the learning
quality of an agent.

θt+1 = θt + η × (yt −Q(st, at; θt))×∇θt Q(st, at; θt) (7)

yDQN
t = rt + γ× argmaxa′Q

(
st+1, a′; θt

)
(8)

In order to decouple the selection from the evaluation, a DDQN was designed by
Hasselt et al. [29], where the online network Q value and the target network Q̂ value are
used to select an action and evaluate the action, respectively. The iterative formula of target
yt

DDQN is shown in Equation (9).

yDDQN
t = rt + γ× Q̂

(
st+1, argmaxa′Q

(
st+1, a′; θt

)
; θ̂t
)

(9)

Machines 2022, 10, 1195 8 of 25

According to Equations (11) and (12), only one state–action value Q(st, at) is updated
at each time step, and all other action values of st remain untouched. When the number
of actions increases, an agent needs increasingly more action value updates for learning.
In addition, the differences among action values for st are often very small relative to
the magnitude of Q. For example, after training with the DDQN in [18], the average
gap between the Q values of the best and the second-best action across visited states is
roughly 0.06, whereas the average action value across those states is about 17. Action values
are frequently reordered, and actions chosen by behavior strategies are correspondingly
changed, which brings small amounts of noise in the updates.

Based on the above two reasons, Wang et al. designed a DDDQN [27] with two streams
to separately estimate state value, V(st, θt, αt), and the advantages, adv(st, a, θt, βt), for each
action. Here, θt represents the parameters of the sharing layers, while αt and βt denote
the parameters of each of the two streams. The state–action Q value is calculated using
Equation (10), where A(st, a, θt, βt) is an |A|-dimensional vector.

Q(st, a, θt, αt, βt) = V(st, θt, αt) + adv(st, a, θt, βt)

= V(st, θt, αt) + [A(st, a, θt, βt)− ∑
|A|
i=1 A(st ,ai ,θt ,βt)

|A|]
(10)

4.2. Model Architecture

In this paper, an HRL framework is used to solve the MODFJSP. The algorithm model
is shown in Figure 2, including the manufacturing environment of a smart machine tool
workshop, the hierarchical agent, and the reinforcement learning process. The instances are
generated from the scheduling type, constraint conditions, and dynamic attributes defined
by the production environment of a smart workshop. The production instance is expressed
as a semi-Markov decision process (semi-MDP) [30] through definitions of different levels
of temporal abstraction, states, actions, and rewards. The agent constantly interacts with
the semi-MDP to obtain the training data sample set and performs training expression and
policy learning through the HRL algorithm.

Machines 2022, 10, x FOR PEER REVIEW 9 of 25

(4) According to the online network’s 𝑄𝑙 value and the behavior policy 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦, the

low-level actuator determines scheduling rule 𝑎𝑡, and operation 𝑂𝑖𝑗 and a feasible

machine, 𝑀𝑘, are selected;

(5) The smart machine tool machining workshop performs 𝑎𝑡, and 𝑠𝑡 is transferred to

the next production state, 𝑠𝑡+1;

(6) The high-level controller obtains the extrinsic reward, 𝑟𝑡
𝑔, and the experience tuple

(𝑠𝑡, 𝑔𝑡, 𝑟𝑡
𝑔, 𝑠𝑡+1) is stored in the high-level experience replay, 𝐷ℎ;

(7) The low-level actuator obtains the intrinsic reward, 𝑟𝑡
𝑚, from the high-level control-

ler, and the experience tuple (𝑠𝑡, 𝑔𝑡, 𝑟𝑡
𝑚, 𝑎𝑡, 𝑠𝑡+1, 𝑔𝑡+1) is stored in the low-level ex-

perience replay, 𝐷𝑙 ;

(8) Randomizations of the samples are both performed in 𝐷ℎ and 𝐷𝑙 to respectively

update the online network parameters 𝜃𝑡
ℎ and 𝜃𝑡

𝑙.

Figure 2. The model architecture of HRL used for solving the MODFJSP.

4.3. State Features

To comprehensively represent the complex production situation of a smart machine

tool machining shop at the rescheduling point, eight generic state features are extracted,

including three task-specific features, four environment-specific features, and one hu-

man–computer interaction feature. The specific details of these features are as follows:

(1) Average job arrival number per unit time 𝐸𝑎𝑣𝑒 ;

(2) Number of machines 𝑚;

(3) Number of newly added jobs 𝑛𝑎𝑑𝑑;

(4) Average utilization rate 𝑈𝑚(𝑡);

The average utilization rate of the machines is denoted by 𝑈𝑚(𝑡), which is calculated

using Equation (11) [14,18]. At rescheduling point 𝑡 , the completion time of the last

Figure 2. The model architecture of HRL used for solving the MODFJSP.

Machines 2022, 10, 1195 9 of 25

The hierarchical agent consists of a high-level controller, πh, and a low-level actuator,
πl . According to the current production state of the workshop, the high-level controller de-
termines the temporary production goal, which is directly related to the desired observation
value. The low-level actuator chooses the scheduling action rule according to the current
state and the production goal and directly applies the action to the shop floor environment.

The DDQN algorithm is utilized for the high-level controller, consisting of five fully
connected layers with three hidden layers. The number of nodes in the input and output
layers is eight (the number of production state features) and four (the number of state
indicators of goals), respectively. The activation function is a rectified linear unit (ReLU)
and the parameter optimization function is Adam.

The low-level actuator adopts the DDDQN learning algorithm consisting of six fully
connected layers with four hidden layers. The hidden layers contain two sharing layers
and two separating layers. The number of nodes in the input is nine (corresponding to
one higher goal) and the number of nodes in the output is ten (the number of scheduling
rules). The activation function and optimization function are consistent with the high-level
controller. The learning process is as follows:

(1) The high-level controller obtains the current state, st, of the flexible production envi-
ronment of a smart machine tool machining workshop;

(2) The high-level controller determines a temporary optimization objective, gt ∼ πh,
according to the online network’s Qh value and the behavior policy εg − greedy;

(3) The low-level actuator obtains st and gt;
(4) According to the online network’s Ql value and the behavior policy ε− greedy, the

low-level actuator determines scheduling rule at, and operation Oij and a feasible
machine, Mk, are selected;

(5) The smart machine tool machining workshop performs at, and st is transferred to the
next production state, st+1;

(6) The high-level controller obtains the extrinsic reward, rg
t , and the experience tuple (st,

gt, rg
t , st+1) is stored in the high-level experience replay, Dh;

(7) The low-level actuator obtains the intrinsic reward, rm
t , from the high-level controller,

and the experience tuple (st, gt, rm
t , at, st+1, gt+1) is stored in the low-level experience

replay, Dl ;
(8) Randomizations of the samples are both performed in Dh and Dl to respectively

update the online network parameters θh
t and θl

t.

4.3. State Features

To comprehensively represent the complex production situation of a smart machine
tool machining shop at the rescheduling point, eight generic state features are extracted,
including three task-specific features, four environment-specific features, and one human–
computer interaction feature. The specific details of these features are as follows:

(1) Average job arrival number per unit time Eave;
(2) Number of machines m;
(3) Number of newly added jobs nadd;
(4) Average utilization rate Um(t);

The average utilization rate of the machines is denoted by Um(t), which is calculated
using Equation (11) [14,18]. At rescheduling point t, the completion time of the last
operation on machine Mk and the current number of completed operations of job Ji are
denoted by CTk(t) and OPi(t), respectively.

Um(t) =

∑m
k=1

(
∑n

i=1 ∑
OPi(t)
j=1 tijk×xijk

CTk(t)

)
m

(11)

(5) Estimated total machine load Fe(t);

Machines 2022, 10, 1195 10 of 25

Machine_T(t)[k] represents the processing time of each operation processed by ma-
chine Mk with Machine_T(t)[k]. length operations having been processed at the current
time t. MT[k] represents the load of machine Mk, and the machine load at the rescheduling
point t is ∑m

k=1 MT[k]. Loadr represents the current estimated remaining processing time,
so Fe(t) is equal to ∑m

k=1 MT[k] plus Loadr. The calculating method for Fe(t) is given in
Algorithm 1.

Algorithm 1 Procedure of calculating the estimated total machine load Fe(t)

1: Input:
2: Machine_T(t), OPi(t), hi, m, n
3: Output:
4: Fe(t)
5: Procedure
6: MT[m]← 0, Loadr ← 0
7: for (k = 1; k ≤ m; k ++) do

8: MT[k]← ∑
Machine_T(t)[k].length
i=1 Machine_T(t)[k][i]

9: end for
10: for (i = 1; i ≤ n; i ++) do
11: if OPi(t) < hi then
12: Tle f t ← 0
13: for (j = OPi(t) + 1; j ≤ hi; j ++) do
14: tij ← meank∈Mij

tijk
15: Tle f t ← Tle f t + tij
16: end for
17: Loadr ← Loadr + Tle f t
18: end if
19: end for
20: Fe(t)← ∑m

k=1 MT[k] + Loadr
21: Return Fe(t)

(6) Estimated earliness and tardiness rate ETe(t) and estimated earliness and tardiness
penalty Pe(t);

The methods for calculation of ETe(t) and Pe(t) are the same as those for the actual
earliness and tardiness rate, ETa(t), and the actual earliness and tardiness penalty, Pa(t),
in [18], respectively.

(7) Degree of relative importance Imp(t).

Since managers, scheduling decision makers, and experienced experts have prefer-
ences in terms of scheduling objectives, their subjective opinions and judgments are still
needed to deal with emergencies under the premise of nonholographic modeling. The de-
gree of relative importance Imp(t) between 1 and 9 is obtained through human–computer
interaction, indicating the relative importance of TWET to Fuhe. Thereafter, the production
target is affected by many complex factors, so Imp(t) is randomly generated in this study.

4.4. Action Set

According to [31,32], the ten scheduling rules were designed to complete operation
sequencing and machine selection of the FJSP. The set of unfinished jobs at current time t is
denoted by UCjob(t). The ten scheduling rules are as follows:

(1) Dispatching Rule 1: According to Equation (12), the job, Ji, is selected from the
uncompleted job set, UCjob(t), and the minimum redundancy time of its remaining
operations is the selection principle. The operation, Oi(OPi(t)+1), is selected, and the

Machines 2022, 10, 1195 11 of 25

machine with the minimum completion time is allocated for Oi(OPi(t)+1). Moreover,
the machine is selected according to Equation (13) in dispatching rules (1)–(8).

min
iεUCjob(t)

{(Di −
∑m

k=1 CTk(t)
m

)/(hi −OPi(t))} (12)

min
k∈Mi(OPi(t)+1)

{
max

{
CTk(t), ciOPi(t), Ai

}
+ ti(OPi(t)+1)k} (13)

(2) Dispatching Rule 2: According to Equation (14), the job, Ji, with the largest estimated
remaining processing time is selected from the uncompleted job set, UCjob(t), and its
operation, Oi(OPi(t)+1), is selected.

max
iεUCjob(t)

{∑hi
j=OPit+1 tij} (14)

(3) Dispatching Rule 3: According to Equation (15), the job, Ji, with the smallest estimated
remaining processing time is selected from the uncompleted job set, UCjob(t), and its
operation, Oi(OPi(t)+1), is selected.

min
iεUCjob(t)

{∑hi
j=OPit+1 tij} (15)

(4) Dispatching Rule 4: According to Equation (16), the job, Ji, with the smallest sum
of the processing time of the current process and the average processing time of
the subsequent process is selected from the uncompleted job set, UCjob(t), and its
operation, Oi(OPi(t)+1), is selected.

min
iεUCjob(t)

{(ciOPi(t) − siOPi(t)) + ti(OPit+1)} (16)

(5) Dispatching Rule 5: According to Equation (17), the job, Ji, with the largest ratio of
the processing time of the subsequent process to the estimated remaining processing
time is selected from the uncompleted jobs, UCjob(t), and its operation, Oi(OPi(t)+1),
is selected.

max
iεUCjob(t)

{ti(OPit+1)/ ∑hi
j=OPit+1 tij} (17)

(6) Dispatching Rule 6: According to Equation (18), the job, Ji, with the smallest value
for the subsequent processing time multiplied by the estimated remaining processing
time is selected from the uncompleted jobs, and its operation, Oi(OPi(t)+1), is selected.

min
iεUCjob(t)

{ti(OPit+1) ×∑hi
j=OPit+1 tij} (18)

(7) Dispatching Rule 7: According to Equation (19), the job, Ji, with the largest ratio of
the processing time of the subsequent process to the estimated total processing time is
selected from the uncompleted jobs, and its operation, Oi(OPi(t)+1), is selected.

max
iεUCjob(t)

{ti(OPit+1)/ ∑hi
j=1 tij} (19)

(8) Dispatching Rule 8: According to Equation (20), the job, Ji, with the smallest value
for the subsequent processing time multiplied by the estimated total processing time
is selected from the uncompleted job set, UCjob(t), and its operation, Oi(OPi(t)+1),
is selected.

min
iεUCjob(t)

{ti(OPit+1) ×∑hi
j=1 tij} (20)

Machines 2022, 10, 1195 12 of 25

(9) Dispatching Rule 9: According to Equation (21), the job, Ji, with the earliest delivery
date is selected from the uncompleted job set, UCjob(t), and its operation, Oi(OPi(t)+1),
is selected. From the suitable machine set of Oi(OPi(t)+1), the machine tool with the
smallest load is then selected according to Equation (22).

min
iεUCjob(t)

{Di} (21)

min
kεMi(OPi(t)+1)

{∑n
i=1 ∑OPi(t)

j=1 tijk × xijk} (22)

(10) Dispatching Rule 10: According to Equation (23), the job, Ji, with the smallest critical
ratio (CR) of the minimum redundancy time to the estimated remaining processing
time is selected from UCjob(t), and its operation, Oi(OPi(t)+1), is selected. The machine
is selected according to Equation (25).

min
iεUCjob(t)

{(Di −
∑m

k=1 CTk(t)
m

)/ ∑hi
j=OPit+1 tij} (23)

4.5. Reward Mechanism

In the traditional RL framework, the learned policy corresponds to a maximization of
the expected return for a single reward function [33]. In the HRL framework, a range of
reward functions, rg

t , which are indexed or parametrized by a current goal, g, are considered
to accomplish complex control tasks.

Each goal, g, corresponding to a set of states, Sg ⊂ S, is considered to be achieved
when the hierarchical agent is in any state, st ∈ Sg [33]. The high-level controller produces
the action, gt, which is a state feature of the lower-level actuator when performing actions
that yield an observation close to st + gt, and the lower-level policy, πl , gets an intrinsic
reward, rm

t = r(st, at, st+1, gt).

4.5.1. High-Level Goals

Some state features are more natural goal subspaces because of the high-level goal,
gt, indicating desired relative changes in observations [15]. The two scheduling objectives
of this paper optimize four status indicators of estimated earliness and tardiness penalty,
Pe, estimated earliness and tardiness rate, ETe, estimated total machine load, Fe, and
average utilization rate of the machines, Um. Therefore, the value set of high-level goal g is
{1, 2, 3, 4}.

4.5.2. Extrinsic Reward rg
t

To keep the increasing direction of the cumulative return consistent with the direction
of optimizing the objectives and avoiding sparse rewards [16], the extrinsic reward function
rg

t corresponds to the high-level goal and four status indicators at times t and t + 1. Since
the state indicator features Pe(t) and Fe(t) are closely related to the production objectives,
their corresponding rewards and punishments fluctuate wildly to improve the learning
efficiency of the agent.

If the high-level goal gt = g1 = 1 at rescheduling point t, Pe(t) and Pe(t + 1) are
selected as the feature indicators, and rg

t is calculated using Equation (24).

rg
t =


2 Pe(t) > Pe(t + 1)
0 Pe(t) = Pe(t + 1)
−2 Pe(t) < Pe(t + 1)

(24)

Machines 2022, 10, 1195 13 of 25

If the high-level goal gt = g2 = 2, ETe(t) and ETe(t + 1) are selected as the feature
indicators, and rg

t is calculated using Equation (25).

rg
t =


1 ETe(t) > ETe(t + 1)
0 ETe(t) = ETe(t + 1)
−1 ETe(t) < ETe(t + 1)

(25)

If the high-level goal gt = g3 = 3, Fe(t) and Fe(t + 1) are selected as the feature
indicators, and rg

t is calculated using Equation (26).

rg
t =


2 Fe(t) > Fe(t + 1)
0 Fe(t) = Fe(t + 1)
−2 Fe(t) < Fe(t + 1)

(26)

If the high-level goal gt = g4 = 4, Um(t) and Um(t + 1) are selected as the feature
indicators, and rg

t is calculated using Equation (27).

rg
t =


1 Um(t) < Um(t + 1)
0 Um(t) = Um(t + 1)
−1 Um(t) > Um(t + 1)

(27)

4.5.3. Intrinsic Reward rm
t

Intrinsic motivation [33], which is closely related to the intelligence level of an agent,
involves learning with an intrinsically specified objective.

At decision point t, after receiving the goal, gt, from the high-level controller, the
low-level actuator selects a scheduling rule, which is applied to the smart workshop
environment. The higher-level controller provides the low-level policy with an intrinsic
reward, rm

t . In [15], the intrinsic reward, rm
t , is parameterized based on the distance between

the current state, st+1, and the goal state, st + gt. It is calculated using Equation (28).

rm
t = −‖st + gt − st+1‖2 (28)

4.6. Action Selection Strategy

The production scheduling objective is dynamically controlled in a cooperative human–
machine way, and the degree of relative importance, Imp(t), is added to the behavior
selection strategy of the high-level controller. In this study, a εg − greedy behavior strategy
was designed, which is calculated using Equation (29) where r0–1 is a random number
between 0 and 1. If the value of Imp(t) is larger, it means that decision makers make a
decision: objective TWET is more important than objective Fuhe, and optimizing TWET is
a priority at current time t. Furthermore, the indication characteristic, Pe, of the high-level
goal, g1, is closely related to TWET. Therefore, if Imp(t) ≥ 5, the high-level controller
selects g1 with the current production target TWET; otherwise, the annealed linearly
ε− greedy strategy is used.

εg =


g1 i f Imp(t) ≥ 5

grandom i f Imp(t) < 5 and ε < r0−1

argmaxgQh
(

sh
t , g
)

i f Imp(t) < 5 and ε ≥ r0−1

(29)

4.7. Procedure of the HRL Algorithm

By defining five key elements (state, dispatching rule, goal, reward, and behavior
strategy), the MODFJSP is formulated and transformed into an HRL problem. Algorithm
2 is the training method of the hierarchical scheduling agent, where EP is the number of
epochs to train the neural network, L is the training time in an epoch, int1–9 is the random
integer between 1 and 9, t represents the rescheduling time, T is the sum of the operations
of all current jobs at the current time t, and C is the update step of the target network.

Machines 2022, 10, 1195 14 of 25

Algorithm 2 The HRL training method

1: Initialize replay memory Dh to capacity Nh and memory Dl to capacity Nl

2: Initialize high-level online network action-value Qh with random weights θh

3: Initialize high-level target network action-value Q̂h with weights θ̂h = θh

4: Initialize low-level online network action-value Ql with random weights θl

5: Initialize low-level target network action-value Q̂l with weights θ̂l = θl

6: for epoch = 1: EP do
7: for episode = 1: L do
8: Initialize a new production instance with Eave, m and nadd
9: Initialize state
s1 =

{
Eave, m, nadd, Imp(1), Um(1), Fe(1), ETe(1), Pe(1)

}
= {Eave, m, nadd, int1−9, 0, 0, 0, 0}

10: Initialize the high-level feature sh
1 = s1

11: Select high goal g(1) according to Qh and εg − greedy
12: Initialize the low-level feature sl

1 =
[
sh

1 , g(1)
]

13: for t = 1: T do
14: Select an action at according to Ql and ε− greedy
15: Execute action at, calculate the immediate reward rg

t using Equations (24)–(27) and rm
t

using Equation (28) and observe the next workshop state st+1
16: Set the high-level feature sh

t+1 = st+1
17: Select high goal g(t + 1) according to Qh and εg − greedy
18: Set the low-level feature sl

t+1 =
[
sh

t+1, gt+1

]
19: Store transition: Dh ←

(
sh

t , gt, rg
t , sh

t+1

)
Dl ←

(
sl

t, at, rm
t , sl

t+1

)
20: Sample a random minibatch of k1 transitions

(
sh

j , gj, rg
j , sh

j+1

)
from Dh

21: Set

yh
j =

{
rg

j , i f episode terminates at step j + 1

rg
j + γ Q̂h

(
sh

j+1, argmaxg′Q
h
(

sh
j+1, g′; θh

)
; θ̂h
)

, otherwise

22: Calculate the loss function
(

yh
j −Qh

(
sh

j , gj; θh
))2

and perform Adam with respect to

the parameters θh of online network Qh

23: Sample a random minibatch of k2 transitions
(

sl
j, aj, rm

j , sl
j+1

)
from Dl

24: Set yl
j =

{
rm

j , i f episode terminates at step j + 1

rm
j + γ× Q̂l

(
sl

j+1, argmaxa′Q
l
(

sl
j+1, a′; θl

)
; θ̂l
)

, otherwise

25: Calculate the loss function
(

yl
j −Ql

(
sl

j, aj; θl
))2

and perform Adam with respect to the

parameters θl of online network Ql

26: Every C steps, reset θ̂h = θh and θ̂l = θl

27: end for
28: end for
29: end for

5. Numerical Experiments

As a mechanical component that transmits movement and power, gears are an im-
portant basic component of mechanical equipment. Due to its wide range of applications,
improvements in green gear production efficiency contribute to the construction of ad-
vanced equipment manufacturing systems. Gears are rich in variety and have different
processes, such as pre-hot and post-hot processing of planetary gears and post-hot process-
ing of disk gears and shaft gears. The gear production line involves a turning and milling
unit, tooth shaping unit, internal grinding and flat grinding unit, external grinding unit,
and gear grinding unit. The problem instances were generated by actual gear production
data from a factory, and the HRL-based agent was trained to solve the MODFJSP with
random gear arrival.

In this section, the process of training the scheduling agent, the settings of hyper-
parameters, and three performance metrics in terms of multi-objective optimization are
provided, followed by a comparison of learning rates between the DDDQN and DDQN and

Machines 2022, 10, 1195 15 of 25

performance comparisons of the proposed HRL algorithm with each action scheduling rule.
To show the effectiveness, generality, and efficiency of the HRL algorithm, we compared it
with other RL algorithms, metaheuristics, and heuristics with different production configu-
rations. To further verify the generalization of the proposed method, the trained scheduling
agent was tested on a new set of extended instances with larger production configurations.
The training and test results and two videos demonstrating the MODFJSP being solved
using the proposed HRL algorithm are available in the Supplementary Materials.

5.1. Parameter Settings
5.1.1. Parameter Settings of Problem Instances

At the very beginning, there are several jobs in a flexible gear production workshop.
The arrival of subsequent new gears obeys a Poisson distribution [18], whereas the arrival
interval follows an exponential distribution with an average rate, Eave [21]. UF represents a
real interval uniform distribution, and UI is an integer interval uniform distribution. The
parameter settings are shown in Table 3.

Table 3. Configuration of production example parameters.

Parameter Value

Number of machines (m) {10,30,50}
Number of initial jobs (nini) UI[1,10]
Number of newly added jobs (nadd) {10,50,100}
Average value of exponential distribution between two successive
job arrivals (Eave) {30,50,100}

Delivery relaxation factor (fi) UF[0.5,2]
Unit (per day) of earliness cost (we

i) UF[1,1.5]
Unit (per day) of tardiness cost (wt

i) UF[1,2]
Number of operations in a job (hi) UI[1,20]
Processing time of an operation on a machine (tijk) UF[0,50]

5.1.2. Hyperparameter Settings

In line with the literature [34], MODFJSPs are divided into 3× 3× 3 = 27 classes
using different parameter settings of Eave, m, and nadd. The configuration of Eave, m,
and nadd in Table 2 is repeated two times, generating 27× 2 = 54 different production
instances. To more effectively evaluate the performance of the HRL algorithm, we randomly
divided the 54 instances into 38 training instances (occupying 70% of all instances) and
16 validation instances (occupying 30% of all instances). In the process of training the agent,
the 200 epochs are set. There are 38 episodes in an epoch for one episode generated on each
instance, so the agent is trained on a total number of 200× 38 = 7600 instances.

The low-level policy is updated under the control of the high-level policy. The high-
level goal g, which corresponded to action a in the past transfer experience sample, cor-
responds to action a′ (a 6= a′) in the current low-level policy. Moreover, the action of the
low-level policy affects the state distribution of the high-level policy, resulting in unstable
learning in the high-level controller. To address this nonstationary problem, this study
adopts the method in [14]: the high-level replay memory size Nh is equal to minibatch size
k. The hyperparameter settings and their values are shown in Table 4.

Table 4. List of hyperparameters and their values.

Hyperparameter Value

Number of training epochs EP 200
Number of episodes per epoch L 54
High-level replay memory size Nh 32
Low-level replay memory size Nl 2000

Machines 2022, 10, 1195 16 of 25

Table 4. Cont.

Hyperparameter Value

Minibatch size k 32
Greedy exploration ε Decreasing linearly from 1 to 0.1
Discount factor γ 0.95
Learning rate η 0.00025
Update step of the target network C 1000
Replay start size >32

The proposed HRL algorithm and the smart shop floor environment for machine tools
processing of gears were coded in Python 3.8.3. The training and test experiments were
performed on a PC with an Intel(R) Core (TM) i7-6700 @ 3.40 GHz CPU and 16 GB of RAM.

5.2. Performance Metrics

The main aim of solving the MODFJSP is to find a set of uniformly distributed non-
dominated solutions. To fully evaluate the quality of the Pareto-optimal front A, three
metrics are utilized to analyze performance in terms of convergence, distribution, and
comprehensiveness. Because the real Pareto-optimal front P is unknown in advance, the
solutions obtained by all compared algorithms in the paper are merged, and those that are
nondominated are taken as P.

In general, a set of solutions with smaller values in generational distance (GD) [14,35],
spread (∆) [14,36], and inverted generational distance (IGD) [14,37] is preferred. A smaller
GD value means that the Pareto-optimal front A is closer to the real Pareto-optimal front
P, indicating higher convergence between the Pareto-optimal solutions. The smaller the
∆ value, the more evenly distributed in the target space the Pareto solutions in A. The
smaller the IGD value, the higher the convergence and distributivity of the synthetically
obtained solutions.

5.3. Comparison of Learning Rates between the DDQN and DDDQN

To demonstrate the learning effectiveness of the low-level actuator, the DDDQN and
the DDQN were trained with a single target: min{0.5× TWET + 0.5× Fuhe}. In addition,
the reward function is shown in Equation (30), where f (t) = 0.5× Pe(t) + 0.5× Fe(t).

rt =


1 f (t) > f (t + 1)
0 f (t) = f (t + 1)
−1 f (t) < f (t + 1)

(30)

The single target value of the first 200 epochs calculated by both algorithms is shown
in Figure 3, where the target value of one epoch is equal to the average of 38 different
production instances. It is easy to see from the two curves that the average goal value drops
smoothly and that volatility decreases gradually as the training steps increase. Furthermore,
the DDDQN converges faster than the DDQN. It is further demonstrated that the DDDQN
with dual streams improves the learning efficiency of the agent when solving DFJSPs with
a large action space.

Machines 2022, 10, 1195 17 of 25

Machines 2022, 10, x FOR PEER REVIEW 17 of 25

production instances. It is easy to see from the two curves that the average goal value

drops smoothly and that volatility decreases gradually as the training steps increase. Fur-

thermore, the DDDQN converges faster than the DDQN. It is further demonstrated that

the DDDQN with dual streams improves the learning efficiency of the agent when solving

DFJSPs with a large action space.

Figure 3. Comparison of the DDDQN with the DDQN.

5.4. Comparisons of the HRL Algorithm with the Proposed Composite Dispatching Rules

To verify the effectiveness and generalization of the proposed HRL algorithm, 27 dif-

ferent instances were generated for each type of MODFJSP. Moreover, the policy RA, ran-

domly selecting the high-level goal and the low-level scheduling rule, was designed to

demonstrate the learning ability of the HRL agent. In each instance, the HRL algorithm

and the composite rules were independently repeated 20 times. The GD, Δ, and IGD val-

ues of the Pareto-optimal front obtained by each method are available in the Supplemen-

tary Materials.

From the experimental results, the proposed HRL algorithm outperforms other com-

parative methods in terms of convergence, diversity, and comprehensiveness of Pareto

solutions for most production instances. Firstly, compared with RA, the HRL algorithm

obtained better results in all test instances, demonstrating its ability to learn difficult hier-

archical policies when solving the MODFJSP. Secondly, compared with scheduling rules,

HRL obtained the best results for most instances in terms of the convergence of GD, fur-

ther indicating that there is no single scheduling rule that performs optimally in all MOD-

FJSPs. It also obtained the best results for all test instances in terms of the diversity of Δ

and the comprehensiveness of IGD.

The high-level goal 𝑔𝑡 is highly correlated with the scheduling objectives. The high-

level DDQN controller determines a feasible goal, 𝑔𝑡, based on the current state at each

rescheduling point. The low-level DDDQN actuator selects a scheduling rule based on the

production state and 𝑔𝑡 . Through the long-term training process, the agent effectively

trades off between the two production objectives. Accordingly, the proposed HRL algo-

rithm outperforms the single scheduling rule in terms of effectiveness and generalization.

The Pareto fronts obtained by HRL and 10 scheduling rules for some representative in-

stances are shown in Figure 4.

Figure 3. Comparison of the DDDQN with the DDQN.

5.4. Comparisons of the HRL Algorithm with the Proposed Composite Dispatching Rules

To verify the effectiveness and generalization of the proposed HRL algorithm, 27 differ-
ent instances were generated for each type of MODFJSP. Moreover, the policy RA, randomly
selecting the high-level goal and the low-level scheduling rule, was designed to demon-
strate the learning ability of the HRL agent. In each instance, the HRL algorithm and the
composite rules were independently repeated 20 times. The GD, ∆, and IGD values of the
Pareto-optimal front obtained by each method are available in the Supplementary Materials.

From the experimental results, the proposed HRL algorithm outperforms other com-
parative methods in terms of convergence, diversity, and comprehensiveness of Pareto
solutions for most production instances. Firstly, compared with RA, the HRL algorithm
obtained better results in all test instances, demonstrating its ability to learn difficult hier-
archical policies when solving the MODFJSP. Secondly, compared with scheduling rules,
HRL obtained the best results for most instances in terms of the convergence of GD, further
indicating that there is no single scheduling rule that performs optimally in all MODFJSPs.
It also obtained the best results for all test instances in terms of the diversity of ∆ and the
comprehensiveness of IGD.

The high-level goal gt is highly correlated with the scheduling objectives. The high-
level DDQN controller determines a feasible goal, gt, based on the current state at each
rescheduling point. The low-level DDDQN actuator selects a scheduling rule based on
the production state and gt. Through the long-term training process, the agent effectively
trades off between the two production objectives. Accordingly, the proposed HRL algorithm
outperforms the single scheduling rule in terms of effectiveness and generalization. The
Pareto fronts obtained by HRL and 10 scheduling rules for some representative instances
are shown in Figure 4.

Machines 2022, 10, 1195 18 of 25
Machines 2022, 10, x FOR PEER REVIEW 18 of 25

(a) 𝐸𝑎𝑣𝑒 = 30,𝑚 = 30, 𝑛𝑎𝑑𝑑 = 10

(b) 𝐸𝑎𝑣𝑒 = 50,𝑚 = 30, 𝑛𝑎𝑑𝑑 = 100

(c) 𝐸𝑎𝑣𝑒 = 100,𝑚 = 50, 𝑛𝑎𝑑𝑑 = 10

Figure 4. The Pareto fronts obtained by the comparative methods for some representative produc-

tion instances.

5.5. Comparison of HRL to Other Methods

To further verify the effectiveness and generalization of the proposed HRL algo-

rithm, the trained agent was compared to three other RL algorithms (HRL with a DDQN

as the low-level actuator (DDHRL), DDDQN and SARSA), a famous metaheuristic algo-

rithm (GA) and two of the most commonly used heuristics rules (FIFO and shortest sub-

sequent operation (SSO)). An instance was generated for each type of MODFJSP, and the

HRL and the other algorithms were independently repeated 20 times in each instance. The

Figure 4. The Pareto fronts obtained by the comparative methods for some representative produc-
tion instances.

Machines 2022, 10, 1195 19 of 25

5.5. Comparison of HRL to Other Methods

To further verify the effectiveness and generalization of the proposed HRL algorithm,
the trained agent was compared to three other RL algorithms (HRL with a DDQN as the
low-level actuator (DDHRL), DDDQN and SARSA), a famous metaheuristic algorithm
(GA) and two of the most commonly used heuristics rules (FIFO and shortest subsequent
operation (SSO)). An instance was generated for each type of MODFJSP, and the HRL and
the other algorithms were independently repeated 20 times in each instance. The GD, ∆,
and IGD values of the Pareto-optimal fronts obtained using comparative methods are as
available in the Supplementary Materials.

In this study, the only difference between the DDHRL method and the proposed HRL
algorithm was the network structure of the low-level actuator. The DDDQN without gt was
the same as the low-level actuator of the proposed HRL algorithm. In SARSA, nine discrete
states are designed using a neural network with a self-organizing mapping layer (SOM)
from [18,38]. A Q-table with 9 × 10 Q-values was maintained. The immediate reward
function of the single agent, DDDQN and SARSA, was calculated using Equation (30).

In the GA [33], the method in [39,40] was used for fast nondominated ordering. The
fitness calculation, the selection, crossover, mutation operations, and the hyperparameter
settings were from [18].

FIFO chose the next job operation with the earliest arriving time, and SSO chose the
next job operation with the shortest subsequent processing time from the unfinished jobs.
The selection of processing machine for both was determined using Equation (14).

5.5.1. Effectiveness Analysis

To show the effectiveness of the proposed HRL algorithm, the average values of the
three metrics for all the algorithms compared in all test instances were calculated, as shown
in Figure 5. As can be seen in Figure 5, the proposed HRL algorithm outperformed the
competing methods. It can also be seen that RL (HRL, DDHRL, DDDQN, and SARSA)
outperformed the heuristic methods (FIFO and SSO) in almost all instances, indicating the
effectiveness of the proposed scheduling rules in terms of the two investigated objectives,
whereas hierarchical reinforcement learning (HRL and DDHRL) outperformed traditional
RL (DDDQN and SARSA) and the metaheuristic method (GA), which confirms the necessity
and effectiveness of using a single agent with a two-layer hierarchical policy. Additionally,
the proposed HRL algorithm was superior to DDHRL, which demonstrates the superiority
of the dueling architecture in low-level policy.

Machines 2022, 10, x FOR PEER REVIEW 19 of 25

subsequent operation (SSO)). An instance was generated for each type of MODFJSP, and

the HRL and the other algorithms were independently repeated 20 times in each instance.

The GD, Δ, and IGD values of the Pareto-optimal fronts obtained using comparative meth-

ods are as available in the Supplementary Materials.

In this study, the only difference between the DDHRL method and the proposed HRL

algorithm was the network structure of the low-level actuator. The DDDQN without 𝑔𝑡

was the same as the low-level actuator of the proposed HRL algorithm. In SARSA, nine

discrete states are designed using a neural network with a self-organizing mapping layer

(SOM) from [18,38]. A 𝑄-table with 9 × 10 𝑄-values was maintained. The immediate re-

ward function of the single agent, DDDQN and SARSA, was calculated using Equation

(30).

In the GA [33], the method in [39,40] was used for fast nondominated ordering. The

fitness calculation, the selection, crossover, mutation operations, and the hyperparameter

settings were from [18].

FIFO chose the next job operation with the earliest arriving time, and SSO chose the

next job operation with the shortest subsequent processing time from the unfinished jobs.

The selection of processing machine for both was determined using Equation (14).

5.5.1. Effectiveness Analysis

To show the effectiveness of the proposed HRL algorithm, the average values of the

three metrics for all the algorithms compared in all test instances were calculated, as

shown in Figure 5. As can be seen in Figure 5, the proposed HRL algorithm outperformed

the competing methods. It can also be seen that RL (HRL, DDHRL, DDDQN, and SARSA)

outperformed the heuristic methods (FIFO and SSO) in almost all instances, indicating the

effectiveness of the proposed scheduling rules in terms of the two investigated objectives,

whereas hierarchical reinforcement learning (HRL and DDHRL) outperformed traditional

RL (DDDQN and SARSA) and the metaheuristic method (GA), which confirms the neces-

sity and effectiveness of using a single agent with a two-layer hierarchical policy. Addi-

tionally, the proposed HRL algorithm was superior to DDHRL, which demonstrates the

superiority of the dueling architecture in low-level policy.

(a) GD

Figure 5. Cont.

Machines 2022, 10, 1195 20 of 25Machines 2022, 10, x FOR PEER REVIEW 20 of 25

(b) Spread

(c) IGD

Figure 5. Average values of the algorithm metrics compared for all test instances.

5.5.2. Generalization Analysis

To verify the generalizability of HRL, the winning rate was defined in terms of each

metric, which was calculated in line with [18], as shown in Figure 6. For the convergence

metric GD, HRL had the best results in 24 kinds of instances, and the winning rate was

about 89%. For the diversity metric Δ, HRL had the smallest value for 20 scheduling prob-

lems, and the winning rate was about 74%. For the comprehensive metric IGD, HRL had

the minimum value for 20 instances, with a winning rate of about 74%. The proposed HRL

algorithm had the highest winning rate of the three metrics and generally performed at a

level that was superior to the compared algorithms.

Figure 6. Winning rate of HRL and other compared algorithms.

Figure 5. Average values of the algorithm metrics compared for all test instances.

5.5.2. Generalization Analysis

To verify the generalizability of HRL, the winning rate was defined in terms of each
metric, which was calculated in line with [18], as shown in Figure 6. For the convergence
metric GD, HRL had the best results in 24 kinds of instances, and the winning rate was
about 89%. For the diversity metric ∆, HRL had the smallest value for 20 scheduling
problems, and the winning rate was about 74%. For the comprehensive metric IGD, HRL
had the minimum value for 20 instances, with a winning rate of about 74%. The proposed
HRL algorithm had the highest winning rate of the three metrics and generally performed
at a level that was superior to the compared algorithms.

Machines 2022, 10, x FOR PEER REVIEW 20 of 25

(b) Spread

(c) IGD

Figure 5. Average values of the algorithm metrics compared for all test instances.

5.5.2. Generalization Analysis

To verify the generalizability of HRL, the winning rate was defined in terms of each

metric, which was calculated in line with [18], as shown in Figure 6. For the convergence

metric GD, HRL had the best results in 24 kinds of instances, and the winning rate was

about 89%. For the diversity metric Δ, HRL had the smallest value for 20 scheduling prob-

lems, and the winning rate was about 74%. For the comprehensive metric IGD, HRL had

the minimum value for 20 instances, with a winning rate of about 74%. The proposed HRL

algorithm had the highest winning rate of the three metrics and generally performed at a

level that was superior to the compared algorithms.

Figure 6. Winning rate of HRL and other compared algorithms. Figure 6. Winning rate of HRL and other compared algorithms.

Machines 2022, 10, 1195 21 of 25

5.5.3. Efficiency Analysis

To show the efficiency of HRL, the average CPU times of all the algorithms that
were used for comparison in all test instances were calculated and are available in the
Supplementary Materials. Because of the number of jobs greatly expanding the size of
the scheduling solution space, average CPU times were grouped by the number of newly
added jobs, as shown in Table 5.

Table 5. CPU times (s) for comparative methods and their average values.

nadd HRL DDHRL DDDQN SARSA GA FIFO SSO

10 7.26 × 100 7.72 × 100 5.09 × 100 4.88 × 100 2.01 × 102 3.92 × 10−2 4.65 × 10−2

50 2.89 × 101 3.21 × 101 1.84 × 101 1.75 × 101 1.09 × 103 2.70 × 10−1 3.53 × 10−1

100 6.11 × 101 6.38 × 101 3.34 × 101 3.25 × 101 2.58 × 103 4.82 × 10−1 8.33 × 10−1

Ave 3.24 × 101 3.45× 101 1.90 × 101 1.83 × 101 1.29 × 103 2.64 × 10−1 4.11 × 10−1

As can be seen in Table 5, FIFO and SSO are highly efficient, but they have poor
solution quality and generalization, as shown above. GA also does not exhibit real-time
characteristics. In addition, the time complexity of hierarchical reinforcement learning
(HRL and DDHRL) and traditional RL (DDDQN and SARSA) is roughly the same, but the
proposed HRL algorithm outperforms traditional RL significantly in terms of effectiveness
and generalization.

Furthermore, considering the number of jobs in the test instances [34], the average
scheduling time of HRL is 0.66 s on a PC with low specifications, which could reach the
millisecond level or even less with the support of greater computing power. Therefore,
HRL demonstrates the ability to optimize scheduling in real time in smart workshops.

It can be seen that, on the whole, the HRL algorithm proposed in this study clearly
outperformed the other six methods in terms of effectiveness and generalization and has
real-time characteristics. HRL solves the multi-objective scheduling problem as a semi-
MDP, where the high-level policy determines the temporary objective according to the
production state and the low-level policy determines the ongoing action based on the state
and temporary objective. Therefore, hierarchical deep neural networks trained by HRL
have multi-objective learning and decision-making capabilities at the rescheduling point
and are more effective, robust, generalized, and efficient.

5.6. Extended Application of HRL

To further verify the effectiveness and generalization of HRL, the trained agent was
applied to scheduling instances related to gear production with larger production con-
figurations: new planetary gear, disk gear, and shaft gear arrivals of 135, 330, and 500,
respectively; Eave set to 10, 30, and 50, respectively; 11 flexible machining machines; and
the rest of the parameters the same as in training. Each comparison method in Section 5.5
was independently repeated 20 times on each extended instance. The metric values of the
Pareto front obtained by each compared method are shown in Table 6. The Pareto fronts of
the HRL algorithm and other algorithms for the three real instances are given in Figure 7,
where the yellow line in the enlarged figure represents the real Pareto optimal front P.

As can be seen in Table 6, HRL had the best results for all three metrics in the three
extended instances. Figure 7 shows that the set of nondominated solutions (A) provided
by the HRL algorithm was equal to the true Pareto front P for the instance with 135 new
planetary gear arrivals, close to the nadd maximum (100) in the training set. One Pareto
solution was not found by the HRL algorithm in the instance with 330 new disk gear
arrivals, whereas two Pareto solutions were not found and one nondominated solution
from the proposed method was not in P for the instance with 500 shaft gear arrivals.

Machines 2022, 10, 1195 22 of 25

Table 6. Metric values for the Pareto-optimal fronts obtained by comparative methods, with the best
results in bold.

Metric nadd HRL DDHRL DDDQN SARSA GA FIFO SSO

GD
135 0.00 × 100 9.81 × 101 3.23 × 102 4.38 × 102 3.31 × 102 6.82 × 104 2.71 × 104

330 0.00 × 100 8.72 × 102 1.58 × 103 2.41 × 103 2.27 × 103 4.17 × 105 1.73 × 105

500 2.32 × 102 1.66 × 103 3.42 × 103 4.08 × 103 2.13 × 103 9.25 × 105 4.36 × 105

Spread
135 1.97 × 10−1 2.46 × 10−1 4.28 × 10−1 4.51 × 10−1 5.65 × 10−1 1.00 × 100 1.00 × 100

330 1.87 × 10−1 2.75 × 10−1 3.08 × 10−1 2.99 × 10−1 3.32 × 10−1 1.00 × 100 1.00 × 100

500 9.80 × 10−2 1.04 × 10−1 4.38 × 10−1 7.41 × 10−1 3.24 × 10−1 1.00 × 100 1.00 × 100

IGD
135 0.00 × 100 4.27 × 102 7.08 × 102 8.20 × 102 5.28 × 102 1.56 × 105 6.37 × 104

330 1.01 × 103 1.24 × 103 3.07 × 103 3.10 × 103 2.03 × 103 9.49 × 105 4.02 × 105

500 2.07 × 103 2.66 × 103 4.00 × 103 6.33 × 103 2.75 × 103 1.94 × 106 9.26 × 105

Machines 2022, 10, x FOR PEER REVIEW 22 of 25

Table 6. Metric values for the Pareto-optimal fronts obtained by comparative methods, with the best

results in bold.

Metric 𝒏𝒂𝒅𝒅 HRL DDHRL DDDQN SARSA GA FIFO SSO

GD

135 0.00 × 100 9.81 × 101 3.23 × 102 4.38 × 102 3.31 × 102 6.82 × 104 2.71 × 104

330 0.00 × 100 8.72 × 102 1.58 × 103 2.41 × 103 2.27 × 103 4.17 × 105 1.73 × 105

500 2.32 × 102 1.66 × 103 3.42 × 103 4.08 × 103 2.13 × 103 9.25 × 105 4.36 × 105

Spread

135 1.97 × 10−1 2.46 × 10−1 4.28 × 10−1 4.51 × 10−1 5.65 × 10−1 1.00 × 100 1.00 × 100

330 1.87 × 10−1 2.75 × 10−1 3.08 × 10−1 2.99 × 10−1 3.32 × 10−1 1.00 × 100 1.00 × 100

500 9.80 × 10−2 1.04 × 10−1 4.38 × 10−1 7.41 × 10−1 3.24 × 10−1 1.00 × 100 1.00 × 100

IGD

135 0.00 × 100 4.27 × 102 7.08 × 102 8.20 × 102 5.28 × 102 1.56 × 105 6.37 × 104

330 1.01 × 103 1.24 × 103 3.07 × 103 3.10 × 103 2.03 × 103 9.49 × 105 4.02 × 105

500 2.07 × 103 2.66 × 103 4.00 × 103 6.33 × 103 2.75 × 103 1.94 × 106 9.26 × 105

It can be seen that, on the whole, the greater the difference between the extended

instances and the original instances, the greater the degradation in HRL performance.

However, the overall performance of HRL did not significantly deteriorate, and it outper-

formed the six other methods in terms of effectiveness and generalization in extended

large instances.

(a) 𝑛𝑎𝑑𝑑 = 135

(b) 𝑛𝑎𝑑𝑑 = 330

Figure 7. Cont.

Machines 2022, 10, 1195 23 of 25Machines 2022, 10, x FOR PEER REVIEW 23 of 25

(c) 𝑛𝑎𝑑𝑑 = 500

Figure 7. The Pareto fronts obtained by the comparative methods for extended instances.

6. Conclusions

This study introduced an HRL method for solving the multi-objective dynamic FJSP

with random job arrival in a smart machine tool processing workshop to satisfy the dual

objectives of minimizing penalties for earliness and tardiness and total machine load. On

the basis of establishing a mathematical model, a combined DDQN and DDDQN two-

hierarchy architecture for the MODFJSP was constructed, and the continuous-state fea-

tures, scheduling rules with large action spaces, and external and internal rewards were

accordingly designed. Moreover, the decision-maker’s preference for production targets

was integrated into the HRL algorithm as a state feature by human–computer interaction.

Thus, by adaptively learning the feasible goal and efficiently exploring the dispatching

rule space, the HRL-based agent not only conducts the scheduling in real time but also

achieves a satisfactory compromise considering different objectives in the long term.

Numerical experiments were conducted on a large set of production instances to ver-

ify the effectiveness and generalization of the proposed HRL algorithm in practical appli-

cations of gear production. We showed that our approach with the proposed HRL algo-

rithm produced state-of-the-art results in 24 (on convergence) and 20 (on both diversity

and comprehensiveness) of the 27 test instances compared to DDHRL, DDDQNs,

SARSAs, GAs, FIFO, and SSO, with no adjustment to the architecture or hyperparameters.

Real-time optimization of multi-objective DFJSPs through HRL intelligently matches

the dispersed resources of the smart machine tool processing workshop and contributes

to the implementation of an adaptive and flexible scheduling system, which meets the

intellectualization and green needs of intelligent manufacturing. This work fills a research

gap regarding solutions to MODFJSPs with random job arrival that minimize total penal-

ties for earliness and tardiness as well as total machine load by using HRL. Moreover, the

human–machine interaction feature integrates subjective decision information into the al-

gorithmic optimization process to achieve a satisfactory compromise considering multiple

objectives, which solves a key problem in multi-objective optimization.

In future work, the significance to production of real-time scheduling for flexible ma-

chining of machine tools in a smart workshop can be further improved through investi-

gation of additional dynamic events and production objectives. Meanwhile, the number

of actions (equal to the rule number of selecting an operation multiplied by the rule num-

ber of selecting a machine) should be increased for a more general agent. Such large action

spaces are difficult to efficiently explore and, thus, successfully training DQN-like net-

works in this context is likely intractable [26]. Consequently, we will apply state-of-the-

art off-policy methods, such as use of a deep deterministic policy gradient (DDPG) [26,41]

and proximal on-policy optimization [42,43], for solving MODFJSPs.

Figure 7. The Pareto fronts obtained by the comparative methods for extended instances.

It can be seen that, on the whole, the greater the difference between the extended
instances and the original instances, the greater the degradation in HRL performance.
However, the overall performance of HRL did not significantly deteriorate, and it outper-
formed the six other methods in terms of effectiveness and generalization in extended
large instances.

6. Conclusions

This study introduced an HRL method for solving the multi-objective dynamic FJSP
with random job arrival in a smart machine tool processing workshop to satisfy the dual
objectives of minimizing penalties for earliness and tardiness and total machine load.
On the basis of establishing a mathematical model, a combined DDQN and DDDQN
two-hierarchy architecture for the MODFJSP was constructed, and the continuous-state
features, scheduling rules with large action spaces, and external and internal rewards were
accordingly designed. Moreover, the decision-maker’s preference for production targets
was integrated into the HRL algorithm as a state feature by human–computer interaction.
Thus, by adaptively learning the feasible goal and efficiently exploring the dispatching rule
space, the HRL-based agent not only conducts the scheduling in real time but also achieves
a satisfactory compromise considering different objectives in the long term.

Numerical experiments were conducted on a large set of production instances to
verify the effectiveness and generalization of the proposed HRL algorithm in practical
applications of gear production. We showed that our approach with the proposed HRL
algorithm produced state-of-the-art results in 24 (on convergence) and 20 (on both diversity
and comprehensiveness) of the 27 test instances compared to DDHRL, DDDQNs, SARSAs,
GAs, FIFO, and SSO, with no adjustment to the architecture or hyperparameters.

Real-time optimization of multi-objective DFJSPs through HRL intelligently matches
the dispersed resources of the smart machine tool processing workshop and contributes
to the implementation of an adaptive and flexible scheduling system, which meets the
intellectualization and green needs of intelligent manufacturing. This work fills a research
gap regarding solutions to MODFJSPs with random job arrival that minimize total penalties
for earliness and tardiness as well as total machine load by using HRL. Moreover, the
human–machine interaction feature integrates subjective decision information into the
algorithmic optimization process to achieve a satisfactory compromise considering multiple
objectives, which solves a key problem in multi-objective optimization.

In future work, the significance to production of real-time scheduling for flexible
machining of machine tools in a smart workshop can be further improved through investi-

Machines 2022, 10, 1195 24 of 25

gation of additional dynamic events and production objectives. Meanwhile, the number of
actions (equal to the rule number of selecting an operation multiplied by the rule number of
selecting a machine) should be increased for a more general agent. Such large action spaces
are difficult to efficiently explore and, thus, successfully training DQN-like networks in
this context is likely intractable [26]. Consequently, we will apply state-of-the-art off-policy
methods, such as use of a deep deterministic policy gradient (DDPG) [26,41] and proximal
on-policy optimization [42,43], for solving MODFJSPs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/machines10121195/s1, Video S1: The HRL for MODFJSP training
process, Video S2: Usage time comparison.

Author Contributions: J.C.: Conceptualization, Methodology, Software, Formal analysis. D.Y.: Super-
vision, Project administration. Z.Z.: Visualization, Investigation. W.H.: Resources, Writing—original
draft. L.Z.: Writing—Reviewing and Editing. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Science and Technology Special Project of China
under Grant [2018ZX04032002].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zheng, P.; Xu, X.; Chen, C.-H. A data-driven cyber-physical approach for personalised smart, connected product co-development

in a cloud-based environment. J. Intell. Manuf. 2020, 31, 3–18. [CrossRef]
2. Xu, X. Machine Tool 4.0 for the new era of manufacturing. Int. J. Adv. Manuf. Technol. 2017, 92, 1893–1900. [CrossRef]
3. ANSI/ISA-95.00.02-2018; Enterprise-Control System Integration-Part 2: Objects and Attributes for Enterprise-Control System

Integration. ISA: Paris, France, 2018.
4. Tao, F.; Cheng, J.; Qi, Q. IIHub: An Industrial Internet-of-Things Hub toward Smart Manufacturing Based on Cyber-Physical

System. IEEE Trans. Ind. Inform. 2018, 14, 2271–2280. [CrossRef]
5. Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big

data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [CrossRef]
6. GB/T 37393-2019; Digital Factory-General Technical Requirements. Standardization Administration of the P.R.C.: Beijing,

China, 2019.
7. GB/T 41255-2022; Smart Factory-General Technical Requirements. Standardization Administration of the P.R.C.: Beijing,

China, 2022.
8. Garey, M.R.; Johnson, D.S.; Sethi, R. The Complexity of Flowshop and Jobshop Scheduling. Math. Oper. Res. 1976, 1, 97–196.

[CrossRef]
9. Gao, K.; Yang, F.J.; Zhou, M.C.; Pan, Q.-K.; Suganthan, P.N. Flexible Job-Shop Rescheduling for New Job Insertion by Using

Discrete Jaya Algorithm. IEEE Trans. Cybern. 2019, 49, 1944–1995. [CrossRef]
10. Wu, X.; Li, J.; Shen, X.; Zhao, N. NSGA-III for solving dynamic flexible job shop scheduling problem considering deterioration

effect. IET Collab. Intell. Manuf. 2020, 2, 22–33. [CrossRef]
11. Tang, D.; Dai, M.; Salido, M.A.; Giret, A. Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle

swarm optimization. Comput. Ind. 2016, 81, 82–95. [CrossRef]
12. Zhang, W.; Dietterich, T.G. A reinforcement learning approach to job-shop scheduling. In Proceedings of the 14th International

Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; Morgan Kaufmann: San Francisco, CA,
USA, 1995; pp. 1114–1120.

13. Staddon, J.E.R. The dynamics of behavior: Review of Sutton and Barto: Reinforcement Learning: An Introduction (2nd ed.).
J. Exp. Anal. Behav. 2020, 113, 485–491. [CrossRef]

14. Luo, S.; Zhang, L.; Fan, Y. Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning. Comput. Ind.
Eng. 2021, 159, 107489. [CrossRef]

15. Nachum, O.; Gu, S.; Lee, H.; Sergey, L. Data-Efficient Hierarchical Reinforcement Learning. Adv. Neural Inf. Process. Syst. 2018,
31, 3303–3313. [CrossRef]

16. Li, A.C.; Florensa, C.; Clavera, I.; Abbeel, P. Sub-policy Adaptation for Hierarchical Reinforcement Learning. arXiv
2019, arXiv:1906.05862.

https://www.mdpi.com/article/10.3390/machines10121195/s1
https://www.mdpi.com/article/10.3390/machines10121195/s1
http://doi.org/10.1007/s10845-018-1430-y
http://doi.org/10.1007/s00170-017-0300-7
http://doi.org/10.1109/TII.2017.2759178
http://doi.org/10.1007/s00170-017-0233-1
http://doi.org/10.1287/moor.1.2.117
http://doi.org/10.1109/TCYB.2018.2817240
http://doi.org/10.1049/iet-cim.2019.0056
http://doi.org/10.1016/j.compind.2015.10.001
http://doi.org/10.1002/jeab.587
http://doi.org/10.1016/j.cie.2021.107489
http://doi.org/10.48550/arXiv.1805.08296

Machines 2022, 10, 1195 25 of 25

17. Rafati, J.; Noelle, D.C. Learning Representations in Model-Free Hierarchical Reinforcement Learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, Honolulu, HI, USA, 27–28 January 2019; Volume 33. [CrossRef]

18. Chang, J.; Yu, D.; Hu, Y.; He, W.; Yu, H. Deep Reinforcement Learning for Dynamic Flexible Job Shop Scheduling with Random
Job Arrival. Processes 2022, 10, 760. [CrossRef]

19. Fonseca-Reyna, Y.C.; Martinez, Y.; Rodríguez-Sánchez, E.; Méndez-Hernández, B.; Coto-Palacio, L.J. An Improvement of
Reinforcement Learning Approach to Permutational Flow Shop Scheduling Problem. In Proceedings of the 13th International
Conference on Operations Research (ICOR 2018), Beijing, China, 7–9 July 2018.

20. He, Z.; Tran, K.P.; Thomassey, S.; Zeng, X.; Xu, J.; Yi, C. Multi-objective optimization of the textile manufacturing process using
deep-Q-network based multi-agent reinforcement learning. J. Manuf. Syst. 2021, 62, 939–949. [CrossRef]

21. Shahrabi, J.; Adibi, M.A.; Mahootchi, M. A reinforcement learning approach to parameter estimation in dynamic job shop
scheduling. Comput. Ind. Eng. 2017, 110, 75–82. [CrossRef]

22. Kuhnle, A.; Schäfer, L.; Stricker, N.; Lanza, G. Design, Implementation and Evaluation of Reinforcement Learning for an Adaptive
Order Dispatching in Job Shop Manufacturing Systems. Procedia CIRP 2019, 81, 234–239. [CrossRef]

23. Wang, H.; Sarker, B.R.; Li, J.; Li, J. Adaptive scheduling for assembly job shop with uncertain assembly times based on dual
Q-learning. Int. J. Prod. Res. 2020, 59, 5867–5883. [CrossRef]

24. Bouazza, W.; Sallez, Y.; Beldjilali, B. A distributed approach solving partially flexible job-shop scheduling problem with a
Q-learning effect. IFAC PapersOnLine 2017, 50, 15890–15895. [CrossRef]

25. Johnson, D.; Chen, G.; Lu, Y. Multi-Agent Reinforcement Learning for Real-Time Dynamic Production Scheduling in a Robot
Assembly Cell. IEEE Robot. Autom. Lett. 2022, 7, 7684–7691. [CrossRef]

26. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

27. Wang, Z.; de Freitas, N.; Lanctot, M. Dueling Network Architectures for Deep Reinforcement Learning. arXiv
2015, arXiv:1511.06581.

28. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M.A. Playing Atari with Deep
Reinforcement Learning. arXiv 2013, arXiv:1312.5602.

29. Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-learning. arXiv 2015, arXiv:1509.06461.
[CrossRef]

30. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
31. Panwalkar, S.S.; Wafik, I. A Survey of Scheduling Rules. Operat. Res. 1977, 25, 45–61. [CrossRef]
32. Xiao, P.; Zhang, C.; Meng, L.; Hong, H.; Dai, W. Non-permutation Flow Shop Scheduling Problem Based on Deep Reinforcement

Learning. Comput. Integ. Manuf. Syst. 2021, 27, 192–205. [CrossRef]
33. Florensa, C.; Held, D.; Geng, X.; Abbeel, P. Automatic Goal Generation for Reinforcement Learning Agents. arXiv

2017, arXiv:1705.06366.
34. Yang, S.; Xu, Z.; Wang, J. Intelligent Decision-Making of Scheduling for Dynamic Permutation Flowshop via Deep Reinforcement

Learning. Sensors 2021, 21, 1019. [CrossRef]
35. Zitzler, E.; Deb, K.; Thiele, L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evol. Comput. 2000,

8, 173–195. [CrossRef]
36. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans.

Evol. Comput. 2002, 6, 182–197. [CrossRef]
37. Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE

Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]
38. Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. J.

2020, 91, 106208. [CrossRef]
39. Jing, Z.; Wang, Z.H.; Gao, Q. Hybrid NSGA-II Algorithm for Solving Multi-objective Flexible Job-shop Scheduling Problem.

Modul. Mach. Tool Autom. Manuf. Tech. 2019, 7, 143–145. [CrossRef]
40. Chang, J.; Yu, D. Self-learning Genetic Algorithm for Multi-objective Flexible Job-shop Scheduling Problem. J. Chin. Comput. Syst.

2021, in press.
41. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. arXiv

2018, arXiv:1802.09477.
42. Chen, T.; Liu, J.-Q.; Li, H.; Wang, S.-R.; Niu, W.-J.; Tong, E.-D.; Chang, L.; Chen, Q.A.; Li, G. Robustness Assessment of

Asynchronous Advantage Actor—Critic Based on Dynamic Skewness and Sparseness Computation: A Parallel Computing View.
J. Comput. Sci. Technol. 2021, 36, 1002–1021. [CrossRef]

43. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for
Deep Reinforcement Learning. arXiv 2016, arXiv:1602.01783.

http://doi.org/10.1609/aaai.v33i01.330110009
http://doi.org/10.3390/pr10040760
http://doi.org/10.1016/j.jmsy.2021.03.017
http://doi.org/10.1016/j.cie.2017.05.026
http://doi.org/10.1016/j.procir.2019.03.041
http://doi.org/10.1080/00207543.2020.1794075
http://doi.org/10.1016/j.ifacol.2017.08.2354
http://doi.org/10.1109/LRA.2022.3184795
http://doi.org/10.1609/aaai.v30i1.10295
http://doi.org/10.1287/opre.25.1.45
http://doi.org/10.13196/j.cims.2021.01.018
http://doi.org/10.3390/s21031019
http://doi.org/10.1162/106365600568202
http://doi.org/10.1109/4235.996017
http://doi.org/10.1109/4235.797969
http://doi.org/10.1016/j.asoc.2020.106208
http://doi.org/10.13462/j.cnki.mmtamt.2019.07.035
http://doi.org/10.1007/s11390-021-1217-z

	Introduction
	Related Works
	Problem Formulation
	Problem Description
	Mathematical Model

	Proposed HRL
	Background of DDQNs and DDDQNs
	Model Architecture
	State Features
	Action Set
	Reward Mechanism
	High-Level Goals
	Extrinsic Reward rtg
	Intrinsic Reward rtm

	Action Selection Strategy
	Procedure of the HRL Algorithm

	Numerical Experiments
	Parameter Settings
	Parameter Settings of Problem Instances
	Hyperparameter Settings

	Performance Metrics
	Comparison of Learning Rates between the DDQN and DDDQN
	Comparisons of the HRL Algorithm with the Proposed Composite Dispatching Rules
	Comparison of HRL to Other Methods
	Effectiveness Analysis
	Generalization Analysis
	Efficiency Analysis

	Extended Application of HRL

	Conclusions
	References

