
Citation: Jeon, S.-W.; Lee, D.;

Oh, S.-C.; Park, K.-T.; Noh, S.-D.;

Arinez, J. Design and Implementation

of Simulation-Based Scheduling

System with Reinforcement Learning

for Re-Entrant Production Lines.

Machines 2022, 10, 1169. https://

doi.org/10.3390/

machines10121169

Academic Editor: Raul D. S.

G. Campilho

Received: 26 October 2022

Accepted: 5 December 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Design and Implementation of Simulation-Based Scheduling
System with Reinforcement Learning for Re-Entrant
Production Lines
Seung-Woo Jeon 1, Donggun Lee 1 , Seog-Chan Oh 2, Kyu-Tae Park 1 , Sang-Do Noh 1,* and Jorge Arinez 2

1 Department of Industrial Engineering, Sungkyunkwan University, Suwon-si 16417, Republic of Korea
2 General Motors Research and Development, 30500 Mound Road, Warren, MI 48090, USA
* Correspondence: sdnoh@skku.edu; Tel.: +82-31-290-7603

Abstract: Recently, manufacturing companies have been making efforts to increase resource uti-
lization while ensuring the flexibility of production lines to respond to rapidly changing market
environments and customer demand. In the high-tech manufacturing industry, which requires
expensive manufacturing facilities and is capital-intensive, re-entrant production lines are used for
efficient production with limited resources. In such a production system, a part visits a specific
station repeatedly during the production period. However, a re-entrant production line requires
an appropriate scheduling system because other parts with different processing requirements are
processed at the same station. In this study, a re-entrant production line was modeled as a manufac-
turing environment via simulation, and an adaptive scheduling system was developed to improve its
operational performance by applying deep reinforcement learning (DRL). To achieve this, a software
architecture for integrating DRL with the simulation was developed and the states, actions, and
rewards of the reinforcement learning (RL) agent were defined. Moreover, a discrete-event simulation
control module was designed to collect data from the simulation model and evaluate the policy
network trained via DRL. Finally, the applicability and effectiveness of the developed scheduling
system were verified by conducting experiments on a hypothetical re-entrant production line.

Keywords: re-entrant production line; production operation scheduling; deep reinforcement learning;
discrete-event simulation

1. Introduction

Responding to rapidly changing market environments and customer demands is
becoming increasingly important [1–3]. In particular, optimal production line operation is
required to increase the variety of products, owing to the transition of product production
systems from small-quantity batch production to personalized production [4]. Therefore,
manufacturing companies are making efforts to increase productivity while ensuring
the flexibility of their production lines [5,6].

In particular, in high-tech manufacturing industries such as those producing semi-
conductors, liquid crystal displays, and printed circuit boards, which require expensive
manufacturing facilities and are capital-intensive, re-entrant production lines are used to
achieve efficient production with limited resources [7–9]. Although all industries do not
have the same levels of requirements for re-entrant production lines, some manufacturing
companies have already adopted highly flexible production lines. For example, major
companies in the automotive industry such as Tesla, Volkswagen, and General Motors
have replaced traditional conveyor systems with automated guided vehicle (AGV) sys-
tems in some electric battery vehicle production lines. This demonstrates their aim to
utilize re-routing-capable and highly flexible production lines that can be reconfigured
to re-entrant production lines. The defining characteristic of a re-entrant production line
is that a single job visits a specific station more than once during the processing period,

Machines 2022, 10, 1169. https://doi.org/10.3390/machines10121169 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10121169
https://doi.org/10.3390/machines10121169
https://doi.org/10.3390/machines10121169
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-5767-5792
https://orcid.org/0000-0002-6983-4834
https://orcid.org/0000-0002-5610-5560
https://doi.org/10.3390/machines10121169
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10121169?type=check_update&version=5

Machines 2022, 10, 1169 2 of 17

including cases where rework is required owing to quality problems [10]. However, in
a re-entrant production line, various parts with different processing requirements need
to be processed at the same station and predicting the arrival of a product is difficult [11].
Conventionally, re-entry production systems on actual shop floors are operated using
a single priority-based dispatching rule, owing to the complexity of a re-entrant production
line [12,13].

Although most existing manufacturing systems, including re-entrant production lines,
operate at near-optimal productivity under steady conditions, maintaining optimal produc-
tivity in an actual production environment is generally difficult because of unpredictable
conditions. Example conditions are new orders, demand volume changes, re-scheduling,
and station failures. These unpredictable conditions account for a decrease of 80% in
the overall station efficiency and a loss of 50% in resource utilization [14,15]. Thus, if
a dynamic manufacturing environment relies solely on a single priority-based dispatching
rule, adequate responses to dynamic conditions are impossible and productivity is likely to
decrease. Specifically, an adaptive scheduling system is required to respond to unexpected
events in a timely manner and implement a complex system such as a re-entrant produc-
tion line. It maximizes productivity by reducing the time and cost requirements related to
unexpected events and increases overall resource utilization [16].

One simple example of a re-entrant production line is a job that is re-added to the pro-
duction line for quality retreatment. Specifically, if there are m machines and n jobs, such
a re-entrant production line processes the n jobs more than once in one machine. Two types
of re-entrant production lines were extensively studied: re-entrant flow shops (RFSs) and
re-entrant job shops (RJSs). The difference between RFSs and RJSs is related to the oper-
ation sequence in the aforementioned premise. A shop is defined as an RFS when a part
is produced as a finished product in a certain sequence using all machines, whereas it is
defined as an RJS when a finished product is produced by different sequences for all jobs.
The conceptual diagram of a re-entrant production line is shown in Figure 1 [17].

Figure 1. Re-entrant production line concept.

Studies have attempted to solve various types of re-entrant production line scheduling
problems using mathematical, heuristic, and metaheuristic techniques. Narahari and
Khan [18] (1996) used margin valuation adjustment (MVA) to compare the performance of
priority-based dispatching rules in operating a re-entrant production line. Park et al. [19]
(2002) analyzed the performance of MVA in a re-entrant production line composed of
single-task and multipurpose machines and compared it to those of various priority-based
dispatching rules. Choi and Ko [20] (2009) solved the problem of late deliveries using
branches and bounds in a re-entrant production line with two facilities and evaluated
the system performance via simulation. However, traditional mathematical modeling

Machines 2022, 10, 1169 3 of 17

techniques cannot model the large and complex production lines of actual manufacturing
environments while reflecting their dynamic characteristics.

Chen et al. [12] (2004) proposed a dynamic state-dependent dispatching (DSDD)
heuristic method and applied it based on the state of the re-entrant production line by
combining and modifying the conventional dispatching rules. In their study, six single
dispatching rules were compared with the proposed DSDD by selecting lead time as
the performance index. Zhang et al. [13] (2009) applied the dispatching rules to bottleneck
processes by proposing a dynamic bottleneck dispatching policy that integrates simulation
and response surface methodology. Although heuristic dispatching rules are easy to
implement in a complex re-entrant production line, their application to an actual production
line remains difficult because experiments are conducted on a simple model that does not
consider unexpected events of production.

Furthermore, several metaheuristic approaches were proposed. Rifai et al. [21] (2016)
proposed an improved genetic algorithm to solve the re-entrant flexible manufacturing
system (FMS) scheduling problem. The makespan, average flow time, and delay were
reduced by determining the optimal operation sequence and route using the proposed
methodology. Chen et al. [22] (2008) solved the re-entrant flow process problem without job
priority by applying hybrid tabu search (HTS). Nawaz et al. [23] (1983) solved the schedul-
ing problem of a re-entrant production line using HTS and compared its solution with
those of integer programming and general tabu search by dividing the problem by size.
Jain et al. [24] (2003) performed simulated annealing of the scheduling problem of
a re-entrant wafer-manufacturing process and compared its solution with those of the con-
ventional dispatching rules based on the average cycle time and job delay.

Many studies using mathematical, heuristic, and metaheuristic techniques have at-
tempted to solve the re-entrant production line scheduling problem. However, none were
able to model the complexity and dynamic characteristics of real-world problems while
ensuring a short computation time.

Recently, the use of reinforcement learning (RL) for scheduling has been gaining
prominence because of the demonstrated ability of RL to achieve a short computation time
and address complex optimization problems. RL is a machine-learning-based approach
that involves defining a policy as a series of actions in which one or multiple agents explore
an environment, identify the current state, and maximize the accumulation of rewards.
A reward is a scalar feedback signal that indicates the performance of an agent in each
state of the environment, using which the success of its action is evaluated. An agent is
trained to maximize the total sum of the rewards because such interactions are repeated [25].
The Markov decision process (MDP) is used as an environment for RL. The MDP involves
a series of processes in which the concepts of rewards and actions are added to the proba-
bilistic state-changing process as time progresses [26].

In tabular RL methods, agents are trained by storing and updating values of all states
in the form of a table in an environment represented by the MDP. However, this method
has limitations in representation as it requires a longer time to learn when the problem
becomes larger and more complex. Deep RL (DRL) was developed to solve this problem.
While RL considers the problem of agents learning and making decisions by trial and error,
DRL incorporates deep learning into the solution, allowing agents to make decisions from
unstructured input data and approximate the state values as nonlinear functions using
a deep neural network, which can efficiently learn an environment of any type or size [27].
Once a DRL model is trained, it can take the optimal action at each decision-making point
and respond to dynamic scenarios in real-time. In the manufacturing field, as the design and
operation of manufacturing systems and production lines become more complex, a faster
and more accurate decision-making system is required. Such improved performance and
features make it possible to apply DRL in various ways in the manufacturing field [27–32].

A deep Q-network (DQN) is a value-function-based DRL algorithm. Waschneck et al. [28]
(2018) trained multiple agents to select the optimal dispatching rule using a DQN to maxi-
mize rewards in a shop. Shiue et al. [29] (2018) solved a DRL-based real-time scheduling

Machines 2022, 10, 1169 4 of 17

problem to respond to changes in a dynamic shop environment. Hu et al. [30] (2020)
applied DQN to the scheduling problem of an FMS modeled by Petri net and confirmed
the effectiveness of DRL compared with a heuristic method. Luo [14] (2020) used the dou-
ble DQN (DDQN) algorithm to respond to a continuous production state and select the
most suitable dispatching rule at the time of schedule change. Stricker et al. [31] (2018)
applied a DQN to manufacturing systems in the semiconductor industry. However, most
previous studies using DRL have a common limitation—they used deterministic mathemat-
ical models to model the learning environment. Wang and Chatwin [32] (2005) identified
the following problems that arise when using deterministic mathematical approaches for
modeling complex manufacturing systems:

• Mathematical models may be impractical because the probabilistic elements of com-
plex manufacturing systems cannot be expressed accurately;

• Mathematical models may be invalid because theoretical modeling of complex dy-
namic systems requires excessive simplification;

• Mathematical models frequently generate unrealistic solutions in system optimization
because they are based on oversimplified assumptions.

Therefore, this study uses a manufacturing simulation tool to model a production
line and a scheduling problem, thereby allowing a more realistic stochastic learning en-
vironment for RL than mathematical approaches. Thus, the objective of this study is
to develop a DRL-integrated scheduling system and a training procedure that can im-
prove the operational performance of a complex re-entrant production line modeled using
a manufacturing simulation tool.

The remainder of this paper is organized as follows. In Section 2, the concept of a re-
entrant production line is briefly introduced and the re-entrant production line scheduling
problem is formalized. In Section 3, the software architecture for the manufacturing
simulation, the DRL-integrated scheduling system and its training process are described.
In addition, each component module in the proposed scheduling system is explained in
detail. Section 4 discusses the experimental verification of the effectiveness of the proposed
methodology. Finally, in Section 5, the conclusions of this study and the scope for future
research are presented. Abbreviations summarizes the notations used in this paper.

2. Problem Definition

The scheduling problem considered in this study deals with a re-entrant production
line. A schematic of the target re-entrant production line is shown in Figure 2. This re-
entrant production line is a conceptual production system that focuses on an automobile
assembly process in which a vehicle is assumed to be conveyed by a smart transporter,
such as an AGV. It is composed of a process line, bypass line, and branching point. At
the branching point, a decision is made to dispatch a vehicle in one direction between
two competing lines: process and bypass lines. Vehicles coming from the preceding process
line enter the re-entrant production line, in which they are assumed to have interchangeable
job sequences, i.e., each job required to build a vehicle has no priority and is independent
of the other jobs. The process line is composed of four assembly stations in parallel, and
vehicles are processed at each station. For the dispatching of vehicles, three priority-based
dispatching rules are considered. The first dispatching rule is first come, first served (FCFS),
in which vehicles are processed in the order of arrival at the branching point. The second
dispatching rule is the fewest number of operations remaining (FOPR), and it dispatches
vehicles in the order of the least number of remaining operations. The third rule is the most
number of operations remaining (MOPR), and it arranges vehicles in the order of the highest
number of remaining operations.

Machines 2022, 10, 1169 5 of 17

Figure 2. Schematic of re-entrant production line.

The shown system operates as follows. The branching point prioritizes and branches
out the vehicles coming from the preceding process or returning from the bypass line
according to the dispatching rule. One branch is the process line and the other is the bypass
line. If a vehicle is dispatched to enter the bypass line, it takes the bypass line and returns to
the branching point after a full empty trip, following which the vehicle is dispatched again.
However, if a vehicle is dispatched to the process line, it is assigned to one of the available
stations. When all required processes are finished, the vehicle moves to the post-processing
line. As described, the target re-entrant production system does not have a fixed in-line
configuration, instead, it has the form of an RJS, in which inputs are dispatched to either
the process or bypass line. Consequently, the re-entrant production line and its operation
rules lead to a challenging issue: reliance on a single priority-based dispatching rule, which
hampers the performance because of its myopic view and evaluation of only the current
state. Therefore, this study establishes an adaptive DRL-based dispatching method by
combining simple priority-based dispatching rules and choosing one rule as an action from
a specific state such that the accumulation of rewards is maximized. It should be noted
that this study uses makespan, denoted as Cmax, as the performance measure. Therefore,
the global cost function minimizes Cmax, and the reward for an action of the RL agent
is designed to be proportional to the goal of minimizing Cmax, which is discussed in
the next section.

3. Manufacturing Simulation and DRL-Integrated Scheduling System

In this section, a DRL-integrated scheduling system for manufacturing simulation
is proposed. The re-entrant production line, which provides a learning environment,
is modeled using a simulation tool. This study uses Siemens Plant Simulation 15.1 as
the simulation modeling tool. In addition, it uses Python 3.7 with Pytorch and C# to
implement the DRL modules and other classes for system module integration.

3.1. Manufacturing Simulation and DRL-Integrated Software Architecture

The proposed DRL-integrated software architecture is presented in Figure 3. It consists
of an RL module, a simulation control module, and a discrete simulation model of the un-
derlying manufacturing system (i.e., the re-entrant production line). The discrete simulation
model is controlled by a discrete-event simulation (DES) control module, which is triggered
by discrete events. From the overall system perspective, the RL module trains the agent us-
ing data received from the DES control module, updates the policy network, and transmits
the policy network parameters back to the DES control module. The DES control module
executes the simulation by reflecting the updated policy network in the simulation model
and evaluates the transmitted policy network. Once the simulation is completed, the data

Machines 2022, 10, 1169 6 of 17

required for training are collected and transmitted to the RL module again. This interaction
cycle is repeated until the termination condition is satisfied, following which the RL module
is finally trained to infer the optimal policy (i.e., the best dispatching rule) for each state of
the manufacturing environment. Concurrently, because the RL module learns the optimal
policy without formulating an MDP model explicitly, the proposed approach is classified
as a model-free approach.

Figure 3. Manufacturing simulation and DRL-integrated software architecture.

3.2. Training Process of DRL Using Manufacturing Simulation Tool

The proposed training process to apply DRL to the re-entrant production line is as
follows.

Step 1: The re-entrant production line is modeled using the simulation tool and be-
comes a learning environment. The simulation model contains information about the prod-
uct, process, plan, and resources of the manufacturing system. The information includes
the bill of materials, work order, production volume, manufacturing processes, driving
control parameters of the AGVs, and vehicle incoming sequences.

In addition, a deep neural network is constructed in the simulation model and contin-
ues to replace or upgrade its weight and bias data with the trained weights and bias data
from the RL module in the training procedure. The deep neural network in the simulation
model is a type of twin version of the policy network in the RL module. It selects actions
(i.e., dispatching rules) to take for each state to advance the simulation step. Based on
the throughput performance measured after one simulation run is completed, the perfor-
mance of the trained policy network is evaluated. A separate table is constructed and used
to update the learned weight and bias data in the deep neural network during the training
process. This is shown in Figure 4.

Figure 4. Configuration of simulation model.

Step 2: The state observed by the RL agent is defined as a vector variable that is suffi-
ciently large to represent the current state of the production line without major information
loss. The components of the state variable include the number of remaining parts per
job that are added to the re-entrant production line and the number of works in process
(WIPs) per process in the re-entrant production line. The data regarding the number of
remaining parts per job are collected with the dimension equaling the number of jobs, and

Machines 2022, 10, 1169 7 of 17

those regarding the number of WIPs per process in the production line are collected with
the dimension equaling the number of processes. An action of the agent is defined by
the selection of one dispatching rule among three candidate rules (i.e., FCFS, FOPR, and
MOPR). The components of the state variable are summarized in Table 1.

Table 1. Components of state.

Feature Description Dimension

Number of remaining parts per job Number of parts to be produced for each job in the production plan Nj

Number of WIPs by process Number of reworks by process in the production line Nj

Step 3: Makespan is used as the performance index of the target re-entrant production
line. However, the re-entrant production line has a dynamic manufacturing environment,
and thus, predicting the next state is uncertain. Therefore, fully understanding the effects of
the dispatching rules selected by the RL agent based on the makespan measured after all ve-
hicles are produced or one simulation run is completed is difficult. Moreover, the makespan
can be obtained after a long time delay; therefore, it is inappropriate for use as an immediate
reward for training the RL agent. Therefore, instead of using the makespan as it is, this
study uses the production completion time of each vehicle to create an immediate reward
for an action. In detail, the average of the production completion time intervals of vehicles
for a certain period after a dispatching rule is selected is used as the reward. Specifically,
the average production completion time interval is treated as a reward for each episode,
and the conceptual diagram of the reward measurement according to the dispatching rule
is shown in Figure 5. In the figure, t, s, a, and r denote the time epoch corresponding to
one episode, state, action (i.e., selection of the dispatching rule), and reward, respectively.

Figure 5. Concept of reward measurement.

Consequently, the reward of selecting an action at the current state becomes available
in the next state after a certain period denoted by ρ. For more clarity, the reward function,
ri, for calculating the average production completion time interval over a certain period is
expressed in Equation (1). Note that in the formula, a minus sign is used to drive the RL
agent to take an action to reduce the interval time. The relationship between Cmax and
the immediate reward is expressed in Equation (2).

ri = −
1

Nρ
i

K

∑
k=1

(
µik − µik−1

)
, i ≥ 0,

(
µi0 = 0

)
(1)

Cmax ∝
1

Nρ
i

K

∑
k=1

(
µik − µik−1

)
, i ≥ 0 (2)

Machines 2022, 10, 1169 8 of 17

where µik denotes the production completion time of the k-th product in the i-th period and
Nρ

i represents the number of products completely produced in the i-th period. Equation
(2) suggests that the vehicle production interval time is proportional to Cmax. Therefore,
if the RL agent wants to earn a higher reward, it needs to take an action that reduces
the interval time in accordance with the global cost function, which aims to minimize Cmax.
The definitions of the other notations are presented in Table 1.

Step 4: The trained policy network is evaluated using the simulation model. The agent
applies the epsilon-greedy (e-greedy) policy [33,34] when selecting an action to prevent
local optimization of the objective function. Therefore, the agent in the simulation model
randomly selects an action when it (i.e., a randomly generated number) is smaller than
the epsilon value, whereas it selects the action with the largest value based on the policy
network when it is larger than epsilon. The RL module has the same agent and policy
network as the simulation model and updates its policy network by copying the network
parameters from the simulation after a simulation run is completed. Accordingly, the RL
agent can replicate the same action as the simulation model and receives the same reward as
the simulation model. The conceptual diagram of the action–selection criterion of the agent
in the simulation model and the replication of the policy network of the simulation into
the RL module are shown in Figure 6.

1

Figure 6. Replication of neural network between simulation model and DRL.

Step 5: The simulation results are recorded in a table in the simulation model until
the simulation is executed and completed. Each row of the table represents an index
divided by a certain time interval in the time window. The simulation control module
collects the state, action, and reward dataset of the re-entrant production line recorded
throughout the simulation and transmits it to the RL module to perform training.

Step 6: This study uses the DDQN algorithm to address the problem of overestimating
the values of actions, which frequently occurs with the original DQN algorithm. The DDQN
algorithm maintains two networks (main and target networks) and uses them separately
for different purposes. The target network is used to select an action during training; the
main network is used to estimate the value of an action. This feature enables the DDQN
algorithm to deliver better learning outcomes than the original DQN algorithm in various
environments, including probabilistic factors [35,36]. The DDQN-based policy network
update structure is shown in Figure 7. The input data are the state (s), action (a), reward (r),
and transition of the next state (s′) observed by the agent in the simulation model. Each
transition is stored in the replay memory. The policy network is updated by mini-batch
learning by randomly extracting the transitions stored in the replay memory. The time-
sequence dependence can be resolved by mini-batch learning. Finally, the weight and
bias parameters are transmitted from the updated policy network to the simulation tool.
Algorithm 1 presents the pseudocode of the DDQN-based learning steps performed in
the RL module. First, each variable used for the calculation is declared, and the policy

Machines 2022, 10, 1169 9 of 17

network is initialized. The data obtained by the RL-based dispatching of vehicles are
collected from the simulation model, and the data are organized into the state, action,
reward, and transitions of the next state, which are stored in the replay buffer. DDQN-
based learning is performed by sampling from the replay buffer. The ending rule in
the pseudocode, as shown in Algorithm 1, is designed to be adaptive to the training
performance. Specifically, the ending count increases only when the reward of the current
episode is within the top 25% of historic rewards since the training procedure starts.
The learning is repeatedly performed until the termination condition is achieved.

Algorithm 1 DDQN-based scheduling algorithm

1: Declarations: episode EP, index of ending rule E, sum of step reward of episode REP

2: Initialization: Set main network Qθ with random weight θ, target network Qθ′ with θ′ = θ,
replay buffer D, reward buffer DR

3: Body:
4: GET the trajectory EP from DES control module with RL-based production control
5: while e < E do:
6: for t = 1, . . . , T do:
7: Store transition (st, at, rt, st+1) in replay buffer D
8: end for
9: for i = 1, . . . , I do:

10: Sample transition (si, ai, ri, si+1) ∼ D
11: Compute target Q value:
12: Q∗(si, ai) ≈ ri + γQθ(si+1, argmaxa′Qθ′ (si+1, a′))
13: Perform gradient descent step on (Q∗(si, ai)−Qθ(si, ai))

2

14: Update target network Qθ′ parameters:
15: θ′ ← τ ∗ θ + (1− τ) ∗ θ′

16: end for
17: if REP < getQuarterValue(DR) then:
18: e = e + 1
19: else:
20: e = 0
21: end if
22: Store REP in reward buffer DR

23: if e 6= E− 1 then:
24: GET the trajectory EP from DES control module with agent
25: else:
26: POST the weights and biases of the final agent
27: end if
28: end while

Figure 7. Storage of collected data in simulation model for training.

Machines 2022, 10, 1169 10 of 17

3.3. System Module-Integration Procedure

The integration procedure of the RL and DES control modules can be viewed as
communication between a client and a server, as shown in Figure 8. The RL module acts
as the client and requests data for training. The DES control module acts as the server,
which executes the simulation model, collects the data, and transmits them to the RL
module. First, the RL module requests the state, action, and reward values to initialize
the policy network. The DES control module executes the simulation of the target system.
Once the simulation is completed, the state, action, and reward values are collected and
transmitted to the RL module. This process is repeated until a preset count is reached, and
the best-performed episode is used to initialize the policy network with which the training
procedure begins. The DRL module performs training, and the learned weights and biases
are transmitted to the DES control module, which subsequently executes the simulation
software by reflecting the trained weights and biases. Once the simulation is completed,
the state, action, and reward values are transmitted back to the RL module by the DES
control module, and training is performed. Once the weights and biases of the policy
network converge by the repeated interaction between the RL and DES control modules,
the DES control module reflects and stores the last policy network in the simulation model.
In this study, the DES control module is written in C# and the RL module in Python with
Pytorch. Their communication is achieved by a TCP/IP interface.

Figure 8. Module-integration procedure of proposed scheduling system.

3.4. DES Control Module Class

The class diagram to explain the classes created to implement each module in the sche-
duling system is presented in Figure 9. The DES control module is composed of Abstract-
Main, TCP/IP Server, SimTalkFunction, and ControlFunction classes. First, the server
is activated by the TCP/IP server class for data exchange. Subsequently, the simulation
engine is operated by the ControlFunction class and the production line model is loaded.
Following this, the trained network parameters including the weight and bias data transmit-
ted from the RL module by the SimTalkFunction class are reflected. The ControlFunction
class implements the simulation and collects data once the shutdown event is triggered.
Finally, the simulation engine is shut down and the data collected by the TCP/IP server
class are returned to the RL module.

Machines 2022, 10, 1169 11 of 17

Figure 9. Simulation model and DRL-integrated module class diagram.

The RL module is composed of AbstractMain, TCP/IP Client, DataFrame Control,
Agent, Net, ReplayMemory, and Brain classes. First, data are transmitted from the TCP/IP
Server class of the DES control module by the TCP/IP Client class. The transmitted data
are preprocessed for training by the DataFrameControl class. The Agent class receives
the number of state variables and action types and creates an instance of the Brain class
for the DDQN algorithm-based learning. It creates the main and target Q-networks by
the Net class and stores the data preprocessed by the ReplayMemory class in the memory.
The DDQN algorithm is executed by the Brain class, the learned weight and bias data are
transmitted to the DES control module by the TCP/IP Client class, and the data required
for training by simulation are requested to be returned.

4. Experimental Design and Results

This section reports the experiments conducted to verify the applicability and effec-
tiveness of the proposed DRL-integrated scheduling system. The experiments are divided
into three cases. Case A is for the makespan comparison with the results of single priority-
based dispatching rules. Case B investigates the impact of part sequences. Case C is for
the analysis of flexibility effects. All experiments are performed in Windows 10 running on
a laptop with an Intel Core i7 vPro processing unit at 4.8 GHz and 16 GB memory.

4.1. Case A

The makespans of the proposed DRL-integrated scheduling system and single dis-
patching rules are compared in Case A. The proposed scheduling system operates by
combining three single dispatching rules and choosing one rule as an action for each state
of the re-entrant production line such that the accumulation of future rewards is maximized.
The simulation settings for Case A are listed in Tables 2 and 3.

Machines 2022, 10, 1169 12 of 17

Table 2. Availability and mean time to repair settings of each station in Case A.

Process No. Process Availability (%) Mean Time to Repair (Min)

1 Body side weather strip 90 10
2 Main body wire harness 90 10
3 Sunroof 90 10
4 Roof rail air bag 90 10

Table 3. Processing time settings of each product in Case A.

Product Production Plan
Body Side

Weather Strip
(Min)

Main Body
Wire Harness

(Min)

Sunroof
(Min)

Roof Rail
Air Bag
(Min)

Car A 100 1.0 0.9 1.8 1.0
Car B 100 0.9 0.8 0.0 0.9
Car C 100 1.2 1.0 0.0 1.2
Car D 100 1.1 1.1 2.0 1.1

Totally, 50 experiments are conducted and the distribution of the makespan is shown
in a boxplot graph in Figure 10. As summarized in Table 4, the average makespan us-
ing the proposed system is 15%, 29%, and 9% smaller than those from the FCFS, FOPR,
and MOPR rules, respectively. Note that the proposed system has the smallest vari-
ance, i.e., the proposed system yields more robust and consistent results than any single
dispatching rule.

Figure 10. Comparison of makespans obtained with dispatching rules and proposed method.

Table 4. Makespan mean value comparison in Case A.

Single Dispatching Rule (Time) DRL (Time)

FCFS FOPR MOPR DDQN
12:29:31 (+15%) 14:58:33 (+29%) 11:41:06 (+9%) 10:37:25

4.2. Case B

In Case B, three sequences—random, batch, and fixed sequences—are compared in
terms of the makespan to investigate the impact of the sequence on the proposed system.
The Case B experiment is important because it helps identify the best sequencing method
for the proposed scheduling system. The random sequence is defined as a random arrange-
ment of vehicles coming from the preceding process line. In the batch sequence, vehicles
are arranged in the form of a batch if they are of the same model (i.e., have the same

Machines 2022, 10, 1169 13 of 17

build sequence and processing time). The fixed sequence is defined as a repetition of
a specific sequencing pattern (e.g., 1→2→3→4→1→2→3→4→1→2→3→4→. . .). The Case
B experimental settings are the same as those in Case A, which are listed in Tables 2 and 3.

The RL training procedure converges all sequences to their optimal policies and
the results are reported in Table 5. The fixed and random sequences receive relatively large
rewards, whereas the batch sequence receives a small reward. Similarly, from the makespan
perspective, the batch sequence shows the worst performance. It can be inferred that
the random sequence performs well with the proposed scheduling system because it
shows higher flexibility in terms of the vehicle sequence than the other sequencing rules.
The learning convergence is shown in Figure 11.

Table 5. Reward value and makespan comparison in Case B.

Random Sequence Batch Sequence Fixed Sequence

Reward Value
(num) −57 −54 −67

Makespan
(time) 10:04:21 11:10:45 (+11%) 10:09:41 (+1%)

Figure 11. Reward value and makespan comparison by sequence.

4.3. Case C

It is important to investigate the impact of flexibility on the proposed scheduling
system because the underlying production line, i.e., the re-entrant production line, orig-
inally intends to comply with the high-flexibility requirement. Therefore, the learning
time and makespan changes by varying the flexibility of the re-entrant production line
are examined using the proposed scheduling system in Case C. The difference in the flexi-
bility of the re-entrant production line is manipulated by adding a multipurpose station.
For this experiment, metrics to measure the degree of flexibility are needed to appropri-
ately measure the performance of the comparative models. For measuring the degree of
flexibility, two metrics are introduced based on previous studies on the quantification of
flexibility [37–40]: operation flexibility (OF) and routing flexibility (RF).

OF represents the ability to interchange the order of operations. Given that a group of
products follows the same order of processes, OF of the product group can be measured as
the ratio of alternative precedence graphs to the maximum possible number of alternative
precedence graphs. This is expressed as follows.

OF(%) = 100× count o f alterative prededence graphs
(count o f operations)!

(3)

For example, if a product needs four processes, the maximum possible number of
alternative precedence graphs is 4!. Assuming that all four processes are independent,

Machines 2022, 10, 1169 14 of 17

the order of operations can be ignored. Therefore, the number of alternative precedence
graphs is 24. In this case, OF is equal to 100% (= 100× (24)

4!).
RF is defined as an ability to account for machine unavailability. RF can be achieved

utilizing multipurpose machines, which realize alternative routes for parts that encounter
unavailable machines. Conceptually, RF equals the average number of machines that can
perform an operation, as expressed in Equation (4).

RF(%) = 100× ∑n
u=1|I(u)|
m× n

(4)

where u is the index of operations and m and n represent the total number of machines and
the total number of operations, respectively. I(u) represents the index set of the machines
that can perform operation. For example, assume that a system has four machines (i.e.,
m = 4) and a product needs four processes (i.e., n = 4). Under this assumption, if
one machine exercises only one process uniquely, RF is 25% (= 100× (1+1+1+1)

16). However,

if each machine operates all four processes commonly, RF is 100% (= 100× (4+4+4+4)
16).

Two hypothetical re-entrant production lines are modeled by varying the degree of
flexibility, as shown in Figure 12. The OF for both production lines is the same, i.e., 100%,
as the vehicles have interchangeable job sequences. The left model in the figure has 25%
RF because each station is dedicated to only one process. However, the right model has
50% RF owing to the addition of a multipurpose station that can perform all four processes.
The experimental settings applied in Case C are listed in Table 6. Note that the processing
time settings of all products are the same as in Cases A and B.

Figure 12. Re-entrant production lines with same OF but different RF.

Table 6. Availability and mean time to repair settings of each station in Case C.

Process Number Process Availability
(Unit: %)

Mean Time to Repair
(Unit: Min)

1 Body side weather strip 90 10
2 Main body wire harness 90 10
3 Sunroof 90 10
4 Roof rail air bag 90 10
5 Universal Machine 100 0

Figure 13 shows the learning curve and simulation throughput results for Case C.
When the multipurpose station is added to the model, although a larger reward value is
received, approximately 100 additional episodes are required for the reward values to con-
verge. However, notably, the average makespan is reduced by 28%, based on the makespan
box plot in Figure 13 and Table 7. Thus, although the overall complexity is increased by
adding the multipurpose station, the makespan is significantly reduced because of the in-
creased flexibility. Specifically, the increase in flexibility mitigates the negative impact of
the increase in complexity. In addition, as the multipurpose station reduces the makespan,
the total training time becomes shorter.

Machines 2022, 10, 1169 15 of 17

Figure 13. Reward value and makespan comparison according to flexibility.

Table 7. Learning time and makespan mean value comparison in Case C.

Line (OF = 100%, RF = 25%)
with DRL

Line (OF = 100%, RF = 50%)
with DRL

Learning time
(unit: time) 3:13:42 (+14%) 2:46:12

Makespan mean value
(unit: time) 10:37:25 (+28%) 7:39:16

5. Conclusions

An increasing number of manufacturing companies are making efforts to utilize
highly flexible production systems, including re-entrant production lines, in which jobs
visit specific facilities or stations more than once to increase system utilization with limited
resources. However, the execution of re-entrant production lines is more complex than
those of general manufacturing systems because predicting the arrival of jobs is difficult
owing to the high degree of uncertainty in a dynamic manufacturing environment. In this
study, DRL with the capability of a short computation time and global optimization was
used to solve the complex re-entry production line scheduling problem.

A DRL-integrated scheduling system was implemented in which the makespan was
used as the operation performance index and the state, action, and reward were defined
according to the characteristics of the problem. A hypothetical re-entrant production line
was modeled using a DES tool, which is advantageous in providing a model-free learning
environment by reasonably modeling the uncertainty in a dynamic manufacturing system.
A DRL model for scheduling was trained using the DDQN algorithm, and the config-
uration and system architecture of the entire training system were established. Unlike
studies conducted in the existing literature, the system proposed in this paper could obtain
more accurate and realistic scheduling results in complex and dynamic manufacturing
systems by using simulation models as learning environments. The makespan obtained
from the simulation results was used as a performance index for DRL by representing
the manufacturing system or production line in detail through the simulation model.

Various experiments were conducted to verify the operational performance of the re-
entrant production line compared to those of priority-based single dispatching rules. In
addition, the proposed scheduling system was assessed with different job sequences and
different flexibility cases.

There are several directions for future studies. First, this study manually modeled
a re-entrant production line for the RL agent using a simulation tool, i.e., the model cannot
be updated dynamically whenever the actual production line is changed. Therefore, as
a future research topic, digital twin technologies to automatically generate and synchronize
a training model with actual production lines can be explored. Second, this study trained
the RL agent based on rewards for its actions using a fixed time interval to collect the re-
wards periodically. Because the effectiveness of a fixed time-based immediate reward in

Machines 2022, 10, 1169 16 of 17

representing the global cost function is unknown, a future study could focus on designing
another reward structure that can better represent the global cost function. Finally, this
study focused on determining the order of product input considering only makespan, but
it can be expected to develop into a more complex and applicable system for dynamic
manufacturing sites through various evaluation indicators throughout operation such as
line utilization, failure rate, waiting rate, bottleneck, etc. The performance of the proposed
system will be more sophisticated and decision-makers will be able to check the scheduling
results from more diverse perspectives.

Author Contributions: Conceptualization, S.-W.J., D.L., S.-C.O. and S.-D.N.; methodology, S.-W.J.,
D.L., S.-C.O. and K.-T.P.; software, S.-W.J. and K.-T.P.; validation, S.-W.J. and D.L.; writing—original
draft preparation, S.-W.J. and D.L.; resources, S.-C.O. and J.A.; writing—review and editing, D.L.
and S.-D.N.; visualization, S.-W.J. and D.L.; supervision, S.-D.N.; project administration, S.-D.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Institute of Information and Communications Technology
Planning and Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2022-0-00866,
Development of cyber-physical manufacturing base technology that supports high-fidelity and
distributed simulations for large-scalability) and by the Smart Manufacturing Innovation R and D
project funded by the Korea Ministry of SMEs and Startups in 2022 (Project No. RS-2022-00140261).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

List of symbols used in this paper.
ρ Criterion for measurement of the production time interval.
k Index of the products that completed the production process (k = 1, . . . , K).
i Index of the interval divided by criterion ρ in the time window (i = 1, . . . , I).
µik

Production completion time of the kth product in the ith period.

Nρ
i

Number of products completely produced in the ith period measured by criteria ρ in
the time window.

Nj Number of jobs.
ri Step (or immediate) reward of the ith period.

References
1. Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [CrossRef]
2. Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 2017,

3, 616–630. [CrossRef]
3. Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [CrossRef]
4. Kang, H.S.; Noh, S.D.; Son, J.Y.; Kim, H.; Park, J.H.; Lee, J.Y. The FaaS system using additive manufacturing for personalized

production. Rapid Prototyp. J. 2018, 24, 1486–1499. [CrossRef]
5. Nunes, P.M.S.; Silva, F.J.G. Increasing Flexibility and Productivity in Small Assembly Operations: A Case Study. Adv. Sustain.

Compet. Manuf. Syst. 2013, 329–340. [CrossRef]
6. Fragapane, G.; Ivanov, D.; Peron, M.; Sgarbossa, F.; Strandhagen, J.O. Increasing flexibility and productivity in Industry 4.0

production networks with autonomous mobile robots and smart intralogistics. Ann. Oper. Res. 2020, 308, 125–143. [CrossRef]
7. Cho, H.-M.; Bae, S.-J.; Kim, J.; Jeong, I.-J. Bi-objective scheduling for reentrant hybrid flow shop using Pareto genetic algorithm.

Comput. Ind. Eng. 2011, 61, 529–541. [CrossRef]
8. Choi, S.-W.; Kim, Y.-D.; Lee, G.-C. Minimizing total tardiness of orders with reentrant lots in a hybrid flowshop. Int. J. Prod. Res.

2005, 43, 2149–2167. [CrossRef]
9. Choi, H.-S.; Kim, J.-S.; Lee, D.-H. Real-time scheduling for reentrant hybrid flow shops: A decision tree based mechanism and its

application to a TFT-LCD line. Expert Syst. Appl. 2011, 38, 3514–3521. [CrossRef]
10. Kumar, P.R. Re-entrant lines. Queueing Syst. 1993, 13, 87–110. [CrossRef]
11. Cunningham, S.P.; Shanthikumar, J.G. Empirical results on the relationship between die yield and cycle time in semiconductor

wafer fabrication. IEEE Trans. Semicond. Manuf. 1996, 9, 273–277. [CrossRef]
12. Chen, C.-W.; Tai, C.-Y.; Tyan, J.C. Dynamic state-dependent dispatching for wafer fabrication. Int. J. Prod. Res. 2004, 42, 4547–4562.

[CrossRef]

http://doi.org/10.1016/j.jii.2017.04.005
http://doi.org/10.1016/J.ENG.2017.05.015
http://doi.org/10.1080/00207543.2018.1444806
http://doi.org/10.1108/RPJ-11-2016-0195
http://doi.org/10.1007/978-3-319-00557-7_27
http://doi.org/10.1007/s10479-020-03526-7
http://doi.org/10.1016/j.cie.2011.04.008
http://doi.org/10.1080/00207540500050071
http://doi.org/10.1016/j.eswa.2010.08.139
http://doi.org/10.1007/BF01158930
http://doi.org/10.1109/66.492822
http://doi.org/10.1080/00207540410001721736

Machines 2022, 10, 1169 17 of 17

13. Zhang, H.; Jiang, Z.; Guo, C. Simulation-based optimization of dispatching rules for semiconductor wafer fabrication system
scheduling by the response surface methodology. Int. J. Adv. Manuf. Technol. 2008, 41, 110–121. [CrossRef]

14. Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. 2020,
91, 106208. [CrossRef]

15. Lin, S.C.; Goodman, E.D.; Punch, W.F., III. A Genetic Algorithm Approach to Dynamic Job Shop Scheduling Problem. Int. Conf.
Genet. Algorithms 1997, 481–488. Available online: http://garage.cse.msu.edu/papers/GARAGe97-02-08.pdf (accessed on
25 October 2022).

16. Vinod, V.; Sridharan, R. Scheduling a dynamic job shop production system with sequence-dependent setups: An experimental
study. Robot. Comput. Manuf. 2008, 24, 435–449. [CrossRef]

17. Danping, L.; Lee, C.K. A review of the research methodology for the re-entrant scheduling problem. Int. J. Prod. Res. 2011, 49,
2221–2242. [CrossRef]

18. Narahari, Y.; Khan, L. Performance analysis of scheduling policies in re-entrant manufacturing systems. Comput. Oper. Res. 1996,
23, 37–51. [CrossRef]

19. Park, Y.; Kim, S.; Jun, C.-H. Mean value analysis of re-entrant line with batch machines and multi-class jobs. Comput. Oper. Res.
2002, 29, 1009–1024. [CrossRef]

20. Choi, J.Y.; Ko, S.-S. Simulation-based two-phase genetic algorithm for the capacitated re-entrant line scheduling problem.
Comput. Ind. Eng. 2009, 57, 660–666. [CrossRef]

21. Rifai, A.P.; Dawal, S.Z.M.; Zuhdi, A.; Aoyama, H.; Case, K. Reentrant FMS scheduling in loop layout with consideration of multi
loading-unloading stations and shortcuts. Int. J. Adv. Manuf. Technol. 2016, 82, 1527–1545. [CrossRef]

22. Chen, J.-S.; Pan, J.C.-H.; Lin, C.-M. A hybrid genetic algorithm for the re-entrant flow-shop scheduling problem. Expert Syst. Appl.
2008, 34, 570–577. [CrossRef]

23. Nawaz, M.; Enscore, E.E., Jr.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983,
11, 91–95. [CrossRef]

24. Jain, V.; Swarnkar, R.; Tiwari, M.K. Modelling and analysis of wafer fabrication scheduling via generalized stochastic Petri net
and simulated annealing. Int. J. Prod. Res. 2003, 41, 3501–3527. [CrossRef]

25. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
26. Van Otterlo, M.; Wiering, M. Reinforcement Learning and Markov Decision Processes. In Adaptation, Learning, and Optimization;

Springer: Berlin, Germany, 2012; pp. 3–42.
27. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement

learning. arXiv 2013, arXiv:1312.5602.
28. Waschneck, B.; Reichstaller, A.; Belzner, L.; Altenmüller, T.; Bauernhansl, T.; Knapp, A.; Kyek, A. Optimization of global

production scheduling with deep reinforcement learning. Procedia CIRP 2018, 72, 1264–1269. [CrossRef]
29. Shiue, Y.-R.; Lee, K.-C.; Su, C.-T. Real-time scheduling for a smart factory using a reinforcement learning approach.

Comput. Ind. Eng. 2018, 125, 604–614. [CrossRef]
30. Hu, L.; Liu, Z.; Hu, W.; Wang, Y.; Tan, J.; Wu, F. Petri-net-based dynamic scheduling of flexible manufacturing system via deep

reinforcement learning with graph convolutional network. J. Manuf. Syst. 2020, 55, 1–14. [CrossRef]
31. Stricker, N.; Kuhnle, A.; Sturm, R.; Friess, S. Reinforcement learning for adaptive order dispatching in the semiconductor industry.

CIRP Ann. 2018, 67, 511–514. [CrossRef]
32. Wang, Q.; Chatwin, C. Key issues and developments in modelling and simulation-based methodologies for manufacturing

systems analysis, design and performance evaluation. Int. J. Adv. Manuf. Technol. 2004, 25, 1254–1265. [CrossRef]
33. Gordon, G.J. Reinforcement learning with function approximation converges to a region. Adv. Neural Inf. Process. Syst. 2001, 13,

1040–1046.
34. Even-Dar, E.; Mansour, Y. Convergence of optimistic and incremental Q-learning. Adv. Neural Inf. Process. Syst. 2002, 14,

1499–1506.
35. Jaakkola, T.; Singh, S.P.; Jordan, M.I. Reinforcement learning algorithm for partially observable Markov decision problems.

Adv. Neural Inf. Process. Syst. 1995, 7, 345–352.
36. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI conference

on artificial intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30, p. 1.
37. Browne, J.; Dubois, D.; Rathmill, K.; Sethi, S.P.; Stecke, K.E. Classification of flexible manufacturing systems. FMS Mag. 1984, 2,

114–117.
38. Caprihan, R.; Wadhwa, S. Impact of Routing Flexibility on the Performance of an FMS—A Simulation Study. Int. J. Flex.

Manuf. Syst. 1997, 9, 273–298. [CrossRef]
39. Chang, Y.-L.; Matsuo, H.; Sullivan, R.S. A bottleneck-based beam search for job scheduling in a flexible manufacturing system.

Int. J. Prod. Res. 1989, 27, 1949–1961. [CrossRef]
40. Hofmann, C.; Brakemeier, N.; Krahe, C.; Stricker, N.; Lanza, G. The Impact of Routing and Operation Flexibility on the Perfor-

mance of Matrix Production Compared to a Production Line. Adv. Prod. Res. 2018, 155–165. [CrossRef]

http://doi.org/10.1007/s00170-008-1462-0
http://doi.org/10.1016/j.asoc.2020.106208
http://garage.cse.msu.edu/papers/GARAGe97-02-08.pdf
http://doi.org/10.1016/j.rcim.2007.05.001
http://doi.org/10.1080/00207541003720350
http://doi.org/10.1016/0305-0548(95)00003-5
http://doi.org/10.1016/S0305-0548(00)00099-X
http://doi.org/10.1016/j.cie.2009.01.004
http://doi.org/10.1007/s00170-015-7395-5
http://doi.org/10.1016/j.eswa.2006.09.021
http://doi.org/10.1016/0305-0483(83)90088-9
http://doi.org/10.1080/0020754031000118152
http://doi.org/10.1016/j.procir.2018.03.212
http://doi.org/10.1016/j.cie.2018.03.039
http://doi.org/10.1016/j.jmsy.2020.02.004
http://doi.org/10.1016/j.cirp.2018.04.041
http://doi.org/10.1007/s00170-003-1957-7
http://doi.org/10.1023/A:1007917429815
http://doi.org/10.1080/00207548908942666
http://doi.org/10.1007/978-3-030-03451-1_16

	Introduction
	Problem Definition
	Manufacturing Simulation and DRL-Integrated Scheduling System
	Manufacturing Simulation and DRL-Integrated Software Architecture
	Training Process of DRL Using Manufacturing Simulation Tool
	System Module-Integration Procedure
	DES Control Module Class

	Experimental Design and Results
	Case A
	Case B
	Case C

	Conclusions
	References

