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Abstract: Machining feature recognition is a research hotspot in recent years. A point cloud is a
geometry data representation format of three-dimensional (3D) models. The use of point cloud-based
convolutional neural networks (CNNs) for machining feature recognition has received increasing
research attention. However, these point cloud-based networks usually have large complexity size
and training time. In this paper, a selective downsampling-based point neural network for machining
feature recognition is proposed. Firstly, a machining feature dataset called MFDataset is constructed
and contains 33 feature types. Secondly, a selective downsampling algorithm of the input points
is presented, which drops out unimportant points while keeping the important ones. In single-
machining feature recognition, MFPointNet is proposed by utilizing the selective downsampling of
the input points. In multi-machining feature recognition, the segmentation part of the MFPointNet
is adopted with the selective downsampling algorithm to segment and recognize multiple features.
Compared with other point cloud-based networks, experimental results show that MFPointNet
reduces the computational complexity without losing the recognition accuracy basically. MFPointNet
is more robust to model complexity when more machining feature points are input to the network.
Moreover, several intersecting feature models validate the segmentation performance of MFPointNet.

Keywords: machining feature recognition; computer-aided design; point cloud; convolutional neural
network; Poisson sampling

1. Introduction

In the realm of smart manufacturing, each product or part originates from a computer-
aided design (CAD). The technologies of CAD and computer-aided manufacturing (CAM)
help increase the design productivity and the process of manufacturing products. As a
bridge between CAD and CAM, computer-aided process planning (CAPP) realizes the
integration of CAD and CAM. However, the independent operation of the CAD and CAPP
system has resulted in the inability to interconnect design information with manufacturing
information [1]. Therefore, in order to realize the information transmission between CAD
and CAPP, it is indispensable to recognize the machining feature from the 3D CAD model.
Machining feature recognition can directly apply the processing feature information to
the design of process planning, followed by obtaining the feature information from the
3D design information. It is worth noting that how to effectively recognize machining
features from CAD models remains relatively immature, which is still the focus of research
in academia and industry.

Machining feature recognition techniques have been developed for over thirty years.
Many researchers have proposed many recognition methods. In general, these methods can
be divided into two categories: traditional recognition methods [2] and deep learning-based
methods [3]. The traditional recognition algorithms can be summarized as the graph-based
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method [4], volume decomposition-based method [5], feature hint-based method [6], rule-
based method [7], semantic-based method [8], and the hybrid method [9]. In general, these
methods usually only can recognize machining features in the B-rep model [10]. In addition,
they suffer from poor robustness, computational complexity, and poor ability to recognize
intersecting features. In recent years, researchers try to apply deep learning algorithms
to machining feature recognition. Before inputting the machining feature into the CNN,
we need to convert the feature into a format suitable for the network, as described by the
representation vector (RV) [11]. These feature encoding methods are mainly categorized
as the voxel, multi-view representation, and point cloud. In particular, the point cloud is
easily accessible and widely used in 3D shape recognition. Some existing point cloud-based
networks have been proposed, such as PointNet [12], PointNet++ [13], PointCNN [14],
and DGCNN [15]. These point cloud methods use publicly available datasets such as
ModelNet and ShapeNet to classify or segment the specific 3D shape entities. They cannot
recognize and segment groups of associated geometric entities with specific shapes and
properties, such as through-holes, keyways, and threads. Moreover, the input to point
cloud-based network above are all the points in the 3D model, either PointNet++ for
FPS downsampling [16] or DGCNN for KNN clustering [17], resulting in a large use of
computational memory and an increasing CNN training time.

Motivated by the adaptive hierarchical downsampling [18] for point cloud classifica-
tion, where a permutation-invariant layer called the critical points layer (CPL) reduces the
input point while keeping the important points, a selective downsampling algorithm of
the point cloud input is presented in this paper. In the case of single-machining feature
recognition, we construct MFDataset, a publicly available machining feature dataset. It
contains approximately 2000 features per category for classification. An improved CNN
structure MFPointNet, utilizing the selective downsampling of the input points, is pro-
posed to recognize the different features. In terms of multi-machining feature recognition,
the segmentation part of the MFPointNet is adopted and combined with the MLP [19] to
recognize those multi-machining features.

The studies of this paper make the contributions as follows: (i) MFDataset is es-
tablished, which is dedicated to specific machining features. (ii) The proposed selective
downsampling algorithm reduces the computational complexity without loss in the recog-
nition accuracy basically. (iii) MFPointNet is compared with other point cloud-based
networks. Experimental results demonstrate that MFPointNet strikes a balance between
recognition accuracy and computational complexity.

The remainder of this paper is organized as follows. A literature review on feature
recognition methods is presented in Section 2. In Section 3, the process of establishing
the machining feature dataset MFDataset is described. The proposed MFPointNet is
presented in Section 4, containing the classification network and segmentation network.
The network training parameters and comparative experimental results are discussed in
Section 5. Finally, the conclusion is shown in Section 6.

2. Literature Review

In recent years, researchers have proposed different kinds of machining feature
recognition algorithms, which can be summarized as traditional recognition methods [2]
and deep learning-based methods [3]. This section conducts a wide range of feature
recognition methods.

2.1. Traditional Feature Recognition Methods

The traditional rule-based recognition method mainly consists of graph-based method [4],
volume decomposition method [5], hint-based method [6], and the hybrid recognition
method [9].

The graph-based recognition method was first presented by Joshi et al. [20] in 1988. It
introduced the concept of attributed adjacency graph (AAG), which is an auxiliary shape
descriptor. Gao et al. [21] proposed the extended attributed adjacency graph (EAAG),
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consisting of node face attributes and arched edge attributes. Yeo et al. [22] proposed
a method to evaluate manufacturability after the machining features recognition from
3D CAD models. They used two test cases to demonstrate feature recognition results.
Xu et al. [23] developed the generalized attributed adjacency graph (GAAG) to recognize
the high-level composite machining features in detail. The graph-based methods are
effective in recognizing single features. However, these methods are difficult to deal with
intersecting machining features due to their concavity to represent the relationship between
surfaces. Furthermore, the graph-based method tends to have inaccurate recognition.

The hint-based method was developed by abundant information as an indispensable
module of a machining feature’s boundary. This kind of method generates hints based on
the rules. They include topological, geometrical [24–26] and taxonomies [27,28]. Then these
features are inferred by these hint rules [29]. Li et al. [30] presented a novel hint-based
shape feature recognition approach for 3D B-rep models. Gong et al. [31] put forward
a hole feature recognition method based on the hint. They completed the automatic
recognition of hole features and can endow machining and manufacturing semantics for
manufacturability checks. However, the hint-based method has its application limitations.
It is difficult to recognize the feature hint in the case of interacting machining features.

The volume decomposition method decomposes the removal volume of stock into
intermediate volumes. The machining features are presented by combining these volumes
based on the predefined rules. It can be divided into convex-hull decomposition [32,33]
and cell-based decomposition [34,35]. Woo et al. [36] proposed a set of machining features
in a part to recognize by decomposing the delta volume. Gupta et al. [37] used volume
subtraction and syntactic pattern recognition to identify machining features on a prismatic
part from B-Rep data extracted from a 3D model. However, the volume decomposition
method is less accurate and more computationally intensive in recognizing features.

Based on the above recognition method, many experts proposed varied hybrid ma-
chining feature recognition methods. Verma et al. [38] proposed a hybrid machining
feature recognition method consisting of graphs and hints to recognize the milling features.
Rameshbabu et al. [39] proposed a hybrid recognition method combining the volume
decomposition method and the graph-based method to recognize machining features from
a 3D model. Jong et al. [40] used the hybrid recognition method based on the graph-based
method, the rule-based method, and the hint-based method to identify 3D shape features.
Guo et al. [41] developed a hybrid 3D machining feature recognition method to recog-
nize machining features, based on the graph-based method and the rule-based method.
Mazin wswasi et al. [42] presented a methodology for recognizing the features of rotational
parts. They extracted the geometrical and topological information of the feature, building
a dataset containing 54 predefined features. Sunil et al. [43] developed a new hybrid
(graph + rule-based) approach for recognizing the interacting features from B-Rep CAD
models of prismatic machined parts. Although the hybrid feature recognition methods
eliminate some flaws of the above method, they still suffer from low multi-machining
feature recognition accuracy and high computational cost.

2.2. Deep Learning-Based Feature Recognition Methods

With the development of deep learning, researchers have tried to apply deep learning
algorithms to machining feature recognition in recent years.

The voxelization-based method is to voxelize the triangular mesh model into a 3D
voxel mesh, which is then input into the CNN. Zhang et al. [44] proposed FeatureNet to
learn machining features from CAD models of mechanical parts. Sambit Ghadai et al. [45]
presented the 3D-GradCAM framework to learn local features from a voxelized repre-
sentation of a CAD model and classify its manufacturability. Ning et al. [46] studied
a convolutional neural network combined with a graph-based method to recognize the
machining features. The comparison results demonstrated the high recognition accuracy of
convex features. Dheeraj Peddireddy et al. [47] presented a two-step machining process
identification system based on a 3D CNN and transfer learning. The system showed more



Machines 2022, 10, 1165 4 of 23

than 98% accuracy in identifying the manufacturability of a part. Lee et al. [48] proposed a
method to reconstruct 3D CAD models containing machining features into voxels through
an encoder–decoder network. The recognition accuracy of the voxel neural network is
closely related to resolution size. As the voxel resolution increases, the computational cost
increases linearly. This makes large-scale network training difficult.

There are also studies where machining feature recognition technology is combined
with 3D CAD systems. Lee et al. [49] presented a deep learning method to recognize
machining features from a 3D CAD model and detect feature areas using gradient-weighted
class activation mapping. Their model can achieve a feature classification accuracy of
98.81%. Yeo et al. [50] proposed a method making integration of a 3D CAD system with a
neural network using feature descriptors as input for recognizing machining features. The
feature types for all test cases were recognized. Zhang et al. [51] designed an intelligent
machining feature recognition method for STEP-NC-compliant manufacturing based on the
artificial bee colony algorithm and back propagation neural network. It was concluded by
some case studies that the method is feasible. Shi et al. [52] presented a feature recognition
method using heat kernel signature for manufacturability analysis.

The multi-view representation method uses the feature multi-view images as input
for recognition. Shi et al. [53] presented MsvNet, in which multiple sectional views of
a model are inputted into the CNN for recognition. However, it is difficult to segment
intersecting features accurately according to the shape information in an unsupervised way,
since the topology information of the features might be destroyed. Motivated by an object
detection algorithm named single shot multibox detector (SSD), Shi et al. [54] proposed
SsdNet, where feature segmentation and recognition are carried out via supervised learning.
However, these methods produce less favorable results in recognizing highly interacting
features, especially when collecting training data becomes difficult. To tackle the above
issue, Shi et al. [55] designed a method named RDetNet which is capable of recognizing
highly interacting features with small training samples. Experiments showed the interacting
feature recognition performance of RDetNet.

A point cloud is a series of data points in 3D space that contains only 3D coordinates
XYZ or contains other attributes such as normal vectors. Andrew et al. [56] presented a
method for the creation and labeling of point clouds from 3D CAD models for machine
learning technology. Qi et al. [12] designed PointNet, which is accepted the point cloud
as input directly and the model classification or part segmentation as output results. To
improve the network performance, Qi et al. [13] improved a network called PointNet++
to combine the features from multiple scales. Li et al. [14] introduced a CNN architecture
called PointCNN to learn the x-transformation from input clouds directly. Wang et al. [15]
proposed a dynamic graph CNN for learning on point clouds, which uses the Edge-Conv
to make local geometric architecture. Yao et al. [16] constructed a feature recognition
approach based on the hierarchical neural network. It is demonstrated to recognize the
features accurately with low computational cost. Zhang et al. [57] designed the associa-
tively segmenting and identifying network (ASIN) based on point cloud to recognize the
machining features. The ASIN can realize the machining feature segmentation, feature
identification, and bottom face identification simultaneously. Jonathan et al. [58] described
a machining feature recognition based on the point cloud. They used PointNet as the base-
line architecture. This approach can be used to recognize 12 features, with a recognition
rate of 95%.

3. Machining Feature Dataset Creation

This section first summarizes some of the relevant issues in the existing literature,
which motivate the proposed method. Then, the creation process of the point cloud
machining feature dataset is illustrated in detail.
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3.1. Overview

As discussed in Section 2.1, the traditional feature recognition methods (Yeo et al. [22]
and Sunil et al. [43]) suffer from inaccurate recognition and intensive computational cost.
Moreover, they have difficulty recognizing intersecting features.

As illustrated in Section 2.2, voxel recognition methods (FeatureNet [44]) and multi-
view recognition methods (MsvNet [53]) are subject to many objective experimental condi-
tions. Point cloud data are easily accessible. Most existing point cloud-based recognition
methods (PointCNN [14]) classify or segment the 3D object, rather than the machining
feature. Additionally, there is a lack of dedicated feature datasets. Not only that, but
the existing point cloud-based method (PointNet [12] or PointNet++ [13]) inputs are all
point data, causing the network to be more computationally and parametrically intensive.
Therefore, the main research of this paper is how to construct a machining feature dataset
and reduce the network complexity size while ensuring the recognition accuracy. To solve
these problems, an improved method is proposed in this paper.

3.2. Definition and Types of Machining Feature

Machining feature is a set of geometric shapes with certain properties and semantics
in parts [59]. After reference to the machining feature specified in the ISO STEP AP224 [60]
standard, we construct MFDataset by SolidWorks, containing about 66000 machining
feature data.

A cubic raw stock of 10 cm × 10 cm × 10 cm side length is applied to create the
non-rotary feature models, as shown in Figure 1. Moreover, Figure 2 shows some rotary
machining feature models, which are established by a raw cylindrical blank of 5 cm in
diameter × 15 cm in height. These machining feature models are generated with random
parameters in a predefined certain range. All the feature types of MFDataset are presented
in Figure A1 in Appendix A. All the parameter ranges of MFDataset are presented at
https://github.com/leiruoshan/MFPointNet_feature_dataset (accessed on 2 June 2022).

Machining Feature Class Front View Top View Size Range

Round 

through hole

D

L

W D: [10, 80]

L: [10 + D/2, 90 - D/2]

W: [10 + D/2, 90 - D/2]

Tapered 

countersunk hole

T-through slot

Rounded groove

L

W

D1

D2

H
D1: [10, 30]

D2: [40, 60]

H: [15, 35]

L: [10 + D/2, 90 - D/2]

W: [10 + D/2, 90 - D/2]

H1

H2

L

D1

D2

D1: [20, 40]

D2: [50, 70]

H1: [15, 25]

H2: [30, 40]

L: [40, 60]

H

L
D

D: [30, 50]

H: [15, 25]

L: [30, 70]

Ring-shaped groove

D3

H

D1D2

L

W

D1: [20, 28]

D2: [32, 40]

H1: [30, 35]

L: [25, 30]

W: [30, 70]

H: [5, 15]

Closed pocket

H

L

W R
D

R: [5, 10]

H: [40, 60]

L: [45, 55]

W: [45, 55]

D: [45, 55]

Figure 1. Some non-rotary feature models contained in MFDataset.

https://github.com/leiruoshan/MFPointNet_feature_dataset
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No. Machining Feature Class Front View Top View Size Range

1 A-keyway
D

HL

R

W

R: [5, 10]

H: [5, 10]

L: [50, 60]

W: [30, 40]

D: 50

S: 150

2 Half-moon keyway
L

R

S

H

C
W

R: [15, 20]

H: [10, 15]

L: [50, 60]

W: [20, 30]

C: [45, 55]

3 Shaft step
L

W

RD

R: [10, 15]

L: [50, 60]

W: [20, 30]

D: 50

Figure 2. Some rotary machining feature models in MFDataset.

3.3. Point Cloud Feature Dataset

A point cloud is a representation of 3D objects in real space. Each point is determined
by the three coordinate dimensions (X, Y, Z). Moreover, the point can also be expressed
by (X, Y, Z, σx, σy, σz), where σx denotes the spatial normal vector along the x-axis. For
machining feature datasets in the STL format model, we need to transform it into the
point cloud format which is suitable for inputting point cloud-based networks. Figure 3
illustrates the dataset conversion process. The process can be divided into three steps:
(i) The machining feature surface sets non-relevant to the feature should be stripped from
the original STL format model. (ii) We use the Poisson distribution sampling [61] on
machining feature surface sets to get the point cloud feature models. (iii) The point cloud
models are augmented through random rotation. After data pre-processing, the point cloud
machining feature dataset is established.

Machining feature set

feature surface extraction data

MeshLab point sampling

256-512-1024 points

2

Figure 3. Flow chart of the point cloud machining feature dataset creation.
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3.3.1. Extraction of Machining Feature Surface Point Sets

In order to reduce the impact of the cubic on the recognition accuracy, a machining
feature dataset containing the surface point sets is used in this paper. The triangular faces
that are not part of the features need to be removed from the original STL model. The
machining feature surface point set extraction procedure is shown in Algorithm 1. All the
feature surface point extraction results are shown in Figure A2 in Appendix B.

Algorithm 1 The process of machining feature surface set extraction.

Input: Original STL feature model with the cubic raw stock
Output: STL feature model after feature surface point sets extraction

for ProcessSurface (document) do
if select (document) == NULL then

return false;
else

file += open (document);
S += pass “solid *.**”;
if S != “endsolid” then

file += normal vectors + coordinates;
if addsurfaces (normal, vertex) then

newSets += face (normal, vertex);
end if

end if
end if

end for
for addsurfaces (normal, vertex) do

i = 0 || i = 1 || i = 2;
j = 0 || j = 1 || j = 2;
if vertex[i][j] == 0 || vertex[i][j] == 10 then

return true;
end if

end for

3.3.2. Poisson-Disk Sampling

The technique of uniform sampling of the triangular grid is the key point to obtaining
the feature dataset. Corsini et al. [62] presented a constrained Poisson-disk sampling
algorithm to generate customized point sets. This method creates a new layer populated
with a point sampling of the current meshes. Based on the Poisson-disk sampling, we
use a 3D mesh processing software named Meshlab [63] to achieve the sampling from the
original STL format models. For each feature type, we collect the coordinates without
normal vectors by default, sampling 256 points, 512 points, and 1024 points, respectively.
For the comparison experiments, we additionally collect point clouds with normal vectors
for 1024 points. Some point cloud models are shown in Figure 4. The 512-point sampling
model and the 256-point sampling model are shown in Figure A3 of Appendix C and
Figure A4 of Appendix D, respectively.
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"V-through slot"

"Tapered countersunk hole"

"Round through hole"

"Straight groove"

1024 points 512 points 256 points

1024 points 512 points 256 points

1024 points 512 points 256 points

1024 points 512 points 256 points

Figure 4. Some machining feature point cloud models.

3.3.3. Feature Data Pre-Processing

Machining features can appear in any position of a model with diversified attitudes
and sizes. Even identical machining features can lead to different point cloud data due
to differences in location. These create a great deal of uncertainty in feature recognition.
Therefore, we need to normalize the point cloud data by offsetting the point cloud to the
origin and scaling the data to [−1, 1], which can be illustrated as follows (Equations (1)–(3)):

xi
+ = 2× xi −mean(x)

max(x)−min(x)
(1)

yi
+ = 2× yi −mean(y)

max(y)−min(y)
(2)

zi
+ = 2× zi −mean(z)

max(z)−min(z)
(3)

3.4. Multi-Machining Feature Dataset

To recognize the multi-machining feature precisely, some point cloud feature models
are established. They are based on MFDataset, by a Boolean summation operation [64]
of multiple single-machining features. All the multi-machining feature models are built
on the cubic raw stock of 15 cm × 15 cm × 15 cm side length. The detailed information
of the models is shown in Table 1. An intersecting number of features (3–8) is randomly
applied to construct the feature models. When the number of features is 3 or 4, we define
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the models as slightly intersecting features; when the number is 5, we call them moderately
intersecting features; otherwise, they are viewed as highly intersecting features.

Table 1. The detailed description of the multi-machining feature dataset.

Model Definition Number of Feature Types Feature Categories Intersecting Degrades

Model 1 3 02 + 10 + 24 slight
Model 2 3 01 + 03 + 30 slight
Model 3 4 01 + 03 + 15 + 23 slight
Model 4 4 01 + 01 + 15 + 16 slight
Model 5 5 01 + 03 + 05 + 09 + 15 moderate
Model 6 5 01 + 03 + 07 + 15 + 24 moderate
Model 7 6 01 + 03 + 05 + 15 + 23 + 32 high
Model 8 7 01 + 02 + 03 + 04 + 07 + 08 + 30 high
Model 9 8 02 + 04 + 15 + 23 + 24 + 25 + 30 + 31 high

4. MFPointNet for Machining Feature Recognition

In this section, we present the MFPointNet architecture based on the original Point-
Net. MFPointNet can be divided into single-machining feature classification tasks and
intersecting feature segmentation tasks, as shown in Sections 4.1 and 4.2, respectively.

4.1. Single-Machining Feature Recognition

Unlike PointNet, which inputs all points data into the network, MFPointNet only
selectively inputs some more important points data into the network. Moreover, the
selective downsampling layer (SDL) avoids judging the importance only based on the global
maximum pooling for each feature vector in adaptive hierarchical downsampling [18]
module. The description of the SDL module and MFPointNet are explained as follows.

4.1.1. The Selective Downsampling Layer (SDL)

The SDL module measures the importance of each machining feature point by the
degree to which it contributes to the global average pooling feature (avg-reduced feature
vector). The detail of the SDL module is shown in Figure 5. Firstly, the original network
input has N feature points, each feature with dimension D, i.e., the input machining feature
f is an N × D two-dimensional matrix. The average of each column of f is taken to obtain
a 1 × D feature vector fa. Secondly, the first value of the machining feature points that
are greater than the average value in each column are stored in the feature vector fm, and
the index corresponding to each of the machining features in fm are marked down and
saved in the array idx. idx represents the specific feature points that contribute to the input
machining feature vector f. Thirdly, the corresponding values in fm of the duplicate indexes
in idx are added up and represented by a new feature vector fc. Meanwhile, the indexes
are stored in a new vector uidx after merging duplicate indexes. Fourthly, the feature
points of fc are sorted in ascending order, and the corresponding indexes are sorted in
order successively. suidx is used to represent the new indexes. Considering that different
numbers of points during network training will result in different numbers of indexes in the
suidx array, nearest neighbor resizing [65] is used to transform suidx into a new index array
ruidx to ensure that the same number of machining feature points is fed into MFPointNet.
Finally, the input N × D features are turned into M × D features, where M ≤ N, according
to the index ruidx of the machining feature points with large contributions. By reducing
the number of features from N to M, we achieve the selective downsampling of the input
machining feature points.
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N ×D

set

sort

Nearest-Neighbors Resizing Gather Points

Original input point clouds

Output critical point clouds

M ×D
Average of each column

idx

3 3 1 4 2 5 3 1 4 2 5

uidx

suidx

4 2 1 3 5

4
2
1
3
5

ruidx

Figure 5. The description of selective downsampling layer.

4.1.2. The Architecture of the MFPointNet

The overall architecture of the MFPointNet is shown in Figure 6. The number of input
points is set to N, and the input point cloud is p ∈ RN×3 (no normal vector) or p ∈ RN×6

(using normal vector). The overall structure is divided into two branches: single-machining
feature classification and multi-machining feature segmentation.
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MLP
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Local 
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  3N/4 × 1152 

MLP

512 256 m128

m: semantic subcategories

Concate

Feature Points Concatenation

Figure 6. The structure of MFPointNet combining the classification network and segmentation network.

In the backbone, after inputting the feature points into a T-Net module, the attribute
of input points remains unchanged. MLP (3, 128) or MLP (6, 128) is convolved through
a two-layer perceptron network [66] to obtain an N × 128 output feature point cloud.
Only half of the original input points are inputted after the SDL module, obtaining an
output feature of (N/2) × 128. This is then followed by a T-Net module to guarantee
the rotational invariance of the input point. Then after an SDL module, the output point
becomes (N/4) × 128. The (N/4) × 1024 output feature points are obtained by using four
convolution layers, each with 128, 256, 512, and 1024 convolution kernels of size 1 × 1,
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respectively. After this step, the output features are transformed from (N/4) × 1024 by
global max pooling to obtain 1 × 1024.

In the single-machining feature classification network, the feature vector 1 × 1024
represents the global feature information. Then followed by four convolutional layers, each
with 512, 256, 128, and 33 convolution kernels of size 1 × 1, respectively. Now, we finally
can obtain the machining feature classification and recognition results.

4.2. The Procedure of Multi-Machining Feature Recognition

The overall procedure for the multi-feature recognition task is shown in Figure 7.
Firstly, the multi-feature models are established by Boolean operation according to the
MFDataset. These models are in STL format. Secondly, a transformation process will be
used to convert into the point cloud models. Thirdly, we input the feature point cloud
models into MFPointNet directly. As to the intersecting features, MFPointNet concatenates
global features with previously learned local features of each feature point, which is shown
in Figure 8, and then passes MLP to obtain the classification labels for each machining
feature point.

Start

The single machining feature 

The multi-machining feature 

Boolean summation operation

Is the multi-
machining feature 

models ?

Points are fed into MFPointNet 
for feature segmentation

End

The multi-machining feature 
segmentation process end

Transfer the models into point 
cloud data

Yes

EndNo

Figure 7. The procedure of multi-machining feature segmentation and recognition.

Feature Points Concatenation

1 × 1024

Global features

Local features

N
 ×

 1
2
8 N × 1152

Features fusion

Figure 8. The process of machining feature point concatenation.
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As illustrated in Figures 6 and 8, the multi-machining feature segmentation network
is an extension of single-machining feature classification network. After finding the global
feature points, we feed it back to per-point features by concatenating the global feature
with each of the local features. Then we extract the new point features based on the
combined features-both the local feature information and global feature information are
taken into account. Therefore, the N × 128 output features obtained by feature extraction
and the 1 × 1024 output features are fused to obtain N × 1152 output features. After
the SDL module, the (3N/4) × 1152 output feature points are received. For each of the
(3N/4) feature points, the segmentation network will output the corresponding m scores. m
represents the semantic feature subcategories. Because the multi-machining feature model
is based on MFDataset, m here is equal to a fixed value of 33. This is followed by four
convolutional layers, each with 512, 256, 128, and 33 convolution kernels of size 1 × 1,
respectively, and we can get the final (3N/4) × 33 output machining feature point labels.

5. Experimental Results and Discussion

Based on MFPointNet proposed in Section 4 and the machining feature dataset MF-
Dataset presented in Section 3, the effect of different numbers of input points on recognition
accuracy is shown in this section. Moreover, we compare MFPointNet to PointNet [12],
PointNet++ [13], PointCNN [14], and DGCNN [15] in terms of the recognition accuracy and
complexity model size under the different input points. In multi-machining feature recog-
nition, the multi-machining feature segmented into single-machining features is analyzed.

All the experiments in this paper are conducted on the “High Performance Computing
Public Service Platform of Huazhong University of Science and Technology” platform,
using Pytorch [67] as the deep learning framework. Moreover, the platform is available in
the following configurations: a Linux Operating System with NVIDIA Tesla V100S GPU,
32 GB memory, and Intel Xeon Gold 6230R CPU with 256 GB memory.

The network training parameters are set as follows: the default setting for the number
of input points is 1024 (alternatives are 256 and 512). The maximum number of training
iteration epochs is set to 200. The batch size is set to 64. The initial learning rate is 0.001.
The optimizer is Adam. The decay rate is 0.0001. The number of categories is set to 33. The
loss function is set to cross entropy (CE). The point cloud dataset is not used with normal
vectors, i.e., use normals == false. The dataset is divided into the training set (70% of the
whole dataset) and the testing set (30% of the whole dataset).

5.1. Single-Machining Feature Recognition

In this section, experimental results of MFPointNet and comparative experiments with
other point cloud-based neural networks are shown separately.

5.1.1. The MFPointNet Experimental Results

To demonstrate the performance of MFPointNet, we use the training epoch number,
average epoch time, total training time, training model size, network parameters, and
overall classification accuracy as the evaluation indicators on MFDataset. We have used
256 points, 512 points, and 1024 points successively as the original input point numbers
in the network. To verify the effect of input normal vectors on the experiment results,
we added a set of experiments using the 1024 points with normal vectors as the input.
The relevant experimental results are shown in Table 2. As can be seen from Table 2, the
average training epoch time and network parameters definitely do not increase linearly
with the number of input points but remain essentially unchanged. Compared to 256 and
512 input points, the classification accuracy of 1024 input points is slightly higher, reaching
98.93%. The model size with normal vectors is only a bit more than without them, but the
classification accuracy reaches 99.60% clearly. The classification recognition accuracy with
normal vectors is the highest among the four experiment groups.
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Table 2. The experimental results of MFPointNet.

Input Point
Numbers

Using
Normal
Vectors

Training
Epoch

Number

Average
Epoch Time

Total
Training

Time

Training
Model Size

Network
Parameters

Overall Clas-
sification
Accuracy

256 No 185 470.9 s 24.20 h 0.1067 G

5.2118M

96.88%
512 No 188 474.8 s 24.79 h 0.1435 G 98.09%

1024 No 190 490.4 s 25.88 h 0.2172 G 98.93%
Yes 189 488.8 s 25.66 h 0.2188 G 99.60%

5.1.2. Comparative Experiments of Effect on Input Point Number with Other Point
Cloud-Based Networks

Table 3 shows the effect of different input point numbers on the network training
parameters and recognition accuracy. As can be seen from Table 3, the parameters for
different networks do not change at all as the input point number varies. This is due to the
fact that these neural networks have shared weights and the different input sizes will not
affect the network parameters. The parameters of MFPointNet are the largest due to the
successive use of MLP. The parameters of the PointCNN network are the smallest, owing
to the X-Conv architecture. Moreover, the recognition accuracy increases with the number
of input points, regardless of the network. The recognition accuracy of the MFPointNet
network is highest when the number of input points is 256 and 1024, respectively, while the
recognition accuracy of the MFPointNet is slightly lower than that of PointNet++ when the
number of input points is 512.

Table 3. The effect of input point numbers on recognition accuracy and parameters.

Methods Input Point Numbers Network Parameters Overall Accuracy Mean Class Accuracy

PointNet [12]

256

3.469674M 96.41% 96.12%
PointNet++ [13] 1.745569M 96.82% 96.58%
PointCNN [14] 0.275449M 94.42% 94.04%
DGCNN [15] 1.810849M 95.02% 94.88%
MFPointNet 5.211882M 96.88% 96.20%

PointNet [12]

512

3.469674M 97.33% 96.95%
PointNet++ [13] 1.745569M 98.35% 97.99%
PointCNN [14] 0.275449M 96.37% 95.96%
DGCNN [15] 1.810849M 97.75% 97.01%
MFPointNet 5.211882M 98.09% 97.23%

PointNet [12]

1024

3.469674M 98.05% 97.09%
PointNet++ [13] 1.745569M 98.34% 97.20%
PointCNN [14] 0.275449M 98.89% 97.75%
DGCNN [15] 1.810849M 98.59% 97.56%
MFPointNet 5.211882M 98.93% 97.99%

Table 4 shows the effect of different input feature point numbers on the network
training time and model complexity size. Despite the increasing number of input feature
points, the training time per epoch for all the methods remains largely unchanged, with
the exception of PointCNN. The average epoch training time of MFPointNet is twice
that of PointNet and close to that of PointNet++. The longer training time per epoch for
MFPointNet may be caused by the fact that MFPointNet takes some time to go through
the SDL module and MLP. On the other hand, the training time for PointCNN basically
increases linearly with the number of input points. It is mainly because in every training
epoch a transformation matrix X needs to be learned. This poses some difficulties for
network training.
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Table 4. The effect of input point numbers on training time and model complexity size.

Methods Input Point
Numbers

Training Epoch
Number

Average Epoch
Time

Total Training
Time

Model
Complexity Size

PointNet [12]

256

184 200.9 s 10.27 h 0.11393 G
PointNet++ [13] 178 430.8 s 21.30 h 1.02956 G
PointCNN [14] 174 746.4 s 36.08 h 0.04760 G
DGCNN [15] 190 190.8 s 10.07 h 0.62470G
MFPointNet 185 470.9 s 24.20 h 0.10676 G

PointNet [12]

512

165 199.8 s 9.16 h 0.22484 G
PointNet++ [13] 196 441.3 s 24.03 h 2.09457 G
PointCNN [14] 179 2127.7 s 105 h 0.06665 G
DGCNN [15] 175 194.0 s 9.43 h 1.24821 G
MFPointNet 188 474.8 s 24.79 h 0.14359 G

PointNet [12]

1024

200 200.2 s 11.12 h 0.44704 G
PointNet++ [13] 199 447.2 s 24.72 h 4.01569 G
PointCNN [14] 188 7340.8 s 383.35 h 0.10476 G
DGCNN [15] 185 199.8 s 10.27 h 2.49523 G
MFPointNet 194 490.4 s 26.43 h 0.21725 G

The model size of each network grows essentially linearly as the number of input
feature points increases, in which that of the PointCNN is the smallest. It is mainly
because the convolution operation uses separable convolution to reduce the parameters
and computational consumption. Although the model size of MFPointNet is slightly higher
than that of PointCNN, it is the smallest compared to PointNet, PointNet++, and DGCNN.
It may be because of the use of the SDL module, which only selects the more important
points for network training. In addition, as can be seen in Table 4, when the number of
input feature points increases from 256 to 1024, the model size of PointNet, PointNet++,
and DGCNN increases by a factor of four. Meanwhile, MFPointNet only increases by a
factor of two, from 0.10676 G to 0.21725 G. This illustrates that MFPointNet is more robust
to model complexity when more machining feature points are input to the neural network.
In general, MFPointNet can reduce the network model complexity size while ensuring the
feature recognition accuracy.

5.1.3. Comparative Experiments of Effect on Input Normal Vectors with Other Point
Cloud-Based Networks

To verify the effect of the input normal vector on the network parameters and recogni-
tion accuracy, some comparative experiments are done as shown in Table 5, while keeping
the input point number constant at 1024. When we use an input point with normal vectors
compared to that without normal vectors, the network parameters increase slightly. This is
due to the change of parameters in the head part of the network, which is caused by the
input normal vectors.

As can be seen from Table 5, regardless of the network, the recognition accuracy with
input normal vectors is higher than that without input normal vectors. This is because
the normal vectors in the x, y, and z directions contain more feature information, which
helps to improve the classification accuracy. MFPointNet achieves the highest recognition
accuracy of 98.93% when no normal vectors are input, but PointNet++ achieves the highest
accuracy when normal vectors are used.

The influence of normal vectors on training time and model complexity size is shown
in Table 6. Having no vector input has essentially no effect on the training every epoch
time. MFPointNet takes only slightly more epoch time than PointNet++, while DGCNN
takes the least training epoch time. As is illustrated in Table 6, the model size of the input
normal vector is slightly more than that of the no normal vector input. The model size of
MFPointNet is the least computationally intensive in comparison, being only slightly more
than that of PointCNN. This is due to the downsampling of the SDL module.
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Table 5. The effect of normal vectors on recognition accuracy and network parameters.

Methods Input Point
Numbers

Using Normal
Vectors

Network
Parameters Overall Accuracy Mean Class

Accuracy

PointNet [12]

1024 No

3.469674M 98.05% 97.09%
PointNet++ [13] 1.745569M 98.34% 97.20%
PointCNN [14] 0.275449M 98.89% 97.75%
DGCNN [15] 1.810849M 98.59% 97.56%
MFPointNet 5.211882M 98.93% 97.99%

PointNet [12]

1024 Yes

3.470058M 99.94% 98.56%
PointNet++ [13] 1.746049M 99.96% 98.79%
PointCNN [14] 0.280056M 99.03% 98.09%
DGCNN [15] 1.820042M 99.54% 98.23%
MFPointNet 5.211882M 99.80% 98.55%

Table 6. The effect of normal vectors on training time and model complexity size.

Methods Input Point
Numbers

Using Normal
Vectors

Training Epoch
Number

Average Epoch
Time

Total Training
Time

Model
Complexity

Size

PointNet [12]

1024 No

200 200.2 s 11.12 h 0.44704 G
PointNet++ [13] 199 447.2 s 24.72 h 4.01569 G
PointCNN [14] 188 7340.8 s 383.35 h 0.10476 G
DGCNN [15] 185 199.8 s 10.27 h 2.49523 G
MFPointNet 194 490.4 s 26.43 h 0.21725 G

PointNet [12]

1024 Yes

147 200.5 s 8.19 h 0.44664 G
PointNet++ [13] 189 448.2 s 23.53 h 4.02960 G
PointCNN [14] 191 7336.6 s 389.25 h 0.11257 G
DGCNN [15] 190 200.1 s 10.56 h 2.50613 G
MFPointNet 189 488.8 s 25.66 h 0.21885 G

5.2. Multi-Machining Feature Recognition

To demonstrate the segmentation performance of the MFPointNet, nine test models
with varied intersecting features are used to recognize the multi-machining features. The
related results are shown in Figures 9 and 10. As can be seen in Figures 9 and 10, MFPoint-
Net identifies all the segment features correctly for slightly intersecting models. For the two
moderately intersecting models, 13 of the 14 machining features can be recognized correctly.
It is worth noting that the cylindrical countersunk hole feature has been misrecognized as a
round stepped hole. This may be due to the fact that these two features are simply similar
and the connecting surfaces are not expressed accurately. For the three highly intersecting
models in Figure 10, 23 of the 25 features are recognized correctly.

The misclassification of closed pockets as general step features in Model 7 is probably
caused by the confusing intersection between the closed pocket and the straight groove in
depth. Furthermore, the rounding feature in Model 9 is incorrectly classified as the round,
which is a failure of recognition for MFPointNet. In general, 52 out of 55 machining features
are segmented and recognized, with a recognition accuracy of 94.54%. In future work, we
intend to establish multi-machining feature datasets, rather than the few models here, to
train the neural network to get better recognition accuracy.
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Figure 9. Multi-machining feature recognition results on several 3D CAD models. Each model
contains a 3D model entity, a 3D perspective view, and the segmentation results. For every model,
the correctly recognized result equals the true feature types divided by the segment-identified types.
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Model 7
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Correctly Recognized : 9 / 10

Correctly Recognized : 7 / 7

Correctly Recognized : 7 / 8

y

countersunk hole" × 4

Round through hole

Round   2 Straight groove

"Round stepped hole"
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y

countersunk hole" 
"Round blind hole" "Round through hole"
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hrough slot"

g

reinforcement" 
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Figure 10. Multi-machining feature recognition results on three complex 3D CAD models. For every
model, the correctly recognized result equals the true feature types divided by the segment-identified
number. The different colors of each model represent the various segment recognition results.

6. Conclusions

Machining feature recognition plays an important role in the 3D machining process. In
this paper, we propose a neural network MFPointNet, utilizing the selective downsampling
layer of the input point to achieve the machining feature recognition. The presented
selective downsampling algorithm works by dropping out unimportant points while
keeping the important ones. It is proven to reduce the computational model size without
accuracy loss. We establish the MFDataset feature dataset. Then the extraction of machining
feature surface point sets is adopted to get the corresponding feature data separately,
followed by Poisson-disk sampling. In single-feature recognition, we use MFPointNet to
train the 256, 512, and 1024 input points. Moreover, the impact of normal vector input is
also studied in our method. Experimental results show that compared with other point
cloud-based networks, MFPointNet can get a higher single-feature classification accuracy
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based on the original input point 1024. Due to the selective downsampling layer, the
computational model size of MFPointNet is smaller than other point cloud-based networks
in general. MFPointNet is more robust to model complexity when more machining feature
points are input to the neural network. Compared with the 256 and 512 input points, the
classification accuracy of 1024 input points is a bit higher, reaching 98.93%. The model
size with normal vectors is only a little more than that without them, but the classification
accuracy reaches 99.60%. In multi-machining feature recognition, nine intersecting feature
models are made to test MFPointNet’s segmentation performance. Experimental results
demonstrate that 52 of the overall 55 machining features are segmented and recognized,
with a segmentation accuracy of 94.54%. As this paper is still mainly focused on single-
feature recognition, the multi-machining feature dataset creation and a better multi-feature
segmentation network will be carried out in future work.
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Figure A1. The overall machining features contained in MFDataset.

Appendix B

Figure A2. The machining feature surface point extraction results of MFDataset.
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Appendix C

Figure A3. The 512-point sampling models of MFDataset.

Appendix D

Figure A4. The 256-point sampling models of MFDataset.
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