
 
 

 

 
Machines 2022, 10, 1157. https://doi.org/10.3390/machines10121157 www.mdpi.com/journal/machines 

Article 

Stiffness-Performance-Based Redundant Motion Planning of a 
Hybrid Machining Robot 
Yuhao He 1, Fugui Xie 1,2,*, Xin-Jun Liu 1,2,*, Zenghui Xie 1,2, Huichan Zhao 1,2, Yi Yue 1,3 and Mingwei Li 3 

1 State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering (DME), 
Tsinghua University, Beijing 10084, China 

2 Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, 
Beijing 10084, China 

3 Beijing Spacecrafts, Beijing 100094, China 
* Correspondence: xiefg@mail.tsinghua.edu.cn (F.X.) and xinjunliu@mail.tsinghua.edu.cn (X.-J.L.) 

Abstract: Large-scale components usually have complex structures with high local stiffness, and the 
holes on them are required to be machined with high precision, which makes it important and chal-
lenging to study how to efficiently and precisely drill in the large-scale components. This article 
presents mobile hybrid machining equipment that consists of a five-axis parallel module, a 2-de-
gree-of-freedom (DoF) robotic, arm and an automated guide vehicle (AGV) connected in series. 
With the ability of wide-range positioning and precise local processing, it has potential advantages 
in the drilling processing of large-scale components. Stiffness is one of the most important perfor-
mances for machining equipment, and it’s highly related to the its configuration. For the discussed 
equipment, the stiffness is determined by the two-stage-positioning hybrid machining robot, which 
comprises a five-axis parallel module and a two-DoF robotic arm. The redundant motion of the 
hybrid machining robot makes it possible to optimize its configuration by reasonably planning re-
dundant motion. Therefore, a redundant motion-planning method based on stiffness performance 
is proposed. A kinematic analysis of the five-axis parallel module, the robotic arm, and the hybrid 
machining robot is carried out. A hybrid robot usually consists of several subsystems, and to take 
the compliance of each subsystem into consideration, the stiffness-modeling method for the hybrid 
robot with n subsystems connected in series is proposed. The stiffness model of the hybrid machin-
ing robot is established by using this method, and the variation of the stiffness magnitude has the 
same trend as that obtained by using FEA software. Stiffness magnitude and isotropy indices are 
proposed to evaluate the robot’s stiffness performance along the axis of the spindle and in the plane 
perpendicular to the axis of the spindle. The redundant motion of the hybrid machining robot is 
planned by maximizing the stiffness magnitude along the spindle axis, with priority to the stiffness 
isotropy index. Finally, the drilling experiment is carried out, and the results show that the relative 
error of the hole diameter obtained under the optimal configuration of the hybrid machining robot 
is 1.63%, which is smaller than those obtained under the other two configurations for comparison 
with relative errors of 3.75% and 3.50%, respectively. It proves the validity of the redundant motion-
planning method. The proposed stiffness-modeling method and the stiffness-performance indices 
are also applicable to other hybrid machining robots. 

Keywords: hybrid robot; stiffness modeling; redundant motion planning; stiffness performance  
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1. Introduction 
With rapid development in the fields of aerospace, transportation, energy, and ship-

ping, there is an increasingly urgent demand for processing large-scale components such 
as spacecraft cabins, high-speed train bodies, and pressure vessels. These components 
usually have a complex structure, have a large size, and come with high local stiffness, 
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and the holes on them have drilling demands that require high precision. At present, there 
are three main methods for drilling holes in large-scale components: (1) using large pro-
cessing machine tools [1] when their strokes are sufficient for the task in hand, which is 
the typical representative of inclusive processing mode, and this will cost a lot in design-
ing and manufacturing, and the processing flexibility is hard to meet the diversified pro-
cessing needs of large-scale components [2]; (2) manually processing [3], which requires 
high technical skills and long working hours for working staff, and it is inefficient and 
cannot guarantee product quality and consistency; (3) using a mobile machining robot 
system, which has the advantages of high flexibility, good accessibility, and motion dex-
terity [4]. It makes up for the shortage of large machine tools and provides a new idea to 
solve the problem of efficiently and precisely drilling in large-scale components [5]. 

Given the advantages of mobile robots, serial robotic arms, which have a large work-
space and especially high dexterity, have been used in drilling holes in large-scale com-
ponents [6,7]. However, serial robots are limited in high-precision machining because of 
their relatively low stiffness [4,7] and large variation of stiffness in the workspace. As a 
counterpart to serial robotic arms, parallel robots usually have a compact structure, high 
stiffness, and the ability to support heavy load and work with good precision [8], such as 
the five-axis parallel robots developed by Metrom [9], Tricept, and TriVariant [10]. Com-
bining the advantages of the robotic arm and parallel robot, a type of mobile hybrid ma-
chining equipment [11] is designed, which consists of an AGV (Automated Guide Vehi-
cle), a two-DoF (Degree-of-Freedom) robotic arm, and a five-axis parallel module con-
nected in series. It has a large workspace (up to 1.7 m in vertical direction) and local fine 
machining capability, which makes it suitable for drilling in large-scale components. For 
this robot, its machining accuracy is mainly decided by the two-stage-positioning hybrid 
machining robot, which comprises a five-axis parallel module and a two-DoF robotic arm. 
For improving the machining accuracy of a robot, robust design [12], high-precision cali-
bration, and configuration optimization are common methods. The robust design is usu-
ally used at the design stage to make the robot insensitive to geometric tolerance, calibra-
tion can improve its positioning accuracy, and configuration optimization can improve its 
stiffness performance. The five-axis parallel module and the robotic arm have overlapping 
DoFs in two translational directions, which makes it possible to improve the robot’s ma-
chining performance by reasonably planning the redundant motion. 

Stiffness has a great influence on machining performance. For a particular robot, its 
stiffness can be improved only by changing the robot’s configuration [13]. Therefore, it is 
necessary to study the variation of robot stiffness with configuration. At present, there are 
three main methods in this area, namely finite element analysis (FEA), matrix structural 
analysis (MSA) and virtual joint modeling (VJM). The FEA is a relatively accurate method, 
and it is usually used at the final design stage because of its time-consuming routine 
[14,15]. Based on the basic idea of the FEA, the MSA was proposed. Deblaise et al. [11] 
used the MSA to establish the stiffness model of Delta. It improves the efficiency of calcu-
lation at the cost of accuracy [16–18], and it is generally applicable to systems composed 
of rods because the elements are generally considered to have regular shapes [19]. Differ-
ent from the FEA and MSA, Gosselin [20] took the constraint compliance into considera-
tion and proposed a method based on the VJM, and it is widely applied in stiffness mod-
eling for fully parallel robots [16,21,22]. Cao et al. [23] established the stiffness model of 
an overconstrained parallel robot by analyzing the strain energy of each limb by using the 
structural decomposition strategy. These studies focused mainly on a single parallel robot. 
As for a hybrid robot comprising several subsystems, it is important to consider the im-
pact of every subsystem’s stiffness on the stiffness of the hybrid robot. Chen et al. [24] 
considered the base as the front-end subsystem and established the stiffness model of an 
adsorption machining robot by factoring in the stiffness of the base. Because the coordi-
nate origins of the base and the adsorption machining robot were the same, the mapping 
relationship between the stiffness of the base and the stiffness of the adsorption machining 
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robot wasn’t described in detail, which has an impact on the stiffness of the hybrid robot 
when the coordinate origin of each subsystem is different. 

Planning the redundant motion usually means optimizing the kinematic and stiffness 
performance of the robot under certain restrictions. Constraints like singularity, collision, 
and power consumption for redundant manipulators were proposed in [25–27], and the 
joint trajectories were planned well to ensure collision avoidance with relatively low 
power consumption. Liao et al. [28] proposed a region-based toolpath-generation method, 
and it can improve the stiffness of the robot in freedom-surface machining. The redundant 
motion-planning methods mentioned above usually depend on machining process and 
require adjusting the tool pose in real time, which may reduce machining efficiency. Off-
line programming can significantly improve processing quality and efficiency [13], and it 
usually needs indices to evaluate the stiffness performance of the robot. Jiao et al. [13] 
proposed a stiffness-performance index in the feed direction for a serial drilling robot, on 
the basis of which a redundancy resolution was put forward, and it achieved optimum 
stiffness during the drilling process and was kept away from singularity. In addition to 
the stiffness in the feed direction, the stiffness isotropy proved to be important for ma-
chining robot [13]. Chen et al. [24] proposed a stiffness isotropy index, on the basis of 
which an evaluation of the stiffness was carried out and an optimized workspace was 
identified. 

Although stiffness modeling for robots has been well studied, further research ac-
counting for the impact of the stiffness of subsystems on that of the hybrid robot is rela-
tively limited. The stiffness evaluation indices for redundant motion planning proposed 
in the previous studies have clear physical meanings, but the robot configurations ob-
tained by the above indices may not be the optimal drilling configurations. Therefore, the 
research of redundant motion planning based on stiffness performance is still needed. 
This article aims to propose a stiffness-modeling method for hybrid robots while account-
ing for the impact of the stiffness of each subsystem, and it proposes a stiffness index in 
the plane perpendicular to the tool axis while taking into account the magnitude and isot-
ropy at the same time. Based on the stiffness index, the redundant motion of the hybrid 
machining robot will be planned and the optimal configuration will be used to carry out 
the drilling processing on the large-scale components. 

Taking a seven-DoF hybrid machining robot as the study subject, this article estab-
lishes the stiffness model and proposes stiffness-performance indices, on the basis of 
which the redundant motion of the hybrid machining robot is planned and the optimal 
configuration for drilling is obtained. The remainder of the article is organized as follows: 
In Section 2, the configuration of the hybrid machining robot is introduced in detail, and 
the kinematic models of the five-axis parallel module, the robotic arm, and the hybrid 
machining robot are established step by step. In Section 3, a stiffness-modeling method 
for a hybrid robot with n subsystems connected in series is proposed; the stiffness model 
of the hybrid machining robot is established using this method; and the variation of the 
stiffness magnitude has the same trend as that obtained by the FEA software. In Section 
4, the stiffness magnitude and isotropy indices are proposed. Stiffness evaluation and re-
dundant motion planning are carried out by using the indices as a base. A drilling exper-
iment is carried out in Section 5, and it proves the validity of the redundant motion-plan-
ning method. In Section 6, the article is concluded. 

2. Kinematic Modeling of the Hybrid Machining Robot 
The stiffness of a robot is highly related to its configuration, so it is important to study 

how the stiffness performance of the robot varies with its configuration. The stiffness-
performance analysis is on the basis of kinematic analysis. As described in Section 1, the 
hybrid machining robot is a two-stage-positioning robot that consists of a five-axis parallel 
module and a two-DoF robotic arm connected in series. In this section, these two subsys-
tems are introduced in detail, and the kinematic modeling of the five-axis parallel module, 
the robotic arm, and the hybrid machining robot is sequentially carried out. 



Machines 2022, 10, 1157 4 of 24 
 

 

2.1. Introduction to the Hybrid Machining Robot 
The hybrid machining equipment is shown in Figure 1. It consists of an AGV, a two-

DoF robotic arm, and a five-axis parallel module. The two-DoF robotic arm and the five-
axis parallel module make up the hybrid machining robot discussed in this article. During 
processing, the AGV will be stably supported with the ground. Subsequently, the robotic 
arm moves in a wide range to stably position the five-axis parallel module near the area 
to be processed. Finally, the actuating joints of the robotic arm are locked, and the five-
axis parallel module is used to complete precise local processing. 

 
Figure 1. The hybrid machining equipment. 

As shown in Figure 2a, the five-axis parallel module is based on a 4-UCU&UCR spa-
tial mechanism, where limb 1 is a UCR kinematic chain and the other four limbs are UCU 
kinematic chains. Here U, C, and R represent a Hooke joint, a prismatic joint driven by 
electric ball screw, and a revolute joint, respectively. The workspace of the five-axis mod-
ule is a cube with 300 mm × 300 mm × 200 mm and has the ability to rotate at least 20° 
in an arbitrary direction. 

The robotic arm is shown in Figure 2b. It is driven by three prismatic joints and has 
three translational DoFs. When the guideway is fixed, it degenerates into a two-DoF ro-
botic arm. The plane in which the end moves is defined as the working plane of the robotic 
arm. There are three parallelograms to ensure that higher stiffness can be guaranteed, and 
the end is always in vertical attitude when the robotic arm moves. The workspace of the 
two-DoF robotic arm is shown in Figure 3. 

  
(a) (b) 

Figure 2. The subsystems of the hybrid machining robot: (a) the five-axis parallel module and (b) 
the two-DoF robotic arm. 
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Figure 3. The workspace of the two-DoF robotic arm. 

2.2. Kinematic Modeling of the Five-Axis Parallel Module 
For this lower mobility mechanism, the traditional Jacobian matrix is obtained by 

accounting for only the actuation direction of kinematic chains, and its order is usually 
less than six. Therefore, the stiffness model that is established based on it usually ignores 
the effect of the constraint compliance. In order to take the constraint compliance into 
account and obtain the Jacobian matrix with the same order as the stiffness matrix, a kin-
ematic analysis of the parallel mechanism is required, which includes inverse kinematics 
and deformation analysis in the direction of actuations and constraints. 

The inverse kinematics means to solve the configuration of the five-axis parallel mod-
ule when the position and the orientation of the spindle are fixed. The kinematic scheme 
of the five-axis parallel module is shown in Figure 4, in which iB (  1 ~ 5i = ) represents the 
center of Hooke joints connected to the base of limb i, 1P  represents the center of revolute 
joint connected to the spindle of limb 1, and iP (  2 ~ 5i = ) represents the center of Hooke 
joints connected to the spindle of limb 2~5. Points 1 5~B B  are on the same circle. Points 

1 5~P P  are located in two layers. Points 1 3~P P  are on the same circle, with point p'  as 
the center in the lower layer. Points 4P  and 5P  are on the same circle, with point s'  as 
the center in the upper layer. The base frame, 1 1 1 1O -x y z , is attached to the base, and the 
origin, 1O , is the center of the circle, where points 1 5~B B  are. The y-axis is collinear to 

1O B1 , and the z-axis is perpendicular to the circle plane. The x-axis is decided by the right-
hand rule. The spindle frame, 2 2 2 2O -x y z , is attached to the spindle, and the origin, 2O , is 
the end of the cutter. The y’-axis is collinear to 1p'P , and the z’-axis is collinear to p's' . 
The x’-axis is decided by the right-hand rule. 

The position and orientation of the spindle in the base coordinate frame, 1 1 1 1O -x y z , 
can be expressed by T

1 1 1 1 1[ ]x ,y ,z ,f ,θ , where T
1 1 1[ ]x ,y ,z describes the position of point 2O  

in the coordinate frame, 1 1 1 1O -x y z , and T
1 1[ ]f ,θ  describes the azimuth and tilt angles. The 

key structural parameters are as follows: 1iOB  = R , 1 2p'P  = R , 4 3s'P  = R , as'p' = H , 

cs'O' = L , 4 5 1∠ B OB  = 2α , and 4 5 2∠ P p'P  = 2α . 
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Figure 4. The kinematic schemes of the five-axis parallel module. 

In the base coordinate frame, 1 1 1 1O -x y z , the position of iB  can be described by 1 iOB
(  1 ~ 5i = ). In the spindle coordinate frame, 2 2 2 2O -x y z , the position of iP  can be described 
by 2 iO P (  1 ~ 5i = ). The rotation matrix of spindle can be written as 

T
2 2 2= [ ]R x  y  z  (1) 

where 2z  is related only to the magnitude of 1f  and 1θ , so 2z  can be expressed as 

T
2 1 1 1 1 1 = [cos sin   sin sin cos ]f θ f θ θz  (2) 

According to the constraint of limb 1, 2 2O x  is perpendicular to plane 1 1s'P B , so 2x  
can be expressed as 

|| ||
2 1 2

2
2 1 2

×=
×

O B zx
O B z

 (3) 

And 2y  can be obtained by the right-hand rule: 

|| ||
2 2

2
2 2

×=
×

z xy
z x

 (4) 

After Equations (1)–(4) have been combined, in the base coordinate frame, 1 1 1 1O -x y z
, 2 iO P  can be described as 

1 2
2 2=i i

O OO P RO P  (5) 

The inverse kinematics of the five-axis parallel module can be obtained as follows: 

|| ||1
1 2 2 1+ 1 ~ 5−i i i = ,  i = OL O O O P O B  (6) 

|| ||

1

1

1 2 2 1

1 2 2 1

+ 1 ~ 5
+

−
−

i i
i

i i

 = ,  i = 
O

O

O O O P O Bl
O O O P O B

 (7) 

In order to obtain the Jacobian matrix with the same order as the stiffness matrix, the 
mapping relationship between end-effector deformation and limb deformation in the ac-
tuation and constraint directions needs to be solved [16], which can be expressed as 

= pΔρ J'Δ  (8) 

where Δρ  represents the deformation of actuation and constraint directions of the limbs 
and pΔ  represents the deformation of the end effector. 

2.3. Kinematic Modeling of the Two-DoF Robotic Arm 
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To establish the stiffness model of the robotic arm by using the MSA method, the 
mapping relationship between the pose of each component and the position of the end 
effector must be studied. Therefore, the inverse kinematics of the robotic arm should be 
investigated. 

The kinematic scheme of the two-DoF robotic arm is shown in Figure 5. The global 
coordinate frame, 0 0 0 0O -x y z , is attached to the robotic arm, and the origin, 0O , is the cen-
ter of a fixed revolute joint. The 0y -axis is in the working plane and vertically downward, 
and the 0z -axis is in the working plane and horizontal to the right. The 0x -axis can be 
obtained by the right-hand rule. The inverse kinematics of the two-DoF robotic arm can 
be obtained by plane geometry [21] as 

22 2 2
1 3 3 1 3 1 1 3cos+ − ∠|M M |  = |OM | |OM | |OM ||OM | M OM  (9) 

22 2 2
2 4 2 4 2 4 2 4cos+ − ∠|M M |  = |OM | |OM | |OM ||OM | M OM  (10) 

 
Figure 5. The kinematic scheme of the two-DoF robotic arm. 

When the lengths of 1 3|M M | and 2 4|M M | are known, the position of each point in 
the coordinate frame, 0 0 0 0O -x y z , can be calculated. Further, the pose of each component 
can be obtained. Component AB is an example: the local coordinate frame, ABO -x'y'z' , and 
the global coordinate frame, 0 0 0ABO -x y z , are shown in Figure 6, so the rotation matrix of 
component AB can be written as 

0 0 -1
=  -sin -cos 0

-cos sin 0
= atan2( )

AB

 
 
 
 
 

AB AB

AB AB

AB C H C H

f f
f f

f y -y  , z -z

λ
 (11) 

where ( , )C Cy z  and ( , )H Hy z  represent the coordinates of point C and point H, respec-
tively, in coordinate frame 0 0 0ABO -x y z . The rotation matrices of other components can be 
obtained in a similar way. 
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Figure 6. Component AB in the local coordinate frame and the global coordinate frame. 

2.4. Kinematic Modeling of the Hybrid Machining Robot 
To solve the hybrid machining robot configuration when the spindle’s position and 

orientation are fixed, conducting a kinematic analysis of the hybrid machining robot is 
necessary. According to the machining mode mentioned above, the robotic arm should be 
fixed in a specific position before processing, which can be artificially specified. The length 
of the two screws can be solved by Equations (9) and (10). The spindle’s position and 
orientation in the base coordinate frame, 1 1 1 1O -x y z , and the global coordinate frame, 

0 0 0 0O -x y z , are shown in Figure 7. In order to solve the length of each limb, the position 
and orientation of the spindle represented in coordinate frame 1 1 1 1O -x y z  must be ob-
tained. Therefore, the key to specifying the configuration of the hybrid machining robot 
is to solve the mapping relationship between the spindle’s position and its orientation 
represented in the global coordinate frame, 0 0 0 0O -x y z , and in the base coordinate frame, 

1 1 1 1O -x y z . 

 
Figure 7. The spindle’s position and orientation in the base coordinate frame and global coordinate 
frame. 

In coordinate frame 0 0 0 0O -x y z , the position and orientation of the spindle can be ex-
pressed by T

0 0 0 0 0[ ]x ,y ,z ,f ,θ . In coordinate frame 1 1 1 1O -x y z , the position and orientation of 
the spindle can be expressed by T

1 1 1 1 1[ ]x ,y ,z ,f ,θ . In coordinate frame 0 0 0 0O -x y z , the position 
of point 1O  can be expressed by 0

1
OO . Thus, the spindle’s position and orientation in 

coordinate frame 0 0 0 0O -x y z  and in coordinate frame 1 1 1 1O -x y z  can be described as 

0

0

1

1

T
0 0 0

T
0 0 0 0 0

T
1 1 1

T
1 1 1 1 1

= ( )

= (cos sin   sin cos   cos )
= ( )
= (cos sin   sin cos   cos )

O

O

O

O

x ,y ,z

f θ f θ θ
x ,y ,z

f θ f θ θ

Q

n
Q
n

 (12) 

The rotation matrix of coordinate frame 1 1 1 1O -x y z  is defined as R . The mapping 
relationship between the spindle’s position and its orientation in the base and global co-
ordinate frames can be expressed as 

0 0 1

0 1

1=
=

+O O O

O O

Q O RQ
n Rn

 (13) 
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3. Stiffness Modeling 
The stiffness performance of a robot is influenced by mainly three factors [13]: (1) the 

material and structure of the robot; (2) the actuation and constraint systems; and (3) the 
robot’s configurations. For a given robot, the stiffness performance can be improved only 
by changing its configuration, so it is necessary to establish the stiffness model of the robot 
to study how the stiffness performance varies with the robot configuration. The method 
to establish the stiffness model of the hybrid machining robot is shown in Figure 8. The 
stiffness model of the five-axis parallel module is established by using the FEA method 
and the principle of virtual work. The stiffness model of the robotic arm can be obtained 
by MSA method. The stiffness mapping relationship between the end of the robotic arm 
and the end of the hybrid machining robot is studied, and the stiffness model of the hybrid 
machining robot is obtained according to the linear superposition principle. 

Because joint friction and bearing deformation have little effect on the end stiffness, 
they can be ignored when establishing the stiffness model. In addition, the deformation 
of each component is considered as linear elastic deformation. 

 
Figure 8. The method to establish the stiffness model of the hybrid machining robot. 

3.1. Stiffness Modeling of the Five-Axis Parallel Module 
The five-axis parallel module can be divided into the limbs and the base. The VJM 

and the FEA are used to establish their respective stiffness models as follows. 

3.1.1. Stiffness Modeling of the Limbs 
Assume that the base is rigid. According to the principle of virtual work, the virtual 

work done by the external load at the end effector of the five-axis parallel module is equal 
to the sum of the deformation energy of each limb. It can be written as 

T T
p =τ Δ f Δρ  (14) 

where τ  represents the external load imposed on the end effector of the five-axis parallel 
module, pΔ  represents the deformation of the end effector, f  represents the actuation 
force and the constraint force, and Δρ  represents the deformation in actuation and con-
straint directions. The relationship between f  and Δρ  can be written as 
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a

c

=

=
 
 
 

ρ

ρ K

f K Δρ

K 0
K

0

 (15) 

where aK  and cK  are defined as the actuation stiffness matrix and the constraint stiff-
ness, respectively. ρK  is defined as the stiffness matrix of the limbs. Once Equations (8), 
(14) and (15) have been combined, the relationship between τ  and pΔ  can be written 
as 

p

T

=

=
ρ

ρ ρ' '

τ K Δ

K J K J
 (16) 

where ρK  is defined as the stiffness matrix of the five-axis parallel module. The method 
to establish aK  and cK  will now be described in detail. 

Because all the limbs are subjected to axial force only in actuation direction, aK  is a 
diagonal matrix. It can be written as 

a a1 a2 a3 a4 a5= ( )diag k ,k ,k ,k ,kK  (17) 

where aik ( 1 ~ 5)i =  denotes the axial stiffness coefficient of limb i, which is decided by 
the structure of the limb. The kinematic schemes of limb 1 (UCR kinematic chain) and 
limb 2~5 (UCU kinematic chain) are shown in Figure 9. 

 
(a) 

 
(b) 

Figure 9. The kinematic schemes of limb 1~5: (a) UCR kinematic chain and (b) UCU kinematic 
chain. 

They can be simplified as the series spring systems, shown in Figure 10. Further, aik  
can be written as 

6
-1 1 1 -1 1 -1

a1 a1 a2 a
=3

8
-1 -1 -1 -1

a a1 a2 a3 a4 a
=5

= ( + 2 ) +

= ( + ) + ( + 2 ) + , = 2 ~ 5





j
j

i i i i i
i j

j

k k k k

k k k k k k i
 (18) 
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(a) 

 
(b) 

Figure 10. The simplified series spring systems of limb 1~5: (a) simplified model of UCR kinematic 
chain and (b) simplified model of UCU kinematic chain. 

where 1
a6 a4( )ik k  donates the axial stiffness of the screw, which is related to its length and 

1
a8 a6( )ik k  donates the equivalent translational stiffness of the Hooke joint along the axial 

direction of the limb, which is related to its pose. The other terms can be considered as 
constants. As shown in Figure 11, coordinate frame B-uvw  attached to the Hooke joint 
inner ring takes the center of the Hooke joint as the coordinate origin, and coordinate 
frame B'-u'v'w'  attached to the Hooke joint outer ring has the same origin as coordinate 
frame B-uvw . The direction of each axis is also shown in Figure 11. 

 
Figure 11. The kinematic scheme of Hooke joint. 

According to [10], the equivalent translational stiffness of the Hooke joint along the 
axial direction of the limb can be expressed as 

-1 -1 T T
p= +epw pwk k w R'K' R' w  (19) 

where epwk  denotes the equivalent translational stiffness of the Hooke joint along the ax-
ial direction of the limb, pwk  denotes the axial stiffness of the Hooke joint inner ring in 
coordinate frame B-uvw , R'  denotes the rotation matrix of coordinate frame B'-u'v'w'
, R''  denotes the rotation matrix of coordinate frame B-uvw , and pK'  denotes the stiff-
ness matrix of the Hooke joint outer ring in coordinate frame B'-u'v'w' . 

cK  represents the bending stiffness of limb 1 and is not suitable to be solved in an 
analytical way, because of its complex structure [16]. Thus, the FEA-based method is used 
in this article. Limb 1 can be simply considered as a supported beam and is assumed to 
consist of an equal-section rod of length l and other components of constant stiffness in 
series. As shown in Figure 12, the equal-section rod of length l is in the middle of limb 1, 
and two constant stiffness components of lengths l11 and l12 are connected in series to its 
left and right, respectively. 
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Figure 12. The constraint stiffness of limb 1. 

The bending stiffness of limb 1 can be expressed as 

c 3 2
1 2 3 4

1=K
C l +C l +C l+C

 (20) 

By using the FEA method, cK  is obtained with a set of values of l. The least-squares 
method is used to fit coefficients 1C ~ 4C ; the results are shown in Table 1. Once Equations 
(16)–(20) have been combined, the stiffness model of the limbs can be calculated. 

Table 1. Coefficients of constraint stiffness of limb 1. 

Coefficients C1 C2 C3 C4 
Magnitude 2.26 × 10−7 −3.18 × 10−4 0.184 −33.0 

3.1.2. Stiffness Modeling of the Base 
When the stiffness of the base and the stiffness of the limbs are in the same order of 

magnitude, the influence of base compliance on the stiffness of the end effector cannot be 
neglected. Therefore, the mapping relationship between them needs to be studied. 

Assume that the limbs are rigid. The offset of the Hooke joint center is defined as 
BΔρ , which is a 15-order column vector. The generalized deformation of the end effector 

is defined as QΔ , which is a six-order column vector. The relationship between BΔρ  and 

QΔ can be expressed as 

=Q B BfΔ J Δρ  (21) 

According to the principle of virtual work, the virtual work done by the external load 
at the end effector of the five-axis parallel module is equal to the sum of the deformation 
energy of the base. It can be expressed as 

5

=1
= =⋅ ⋅ ⋅Q Q Bi Bi B B

i
τ Δ Δρ f Δρ f  (22) 

where Qτ  represents the generalized external load of the end effector and Bf  represents 
the load of the Hooke joint center. 

According to Hooke’s law, the relationship between Bf  and BΔρ  can be expressed 
by 

= ⋅B f Bf K Δρ  (23) 

where fK  is defined as the interface stiffness matrix of the base. Once Equations (22) and 
(23) have been combined, the stiffness matrix of the base mapped to the five-axis parallel 
module QfK  can be expressed as 

-1 T -1

=

= ( )

⋅Q Qf Q

Qf B f Bf f

τ K Δ

K J K J
 (24) 
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The FEA method is used to establish fK . The force model of the base subsystem is 
shown in Figure 13. fK  is chunked by column: ...( )1 2 3 15=f f f f fK K K K K . Let BΔρ  
be sequentially equal to ie  ( ie  is a column vector whose ith element is 1, and the rest are 
0), so that the corresponding support reaction force a ( =1~15)i ip  can be calculated. So 

fK  can be constructed column by column as 

a= ,  ( = 1 ~ 15)fi i iK p  (25) 

 
Figure 13. The force model of the base subsystem. 

According to linear superposition principle, the stiffness model of the end effector of 
the five-axis parallel module can be expressed as 

1 1 1( )PKM Qfρ
− − −= +K K K  (26) 

3.2. Stiffness Modeling of the Two-DoF Robotic Arm 
When the stiffness of the robotic arm and the stiffness of the five-axis parallel module 

are of the same order of magnitude, its contribution to the stiffness of the hybrid machin-
ing robot cannot be neglected. 

An MSA-based method is used to establish the stiffness model of the robotic arm. 
The stiffness matrix of each component in the local coordinate frame is defined as e

iK  and 
can be obtained by using FEA software. The rotation matrix of each component is defined 
as iλ  and can be calculated through the similar method mentioned in Section 2. There-
fore, the stiffness matrix of component i in the global coordinate frame, 0 0 0 0O -x y z , can be 
expressed as 

...( )

0 T

1 2 2

=
=

O e
i i i i

i i i i
k

diag
K T K T
T λ λ λ  (27) 

where 0O
iK  denotes the stiffness matrix of component i in the global coordinate frame, 

0 0 0 0O -x y z . 
The stiffness matrix of the robotic arm is defined as +

limbK . It is a 188-order matrix and 
can be obtained from 0O

iK  through order expansion and splicing. According to the dis-
placement boundary conditions, the rows and columns of +

limbK  with 0 generalized dis-
placement are deleted. Then a 178-order matrix can be obtained, and it is defined as 2

+
limbK

. The corresponding force vector is defined as f , and the displacement vector is defined 
as δ . The relationship between them can be expressed as 

+= limb2f K δ  (28) 
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To focus on the stiffness matrix of the end effector of the robotic arm, 2
+
limbK  is 

chunked, and the center of the end effector of the robotic arm is defined as node 1. There-
fore, Equation (28) can be expressed as 

11 11 12

21 22 others

    
=    
    

δf K K
K K δ0

 (29) 

According to static coalescence, the relationship between 1f  and 1δ  can be ex-
pressed as 

1 1
-1

11 12 22 21

=
=
limb

limb −

f K δ
K K K K K

 (30) 

where 1f  denotes the external force imposed on the end effector of the robotic arm and 

1δ  denotes the corresponding generalized displacement. 

3.3. Stiffness Modeling of the Hybrid Machining Robot 
Without loss of generality, the stiffness-modeling method for a hybrid robot with n 

subsystems connected in series is investigated. The scheme of a hybrid robot is shown in 
Figure 14. Q  and n  represent the position and orientation of the spindle, respectively. 

iO  represents the center of the (i + 1)th subsystem’s end effector. The stiffness matrix of 
the nth subsystem in its local coordinate frame is defined as nK , and the position of the 
nth subsystem end effector’s center in its local coordinate frame is defined as T( )n n nx ,y ,z . 
The mapping matrix of the deformation of the nth subsystem’s end effector with respect 
to the deformation of the (n − 1)th subsystem’s end effector is n'R . The external force of 
the end of the hybrid robot is defined as QF , and the corresponding displacement is Qδ . 
Meanwhile, the force on the nth subsystem’s coordinate origin caused by QF  is defined 
as nF , and the corresponding displacement is defined as nδ . Assume that the nth sub-
system is deformable and that the other subsystems are rigid. The relationship between 

Qδ  and nδ  can be expressed as 

3

3

⋅

 
=  
 
 
 =  
 
 

Q n

n
n

n n

n n n

n n

'

'

z y
z x
y x

n=

0 -
- 0

- 0

δ R δ

I λ
R

0 I

λ

 
(31)

where 3I  is a third-order unit matrix. 

 
Figure 14. The scheme of a hybrid robot with n subsystems in series. 
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Thus, the mapping matrix of the deformation of the nth subsystem’s end effector with 
respect to the deformation of the hybrid robot’s end effector can be expressed as 

1 2n n n- = ' '... 'R R R R  (32) 

The principle of virtual work can be expressed as 

⋅ ⋅Q Q n n=F δ F δ  (33) 

Once Equations (31)–(33) have been combined, the relationship between QF  and Qδ  
caused by the compliance of the nth subsystem can be expressed as 

Q Qnf

-T -1
nf n n n

=

=

F K δ

K R K R
 (34) 

According to the linear superposition principle, the stiffness matrix of a hybrid robot 
with n subsystems connected in series can be expressed as 

-1 -1 -T -1 -1
1

= 2
= ( )+

n

Q i i i
i

K K R K R  (35) 

For the hybrid machining robot, it comprises two subsystems: the five-axis parallel 
module and the robotic arm. 0 'R  and 0λ  can be expressed as 

0
 
 
 
 
 
 
 
 

z y
z x
y x

3 0

3

1 1

0 1 1

1 1

=

0 -
= - 0

- 0

I λ
R

0 I

λ
 (36) 

According to Equations (34) and (35), the stiffness model of the hybrid machining 
robot can be expressed as 

0 0K
h PKM limbf

limbf limb

-1 -1 -1

-T -1

= ( + )

=

K K K

K R R
 (37) 

where limbfK  represents the stiffness matrix of the robotic arm mapped to the end of the 
hybrid machining robot and hK  represents the stiffness matrix of the hybrid machining 
robot. 

3.4. Simulation Experiment 
A simulation experiment is carried out to verify the stiffness model. FEA software 

was used to calculate the stiffness in compared with that obtained by the method pro-
posed in this article. Eight configurations of the five-axis parallel module, eight configu-
rations of the robotic arm, and eight configurations of the hybrid machining robot were 
selected randomly as the validation configurations. The comparison of the stiffness of the 
five-axis module, the robotic arm, and the hybrid machining robot obtained by the two 
methods is shown in Figure 15a–c. According to the information in Figure 15, it can be 
concluded that the variation of stiffness obtained by the method proposed in this article 
has the same trend of that obtained by the FEA software. Therefore, the stiffness model 
has been verified, and it can be used to predict the trend of stiffness variation with con-
figuration. 
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(a) 

 
(b) 

 
(c) 

Figure 15. The comparison of the stiffness by using FEA software and the proposed method: (a) 
comparison of the stiffness of the five-axis module; (b) comparison of the stiffness of the robotic 
arm; and (c) comparison of the stiffness of the hybrid machining robot. 
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4. Stiffness-Performance Evaluation and Redundant Motion Planning 
The hybrid machining robot consists of two subsystems connected in series, and the 

two-stage-positioning mode results in redundant DoFs in the y-direction and z-direction 
(shown in Figure 1), which makes it possible to optimize the robot’s configuration during 
machining. In [29,30], researchers proposed stiffness-performance indices and redundant 
motion-planning methods for drilling robots, and the stiffness of the robot in the feed di-
rection is improved by optimizing the configuration. For the drilling processing, the stiff-
ness performance in the plan perpendicular to the feed direction also has an impact on the 
hole quality. The previous research in this field is relatively limited. Therefore, redundant 
motion planning based on stiffness-performance indices still needs to be investigated. 

4.1. Mathematical Description of Redundant Motion 
According to Section 2, Equation (13) can be also expressed as 

1

1

1

,
0 0 1 10 1

0 1 0 0 1 1

0 1 0 1

cos sin cos sin
sin cos sin cos

cos cos

       
       = + =       
               

O

O

O

x f θ f θx x
y y y f θ f θ
z z θ θz

R R  (38) 

where R  is a three-order unit matrix and 
1

= 0Ox . The pose of the hybrid machining ro-
bot can be expressed as 

1 1

T
1 1 1 1 1[ , , , , , , ]O Ox y z f θ y z . Therefore, the following relationship can 

be obtained: 

1 10 1 0 0 0 1 0 1 0 1= , = + , = + , = , =O Ox x y y y z z z f f θ θ  (39) 

According to Equation (39), when the position and the orientation of the spindle are 
given, only three of seven DoFs can be determined ( 1x , 1f and 1θ ). Thus, the redundant 
motion-planning problem turns into obtaining the optimal configuration of the robot by 
optimizing the distribution for 

1 11 1, , ,O Oy z y z . 

4.2. Stiffness Evaluation 
To conduct a stiffness evaluation on the drilling process, it is necessary to analyze the 

force on the twist drill during processing. The force diagram of twist drill during pro-
cessing is shown in Figure 16. 

  
(a) (b) 

Figure 16. The force diagram of a twist drill during the drilling process: (a) vertical view and (b) 
front view. 

The generalized force applied to the twist drill is defined as T[ ]x y z x y zF F F M M M

, where xF , yF , xM , and yM  represent the generalized force in the radial plane and zF  
and zM  represent the generalized force along the spindle axis. Theoretically, the gener-
alized force can be expressed as 
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1

1

= = 0 = = 0

= 2 2

=

x y x y

z fψ fo fo

z cψ co co

F F , M M

F F + F + F

M M +M +M
 (40) 

The cutting pressure applied on the end effector can be neglected when compared 
with the translational force [16]. Moreover, according to Equation (40), the magnitude of 
force along the spindle axis is much higher than that in the radial plane. Therefore, the 
axial stiffness along spindle axis pzk  has a significant influence on the accuracy of the hole 
axial direction, and it is defined as the axial stiffness index. 

Meanwhile, there still exist forces in the radial plane because of nonideal conditions, 
such as the uneven distribution of material properties, the pose error of the twist drill, and 
the twist drill’s unevenly wearing. Thus, the stiffness performance in the radial plane 
needs to be accounted for [31]. The translational stiffness in the x’ direction and the y’ 
direction is defined as pxk  and pyk , respectively. When the larger one is taken as the long 
axis of the ellipse and the other as the short axis, the centrifugal rate can be expressed as 

2
2 1

1

2

= 1- ( / )
= ( ; )

= ( )
px py

px py

e k k
k max k k

k min k ;k

 (41) 

The centrifugal rate, e, characterizes the stiffness isotropy in the radial plane, and the 
closer the magnitude of 1k  and 2k  are, the closer the magnitude of e is to 0. To ensure 
drilling precision, the magnitude of 1k  and 2k  must be accounted for. Figure 17 shows 
two ellipses with the same short axis, and the latter one has a longer long axis. The diam-
eter of the latter one is larger than that of the former one, in all directions, but its centrifu-
gal rate is higher. Therefore, it is necessary to take the magnitude of 1k  and 2k  into ac-
count. In this article, the area of the ellipse is used to reflect the magnitude of 1k  and 2k
, and the stiffness index in radial plane can be defined as 

1 2=π /sk k k e  (42) 

where sk  is the radial plane stiffness index and at the same time characterizes both the 
stiffness isotropy and the magnitude in the radial plane. Both an increase in 1k  and 2k  
and an improvement in stiffness isotropy will increase sk . 

 
Figure 17. Two ellipses with the same short axis. 

4.3. Redundant Motion Planning 
According to the machining process mentioned in Section 2, the redundant motion-

planning method can be summarized in five steps, shown in Figure 18: 
(1) Fix the AGV and obtain the magnitude of 0x , 0y , and 0z . 
(2) Make the spindle axis perpendicular to the workpiece surface by adjusting f  and 

θ . 
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(3) Figure out how pzk  and sk  vary with the configuration of the hybrid machining ro-
bot. 

(4) Select a set of robot configurations that make the magnitude of pzk  high. 
(5) Determine a unique robot configuration that makes the magnitude of sk  the highest 

among the robot configurations in Step 4. 

 
Figure 18. The method of redundant motion planning. 

4.4. Case Study 
To better understand the redundant motion-planning method proposed in previous 

section, a case study is given. In this case, the parameters in Step 1 and Step 2 are set as 
following: 

0 0 1 0= -750 mm, = -1975 mm, = = 0, = 0, = 0y z x x f θ  (43) 

When the position and the orientation of the spindle are given, the magnitudes of 1x
, f , and θ  are uniquely determined, and they will effect only J' , mentioned in Section 
2. Therefore, even though 1x , f , and θ  are not 0 when machining, the redundant mo-
tion-planning method still works. 

The variation of the stiffness indices is shown in Figure 19. According to Figure 19a, 
pzk  is insensitive to the distribution of redundant motion in the z-direction and will in-

crease as 1y  increases. Thus, a set of robot configurations that make the magnitude of pzk  
high are where 1y  = 200 mm. Figure 19b shows that the higher the magnitude of 1y  and 

1z  is, the higher the magnitude of sk  is. Therefore, in this case, the optimal configuration 
of the robot for drilling is 1y  = 200 mm, 1z  = −675 mm, 0y  = −950 mm, and 0z  = −1300 
mm. 

  

(a) (b) 

Figure 19. The variation of the stiffness indices with y1 and z1: (a) distribution of kpz with y1 and z1 
and (b) distribution of ks with y1 and z1. 

5. Drilling Experimental Verification 
5.1. Design of Drilling Comparative Experiment 

After establishing the stiffness model of the hybrid machining robot and proposing 
a redundant motion-planning method for drilling, it is necessary to conduct a drilling ex-
periment to verify the validity of the proposed method. The hybrid machining robot and 
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the workpiece (a test cabin made up of aluminum) used in the experiment are shown in 
Figure 20, and the test cabin has high relatively local stiffness at the end face. The AGV 
was moved to a suitable position and was fixed on the ground. Points in the workspace 
were selected randomly as drilling positions. For each position, the optimal configuration 
of the hybrid machining robot was determined by the five steps mentioned in Section 4. 

 
Figure 20. The hybrid machining robot and the workpiece. 

To determine the optimal configuration of the hybrid machining robot, two other 
configurations are used for each drilling position. The five-axis parallel module contacts 
with the workpiece and has a direct impact on drilling precision. The robotic arm is away 
from the end effector of the hybrid machining robot, which means the deformation of it 
will be enlarged at the end and that the drilling precision will be influenced. Therefore, 
the two other configurations for comparison are based on the optimal configuration of the 
five-axis parallel module and the robotic arm, respectively. The error of the hole diameter 
is used to reflect the stiffness performance of the hybrid machining robot, because the 
stiffness of the robot is the ratio of force to the deformation of the end effector. When the 
forces applied to the end effector are the same, the higher the stiffness of the robot is, the 
smaller the error of the hole diameter is. 

In this experiment, an 8 mm diameter drill was used for drilling, and federate was 60 
mm/min. Eight drilling positions were selected, and holes were drilled in the end face of 
the test cabin. The vernier caliper was used to measure the diameter of the holes. 

5.2. Experiment Result and Discussion 
The diameters of the holes are shown in Figure 21, which demonstrates the difference 

in diameter of the holes drilled with different configurations in eight drilling positions. 
According to Figure 21, the mean diameters of the holes are 8.013 mm (with the optimal 
configuration of the hybrid machining robot, hereinafter called configuration 1), 8.030 mm 
(with the optimal configuration of the five-axis parallel module, hereinafter called config-
uration 2), and 8.028 mm (with the optimal configuration of the robotic arm, hereinafter 
called configuration 3). The relative errors of the diameters of the holes are 1.63% (with 
configuration 1), 3.75% (with configuration 2), and 3.50% (with configuration 3). It can be 
concluded that the error of the hole diameter obtained under the optimal configuration of 
the hybrid machining robot is smaller than those obtained under the other two configu-
rations. 
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Figure 21. Comparison of the diameter of the holes. 

Figures 22 and 23 show the stiffness of the hybrid machining robot along the spindle 
axis and the radial plane stiffness index, sk , with different configurations in eight drilling 
positions, respectively. After combining these figures with Figure 21, the results in Pos. 3 
and Pos. 7 show that although the magnitude of sk  with configuration 2 is lower than 
that with configuration 3, the diameter of the hole drilled with configuration 2 is not big-
ger than that drilled with configuration 3. According to the results in Pos. 1 and Pos. 5, 
although the magnitude of the stiffness along the spindle axis with configuration 2 is close 
to that with configuration 3, the diameter of the holed drilled with configuration 3 is 
smaller than that drilled with configuration 2. In conclusion, when the magnitude of the 
stiffness along the spindle axis is high, the diameter of the holes is influenced mainly by 
the stiffness along the spindle axis, despite the difference in the magnitude of sk  with 
different configurations, but the difference in the magnitude of sk  will lead to the differ-
ence of the diameter of the holes when the magnitude of the stiffness along the spindle 
axis is low. 

 
Figure 22. Comparison of the stiffness along the spindle axis. 
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Figure 23. Comparison of ks. 

The different machining performance with different robot configurations can be di-
rectly reflected by Figure 24. It demonstrates that there is no defect inside the hole drilled 
with the optimal configuration of the hybrid machining robot, whereas the holes drilled 
with the two other configurations have defects inside. 

 
Figure 24. Defects inside the holes drilled with different robot configurations in Pos. 5. 

6. Conclusions 
Motivated by the requirement for efficiently and precisely drilling in large-scale com-

ponents, this article addressed the problem of the redundant motion planning of a hybrid 
machining robot on the basis of stiffness performance. The hybrid machining robot con-
sists of two subsystems (a five-axis parallel module and a two-DoF (Degree-of-Freedom) 
robotic arm when the guideway is fixed). The kinematic analysis of the five-axis parallel 
module, the robotic arm, and the hybrid machining robot was carried out. To take the 
compliance of each subsystem into account, the stiffness-modeling method for the hybrid 
robot with n subsystems connected in series was proposed. The stiffness model of the 
hybrid robot was established using this method, and the variation of the stiffness magni-
tude had the same trend as that obtained by the FEA software. Based on the stiffness 
model, two stiffness indices were proposed. One ( pzk ) was the stiffness magnitude along 
the spindle axis. The other ( sk ) was defined as the ratio of the area to the centrifugal rate 
of the ellipse obtained by stiffness model, and it was used to evaluate stiffness isotropy in 
the radial plane. The redundant motion of the hybrid machining robot was planned by 
maximizing the stiffness magnitude along the spindle axis, with priority to the value of 

sk . Finally, a drilling comparison experiment was carried out, and the results demon-
strated that the error of the hole diameter obtained under the optimal configuration of the 
hybrid machining robot was smaller than those obtained under the other two 
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configurations. The results also indicated that the diameter of the holes was influenced 
mainly by the stiffness of the hybrid machining robot along the spindle axis, and the effect 
of sk  on the diameter of the holes only showed up when the magnitude of the stiffness 
along the spindle axis was low. The proposed stiffness-modeling method and the stiff-
ness-performance index were also applicable to other hybrid robots. 
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The List of Symbols and Nomenclature 

Symbol Explanation Symbol Explanation 

R  
The mapping matrix of the 

spindle 
Δρ  

The deformation of actuation 
and constraint directions of 

the limbs 

pΔ  The deformation of the end 
effector 

J'  Overall Jacobian matrix of 
the limbs 

O0Q  
The position of the spindle in 

the coordinate frame 
0 0 0 0O -x y z  

O0n  
The orientation of the spindle 

in the coordinate frame 
0 0 0 0O -x y z  

O1Q  
The position of the spindle in 

the coordinate frame 
1 1 1 1O -x y z  

O1n  
The orientation of the spindle 

in the coordinate frame 
1 1 1 1O -x y z  

aK  The actuation stiffness matrix cK  The constraint stiffness 

ρK  The stiffness matrix of the 
limbs PKMK  The stiffness matrix of the 

five-axis parallel module 

ika  The axial stiffness coefficient 
of limb i epwk  

The equivalent translational 
stiffness of the Hooke joint 
along the axial direction of 

the limb 

pwk  
The axial stiffness of the 

Hooke joint inner ring in the 
coordinate frame 

R'  
The rotation matrix of the co-

ordinate frame B'-u'v'w'  

R''  
The rotation matrix of the co-

ordinate frame B-uvw  BfJ  The Jacobian matrix of the 
base 

fK  The interface stiffness matrix 
of the base QfK  

The stiffness matrix of the 
base mapped to the five-axis 

parallel module 

iλ  The rotation matrix of com-
ponent i limbK  The stiffness matrix of the ro-

botic arm 

hK  The stiffness matrix of the 
hybrid machining robot n'R  

The mapping matrix of the 
deformation of the nth sub-

system’s end effector 
 



Machines 2022, 10, 1157 24 of 24 
 

 

References 
1. Lei, P.; Zheng, L.Y. An automated in-situ alignment approach for finish machining assembly interfaces of large-scale compo-

nents. Robot. Comput. Integr. Manuf. 2017, 46, 130–143. 
2. Zhao, X.; Tao, B.; Ding, H. Multimobile Robot Cluster System for Robot Machining of Large-Scale Workpieces. IEEE ASME 

Trans. Mechatron. 2022, 27, 561–571. 
3. Chen, K.X. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree for the Master of Engineering. Master’s 

Thesis, Huazhong University of Science & Technology, Wuhan, China, 2021. 
4. Tao, B.; Zhao, X.W.; Ding, H. Mobile-robotic machining for large complex components: A review study. Sci. China. Tech. Sci 

2019, 62, 1388–1400. 
5. Zhao, X.; Tao, B.; Han, S.; Ding, H. Accuracy analysis in mobile robot machining of large-scale workpiece. Robot. Comput. Integr. 

Manuf. 2021, 71, 102153. 
6. DeVlieg, R.; Sitton, K.; Feikert, E.; Inman, J. ONCE (ONe-sided Cell End effector) robotic drilling system. In Proceedings of the 

2002 SAE Automated Fastening Conference & Exhibition, Chester, UK, 1-3 Oct 2002. 
7. Zhang, Z.Y.; Jiang, Q. Research on integration technology of wing box robot drilling system for large aircraft. Aeros. Manuf. 

Tech. 2018, 61, 16–23. 
8. Brahmia, A.; Kelaiaia, R.; Company, O.; Chemori, A. Kinematic sensitivity analysis of manipulators using a novel dimensionless 

index. Rob. Auton. Syst. 2022, 150, 104021. 
9. Metrom. Available online: https://metrom.com/on-site-machining-robot/ (accessed on 3 September 2022). 
10. Wang, Y.Y. Stiffness Modeling Theory and Approach of the Spherical Coordinate Hybrid Robot. Ph.D. Thesis, Tianjin Univer-

sity, Tianjin, China, 2008. 
11. Xie, F.G.; Mei, B.; Liu, X.J.; Zhang, J.B.; Yue, Y. Novel mode and equipment for machining large complex components. J. Mech. 

Eng. 2020, 56, 70–78. 
12. Brahmia, A.; Kelaiaia, R.; Chemori, A.; Company, O. On Robust Mechanical Design of a PAR2 Delta-Like Parallel Kinematic 

Manipulator. J. Mech. Robot. 2022, 14, 11001. 
13. Jiao, J.C.; Tian, W.; Liao, W.H.; Zhang, L.; Bu, Y. Processing configuration off-line optimization for functionally redundant ro-

botic drilling tasks. Robot. Auton. Syst. 2018, 110, 112–123. 
14. Yan, S.J.; Ong, S.K.; Nee, A.Y.C. Stiffness analysis of parallelogram-type parallel manipulators using a strain energy method. 

Robot. Comput. Integr. Manuf. 2016, 37, 13–22. 
15. Shanmugasundar, G.; Sivaramakrishnan, R.; Meganathan, S.; Balasubramani, S. Structural optimization of a five degrees of 

freedom (T-3R-T) robot manipultor using finite element analysis. Mater. Today Proc. 2019, 16, 1325–1332. 
16. Klimchik, A.; Pashkevich, A.; Chablat, D. Fundamentals of manipulator stiffness modeling using matrix structural analysis. 

Mech. Mach. Theory 2019, 133, 365–394. 
17. Delblaise, D.; Hernot, X.; Maurine, P. A systematic analytical method for PKM stiffness matrix calculation. In Proceedings of 

the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006. 
18. Cammarata, A. Unified formulation for the stiffness analysis of spatial mechanisms. Mech. Mach. Theory 2016, 105, 272–284. 
19. Yu, G.; Wang, L.P.; Wu, J.; Wang, D.; Hu, C.J. Stiffness modeling approach for a 3-DOF parallel manipulator with consideration 

of nonlinear joint stiffness. Mech. Mach. Theory 2018, 123, 137–152. 
20. Gosselin, C. Stiffness mapping for parallel manipulators. IEEE Trans. Robot. Autom. 1990, 6, 377–382. 
21. Zhao, C.; Guo, H.W.; Zhang, D.; Liu, R.Q.; Li, B.; Deng, Z.Q. Stiffness modeling of n(3RRlS) reconfigurable series-parallel ma-

nipulators by combining virtual joint method and matrix structural analysis. Mech. Mach. Theory 2020, 152, 103960. 
22. Görgülü, İ.; Carbone, G.; Dede, M.İ.C. Time efficient stiffness model computation for a parallel haptic mechanism via the virtual 

joint method. Mech Mach Theory 2020, 143, 103614. 
23. Cao, W.; Yang, D.; Ding, H. A method for stiffness analysis of overconstrained parallel robotic mechanisms with Scara motion. 

Robot. Comput. Integr. Manuf. 2018, 49, 426–435. 
24. Chen, J.K.; Xie, F.G.; Liu, X.J.; Bi, W.Y. Stiffness evaluation of an adsorption robot for large-scale structural parts processing. J. 

Mech. Robot. 2021, 13, 40907. 
25. Wang, M.M.; Luo, J.J.; Fang, J.; Yuan, J.P. Optimal trajectory planning of free-floating space manipulator using differential evo-

lution algorithm. Adv. Space Res. 2018, 61, 1525–1536. 
26. Nouri Rahmat Abadi, B.; Mahzoon, M.; Farid, M. Singularity-free trajectory planning of a 3-RPRR planar kinematically redun-

dant parallel mechanism for minimum actuating effort. Iran. J. Sci. Technol. Trans. Mech. Eng. 2019, 43, 739–751. 
27. Chembuly, V.V.M.J.; Voruganti, H.K. Trajectory planning of redundant manipulators moving along constrained path and 

avoiding obstacles. Procedia Comput. Sci. 2018, 133, 627–634. 
28. Liao, Z.Y.; Li, J.R.; Xie, H.L.; Wang, Q.H.; Zhou, X.F. Region-based toolpath generation for robotic milling of freeform surfaces 

with stiffness optimization. Robot. Comput. Integr. Manuf. 2020, 64, 101953. 
29. Bu, Y.; Liao, W.H.; Tian, W.; Zhang, L.; Dawei, L.I. Modeling and experimental investigation of Cartesian compliance charac-

terization for drilling robot. Int. J. Adv. Manuf. Technol. 2017, 91, 3253–3264. 
30. Bu, Y.; Liao, W.H.; Tian, W.; Zhang, J.; Zhang, L. Stiffness analysis and optimization in robotic drilling application. Precis. Eng. 

2017, 49, 388–400. 
31. Görgülü, İ.; Dede, M.İ.C. A new stiffness performance index: volumetric isotropy index. Machines 2019, 7, 44. 


