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Abstract: Collaborative Manufacturing Scheduling (CMS) is not yet a properly explored decision
making practice, although its potential for being currently explored, in the digital era, by combining
efforts among a set of entities, either persons or machines, to jointly cooperate for solving some more
or less complex scheduling problem, namely occurring in job shop manufacturing environments.
In this paper, an interoperable scheduling system integrating a proposed scheduling model, along
with varying kinds of solving algorithms, are put forward and analyzed through an industrial case
study. The case study was decomposed in three application scenarios, for enabling the evaluation
of the proposed scheduling model when envisioning the prioritization of internal–makespan-or
external–number of tardy jobs-performance measures, along with a third scenario assigning a same
importance or weight to both kinds of performance measures. The results obtained enabled us to
realize that the weighted application scenario permitted reaching more balanced, thus a potentially
more attractive global solution for the scheduling problem considered through the combination of
different kinds of scheduling algorithms for the resolution of each underlying sub problem according
to the proposed scheduling model. Besides, the decomposition of a global more complex scheduling
problem into simpler sub-problems turns them easier to be solved through the different solving
algorithms available, while further enabling to obtain a wider range of alternative schedules to be
explored and evaluated. Thus, contributing to enriching the scheduling problem-solving process. A
future exploration of the application in other types of manufacturing environments, namely occurring
in the context of extended, networked, distributed or virtual production systems, integrating an
increased and variable set of collaborating entities or factories, is also suggested.

Keywords: collaborative manufacturing scheduling model; job shop; interoperable scheduling system

1. Introduction

Collaborative decision-making (CDM) implies an interaction and shared learning
process among at least two entities, independent of both sharing the same objective or
not [1,2] Although, usually, when the entities fall into a same context or business, they may
also have a common goal, which can either occur in the context of traditional or in extended
manufacturing environments (EMS) or in agile or virtual enterprises (A/VE), along with
cyber physical systems [1–8]. The CDM processes are of the utmost importance nowadays,
in the Industry 4.0, once enabling and promoting the interconnection and interoperation
among integrated entities, either persons and/or communication and processing devices,
along with diver kind of machines, horizontally and/or vertically integrated through the
[I]oT ([Industrial] Internet of Things), and supported by appropriate middleware, tools,
systems, and platforms [9–13].
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In this paper a model is proposed for collaboratively solving a manufacturing schedul-
ing model, which consists of an extension of the well-known Jackson’s model that enables
to define the production sequence of a set of jobs to be processed in a classical job shop
environment, integrating just two machines or work centers [14]. The proposed scheduling
model, besides being applicable to solve classical job shop scheduling problems, with two
or more machines, can further be applied for solving scheduling problems occurring in
EME or A/VE, integrating two or more factories, for the execution of the jobs, through a
distributed manufacturing environment [15].

The proposed scheduling model consists of a novel contribution, as, as far as our
knowledge, existing contributions are usually more specific, regarding either its applica-
tion domain (kind of manufacturing environment) or the approach used for solving the
scheduling problem, usually based on some specific or reduced combination of solving
algorithms. Instead, through our proposed scheduling model, different approaches or
methods/algorithms can be applied or combined to solve a set of underlying sub schedul-
ing problems. Thus, being able to vary from the application of pure mathematical or
optimization algorithms, up to the use of varying kind of meta-heuristics or be based on
machine learning or agent-based approaches, among others [5,16–18].

In order to properly present the contribution put forward in this paper, it is organized
as follows. In Section 2, a summarized overview of manufacturing scheduling approaches
is presented. In Section 3, the proposed interoperable manufacturing scheduling system is
briefly described. In Section 4, the proposed collaborative manufacturing scheduling model
is put forward, for being further explored, in Section 5, through an illustrative example
of application. A further analysis and discussion of the main results obtained through
the application of the proposed scheduling model is also included in Section 5, by using
three different application scenarios. Finally, in Section 6, the main conclusions, along with
future work suggestions, are provided.

2. Manufacturing Scheduling Evolution
2.1. Scheduling Problems and Solving Approaches

Manufacturing Scheduling (MS) refers to the execution of a set of tasks or operations,
usually also referred as jobs, at defined times on specific production resources or machines,
also frequently mentioned as processors, workstations or work centers, and which can
be locally available at a given shop floor or geographically distributed among factories
or companies [19–22]. The tasks can be sequential and/or occur in parallel, among the
production resources [23–29].

Other definitions of Manufacturing Scheduling are presented in [25,26], who describes,
Manufacturing Scheduling as the part of the MPC (Manufacturing Planning and Control)
that is responsible for the distribution of the operations by available resources, in order
to optimize one or more performance measures. Pinedo & Chao, in 1999 [25] diddefine
Manufacturing Scheduling as the process that distributes limited resources across activities,
in order to optimize the company’s productive capacity, or any other performance measure.
In the meantime, Baker & Trietsche, in 2009 [24], described Manufacturing Scheduling
as the decision process that seeks to answer the questions: “What is the best way to
distribute resources across operations, to optimize a given performance measure? Besides,
“What is the manufacturing sequence and/or production schedule that optimizes a given
performance measure?”.

Scheduling problems belong to a much broader class of combinatorial optimization
ones that are difficult to solve, being called NP-hard problems. These problems are charac-
terized by having a vast set of possible solutions, which have to be explored in the space of
possible solutions for the problems under consideration.

Additionally, to being combinatorial optimization problems, MS problems are also
usually dynamic, due to the dynamisms that arises from the real time arrival of new tasks
to be scheduled and further to the availability of the production resources, which does also
dynamically change over time. These two aspects combined turn industrial scheduling
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problems quite difficult to solve, which are thus usually solved by using different kind
of heuristic methods, for instance, based on constraint programming or a widened set of
diverse types of other heuristics or meta-heuristics, such as, Genetic Algorithms, Simulated
Annealing or Tabu Search, among other meta-heuristics or approaches, for instance, based
on Neural Networks, or Fuzzy Logic, among others [30,31].

Job shops are production systems’ configurations which are arranged in such a way
that permits them to take a superior advantage of more or less diversified production
and in varied quantities, generally, and currently, in relatively small quantities. These
manufacturing systems are usually further arranged according to a functional logic, e.g.,
grouped according to the functions or processes they perform, enabling different workflows,
which provides this kind of production system a popularity or relative advantage when
compared to other types of configurations or production systems, more limited or oriented
to some kind of products of product families, such as the flow shops.

Although, similar to what happens in other kinds of manufacturing systems, in these
kinds of job shop manufacturing environments, things rarely go as expected. This can
occur due to several reasons, for instance, due to cancelled scheduled jobs and/or to the
arrival of new jobs, namely with a higher priority. Moreover, this usually happens because
given resources become unavailable and/or that new resources are considered. Besides,
some other disturbances may occur on the shop floor, namely some scheduled tasks that
take more or less time than planned, or tasks that arrive earlier or late. Further, other
turbulences that may happen can be related, for instance, to machine failures, to operators’
absence or to the unavailability of production tools and/or materials.

Besides, also some given production schedule might become unfeasible because of
some unforeseen real time situation occurring on the shop floor. When this happens, a new
schedule has to be generated to restore the manufacturing system performance by executing
rescheduling, dynamic scheduling or also so-called a real-time scheduling [32,33].

The manufacturing scheduling problems are continuous and dynamic by nature, and
a solution will quickly become obsolete. For example, a number of jobs are scheduled,
and before all the jobs are processed, new jobs are released on the shop floor, making the
solution obsolete before even being executed. Considering that classical, static, scheduling
become non-optimal as soon as new manufacturing orders are launched into the shop
floor [34,35], it is necessary to find ways to adapt scheduling solutions to the dynamic nature
of the problem. Dynamic scheduling can be classified as Reactive, Predictive-Reactive and
Proactive Scheduling, depending on how the initial solution is conceived and how it is
adapted to changes in the characteristics of the problem [36]. Whenever it is necessary
to adapt the solution to the changes in the problem, it is important to determine if an
obsolete solution can be adapted to accommodate the changes in the problem, or if it is
necessary to devise a completely new solution. Finally, it is necessary to determine when a
solution is considered obsolete, that is, if the rescheduling is event-oriented, for example,
whenever there is a change in the characteristics of the problem, or if the rescheduling
happens periodically.

There are different kinds of approaches that can be used for establishing production
schedules, varying from enumerative algorithms to the application of simple priority rules.
Moreover, these approaches can be based on pure mathematical programming models or
use simulation technique among other approaches [5], for instance, based on multi-agents,
among others [18,24,37–39].

2.2. The Jackson’s Scheduling Model

Jackson, in 1956 [14] proposed a model for scheduling a set of jobs in a job shop
integrating two machines (A and B), by sequencing the jobs according to the following
order, on each one:

Machine A: {A,B} -> {A} -> {B,A}
Machine B: {B,A} -> {B} -> {A,B}
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In which {A} represents the set of jobs that integrate just one operation, and which
has to be processed on machine A, {B} represents the set of jobs that integrate also just one
operation, and which has to be processed on machine B, {A,B} represents the set of jobs
with two operations, in sequence, as in a flow shop, being the first one to be processed on
machine A, and the second one on machine B, and {B,A} representing also a set of jobs in a
reverse order of processing, e.g., being the first operation to be processed on machine B,
and the second one on machine A. These flow shop scheduling sub problems, with two
machines, are solved by the traditional Johnson’s rule, and the single machine ones by
applying simple sequencing rules, e.g., the Shorted Processing Time (SPT) [14].

2.3. Scheduling Process Complexity

Scheduling processes are complex in nature, particularly the ones occurring in job
shop environments [16], as is the case of the classical job shop scheduling problem, where
the scheduling problem complexity grows exponentially, with the increase in the number
of sets of machines to order, according to the number of machines or work centers available
in a job shop. The complexity of a job shop scheduling process can thus be analyzed by
using the equation 1, resulting in the number of arrangements of machines to be considered
for the jobs to be processed, being m the set size, i.e., the total number of machines in the
sample, and p the subset size, i.e., the number of machines to be selected from the sample.

A(m, p) =
m!

(m − p)!
(1)

For example, in the simplest case of a job shop with just m = 2 machines (A, and B),
as described in the Section 2.2, about the application of the Jackson’s sequencing process
of a set of m machines, it will be necessary to sequence or order four sets of machines, as
follows: {A}, {B}, {A,B}, and {B,A}, which is calculated through equation 1 by A(2,2) + A(2,1)
= 2 + 2 = 4 sets of machines.

This job shop scheduling process complexity grows exponentially, and Figure 1 and
Table 1 show this very fast increase in this complexity of the scheduling process, when
increasing the number of machines up to 10, reaching 9,864,100 sets of machines to be
sequenced. Therefore, it turns out to be of utmost importance to further explore alter-
native scenarios for carrying out the scheduling process, among a set of collaborating
entities or even factories, for instance, in the context of EME or VE that jointly perform a
scheduling process.
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Table 1. Problem complexity.

Nº Machines Complexity

2 4

3 15

4 64

5 325

6 1932

7 8659

8 109,600

9 986,400

10 9,864,100

3. Interoperable Manufacturing Scheduling System
3.1. Scheduling System Architecture

In this work, a developed interoperable manufacturing scheduling system (IMSS) was
used for solving problems occurring in different kind of more or less complex manufac-
turing environments, namely in a job shop, by enabling to decompose them into simpler
ones through a proposed scheduling model that is an extension of the Jackson’s model for
enabling to solve general job shop scheduling problems with three or more work centers,
by concatenating the partial solutions or schedules to form a complete solution for the
whole original problem carried out by using a central or core scheduling system (CSS).
In Figure 2, the architecture of the IMSS is shown, for an application example, occurring
in an industrial company, which integrates three work centers (WC1, WC2, and WC3).
This IMSS architecture includes thus the CSS, and which is interconnected with the work
centers, enabling data sharing with the shop floor’s operational level, and by enabling
to automatically acquire data through RFID and store it in a local database, along with
further processing through the use of smart objects and additional devices and technol-
ogy [5,40,41]. Moreover, the CSS is linked to a pre-processing module, which permits
the insertion of information arising from the clients’ orders that is also inserted in the
corresponding supporting database, and the whole set of information (joint factory and
clients data) is subject to a pre-processing function of the IMSS, for data analysis, filtering
and other pre-processing procedures, namely for dealing with incomplete data, with the
support of historical data sets processed, along with methods for uncertainty treatment,
based on dynamic, and fuzzy based approaches [42–44] (Figures 3 and 4).

The CSS includes a set of scheduling problems solving algorithms, varying from simple
heuristics and dispatching rules up to more complex ones, namely based on a diverse
kind of heuristics, and meta-heuristics [32,45], along with other AI-based approaches, for
instance, based on machine learning [46], and others, namely based on cluster analysis [18].

The IMSS does further include a post-processing module, which permits the selection
of a considered best suited solution for a given scheduling problem, based on a comparative
analysis of existing alternative solutions, through their quality evaluation, according to
the specific companies’ needs and preferences, namely regarding the higher or lower
importance or priority assigned to different kind of performance measures, varying between
internal and external ones, corresponding to the relative importance that is given, at a given
time period, to factories objectives, namely based on production times and/or on client’s
oriented objectives, for instance, related to orders due dates, correspondingly. Besides,
this post-processing module does further enables us to compare the generated scheduling
solutions with historical information, and to dynamically update this repository.
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3.2. Ilustrative Scheduling System Interface

The CSS has different kind of processes, through three levels, as expressed in the
Figure 3, and by using appropriate interfaces, as illustrated in the Figure 4, which is about a
module of the IMSS that enables to access past scheduling data, namely for being compared
with some current or new data, and perform specific processes accordingly, namely for
dealing with current incomplete or uncertain data about the processing times of some jobs
to be scheduled, by applying appropriate data processing models and methods [5,44].

At the first level, the CSS permits automatic data collection and storage arising from
the shop floor, along with its integration with information from the clients orders, and
its further joint processing, namely for dealing with uncertain or incomplete data, and its
further treatment to reach proper data sets for solving a given scheduling problem.

The second level is about the access, selection and execution of diverse kinds of
scheduling algorithms put available through the CSS of the IMSS, through the resolution of
each sub problem underlying a given scheduling problem, based the proposed scheduling
model, which is going to be further described next, in the Section 4.1.

Finally, at the third level the CSS enables further data post processing and analysis,
namely for composing a global or complete solution for the scheduling problems consid-
ered, also based on the proposed model, and by further enabling other deeper solutions
analysis, for instance, based on multivariate data series analysis methods [5,47].

4. Collaborative Scheduling

In this section is briefly described a proposed collaborative manufacturing schedul-
ing (CMS) approach, based on a scheduling model that results from an extension of the
Jachson’s job shop scheduling model, in order to permit the resolution of more complex
problems, for instance, occurring in varying kind of job shop manufacturing environments.

4.1. Proposed Scheduling Model

The proposed scheduling model for enabling CMS, based on the original approach
proposed by Jackson, in 1956 [14], enables to establish the sequencing order of a set of
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jobs in a classical job shop environment, composed by two or more machines or work
centers. Therefore, in this paper, this Jackson’s scheduling approach is extended, in order
to schedule jobs in a wider set of machines or work centers or any other kind of production
units or factories, which may further be geographically dispersed.

In order to enable to carry out manufacturing scheduling of a set of n jobs in a general
job shop manufacturing environment, integrating more than two machines, either in
the context of a conventional or classical job shops or occurring in the context of some
distributed manufacturing environment, were jobs have to be scheduled to be processed
through a set of production units or factories or locally, by a set of machines or work centers,
an extension of the Jackson’s model is put forward. This model is represented next, for
sequencing jobs in a set of three machines or work centers, defined as A, B, and C, by
exploring four possible alternative sequences for processing the jobs in those work centers.

Work Center A
Sequence 1:
{A,B,C}->{A,C,B}->{B,A,C}->{A,B}->{A,C}->{A}->{C,A}->{B,A}->{C,A,B}->{B,C,A}->{C,B,A}
Sequence 2:
{A,C,B}->{A,B,C}->{B,A,C}->{A,B}->{A,C}->{A}->{C,A}->{B,A}->{C,A,B}->{C,B,A}->{B,C,A}
Sequence 3:
{A,B,C}->{A,C,B}->{B,A,C}->{A,C}->{A,B}->{A}->{B,A}->{C,A}->{C,A,B}->{B,C,A}->{C,B,A}
Sequence 4:
{A,C,B}->{A,B,C}->{B,A,C}->{A,C}->{A,B}->{A}->{B,A}->{C,A}->{B,A,C}->{C,B,A}->{B,C,A}
Work center B
Sequence 1:
{B,A,C}->{B,C,A}->{A,B,C}->{B,A}->{B,C}->{B}->{C,B}->{A,B}->{C,B,A}->{A,C,B}->{C,A,B}
Sequence 2:
{B,C,A}->{B,A,C}->{A,B,C}->{B,A}->{B,C}->{B}->{C,B}->{A,B}->{C,B,A}->{C,A,B}->{A,C,B}
Sequence 3:
{B,A,C}->{B,C,A}->{A,B,C}->{B,C}->{B,A}->{B}->{A,B}->{C,B}->{C,B,A}->{A,C,B}->{C,A,B}
Sequence 4:
{B,C,A}->{B,A,C}->{A,B,C}->{B,C}->{B,A}->{B}->{A,B}->{C,B}->{C,B,A}->{C,A,B}->{A,C,B}
Work center C
Sequence 1:
{C,A,B}->{C,B,A}->{B,C,A}->{C,A}->{C,B}->{C}->{B,C}->{A,C}->{A,C,B}->{A,B,C}->{B,A,C}
Sequence 2:
{C,B,A}->{C,A,B}->{B,C,A}->{C,A}->{C,B}->{C}->{B,C}->{A,C}->{A,C,B}->{B,A,C}->{A,B,C}
Sequence 3:
{C,A,B}->{C,B,A}->{B,C,A}->{C,B}->{C,A}->{C}->{A,C}->{B,C}->{A,C,B}->{A,B,C}->{B,A,C}
Sequence 4:
{C,B,A}->{C,A,B}->{B,C,A}->{C,B}->{C,A}->{C}->{A,C}->{B,C}->{A,C,B}->{B,A,C}->{A,B,C}

In this proposed extended model, besides the previous scenarios related to the two ma-
chines job shop sub problems, considered in the Jackson’s model, there are further included other
job shop scheduling sub problems, with two machines ({A,C},{B,C},{C,A},{C,B}), and job shop
sub problems with three machines ({A,B,C},{A,C,B}, {B,A,C},{B,C,A},{C,A,B},{C,B,A}). These can
be solved by using the Johnson’s rule for three machines or some other kind of approach, for
instance, the Branch-and-Bound (B&B) algorithm by Ignall and Schrage, in 1965 [48], among
other approaches, including different kinds of heuristics or meta-heuristics or other AI-based
approaches [5,18,45].

As the number of machines/work centers increases, the number of alternative se-
quences for ordering the sets of jobs for each machine increases too, but fortunately this
does not necessarily increase the complexity of the primary scheduling processes, once the
number of sets of jobs remains the same, for each alternative sequence to be considered on
each machine or work center. Besides, the complexity related to the sequencing problem
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inherent to ordering the jobs in each corresponding set, requires an extra effort for establish-
ing the alternative sequences for each machine, which turns out to be another additional
operation, requiring the examination of the alternative sequences, and the calculation of
the performance measure associated to each sequence for the selection of the best one, for
each valid or possible complete schedule for each machine/work center. Therefore, the best
final sequence of jobs on each machine has to be validated, regarding its feasibility, for each
problem instance, while aiming, for instance, at the minimization of the total completion
time of the jobs or makespan.

This model can the extended to solve more complex scheduling problems, occurring
in job shops with more than three machines or work centers, by using a similar general
logic as it was illustrated for the case of a classical job shop with three machines/work
centers. Therefore, in these, more complex job shop scheduling environments, the under-
lying sub-problems to be solved turn out to be increasingly more complex too, with the
appearance of more complex underlying flow shop problems, including a higher number of
machines/work centers (4, 5, etc.), thus requiring appropriate algorithms, which tend to be
more complex too, and this complexity continues to rise when the number of jobs increases,
as well as the number of possible alternative sequences for processing the sets of jobs to
be further evaluated to reach a final solution for each machine/work center. Thus, with
the increase in complexity of the problems it becomes more important to explore different
heuristics or meta-heuristics, along with other kinds of approaches, for instance, based on
varying kind of AI based ones, to approach corresponding sub-problems [5,18,45].

5. Scheduling Case Study in a Job Shop Environment under Three Different Scenarios

The proposed model for supporting CMS can be implemented through diverse kind
of scenarios, considering different priorities attributed to the so-called internal (scenario
1, Sc1) and external (scenario 2, Sc2) performance measures, for evaluating the quality of
the solutions obtained, varying from purely or 100% internal or external, to intermediate
situations that consider different weights attributed to the internal versus external measures,
namely by considering the same importance associated to both kind of measures (scenario
3, Sc3, with 50%–50% for each kind of internal and external performance measure).

In the Tables 2 and 3 is shown the data from a clothing company about two scheduling
problem instances (5 and 27), among a set of thirty analyzed, which include the deadlines
(di) and the processing times of the operations of a set of ten jobs (Ji) that belong to a same
family of products, and are executed in the corresponding work centers (WCj: WC1, WC2,
and WC3), being the operations measured in time units (t.u.).

Table 2. Scheduling problem (instance 5) data.

WCj\Ji J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Op.1 4| WC2 7| WC2 4| WC1 6| WC2 2| WC2 6| WC3 5| WC1 4| WC2 5| WC1 2| WC3

Op.2 2| WC3 3| WC3 5| WC2 7| WC1 8| WC3 2| WC2 8| WC2 - - -

Op.3 6| WC1 9| WC1 - - - 4| WC1 6| WC3 - - -

di 28 32 27 19 33 34 26 35 31 28

Table 3. Scheduling problem (instance 27) data.

WCj\Ji J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Op.1 3 |WC2 8| WC3 6| WC1 4| WC2 7| WC2 9| WC1 9| WC1 3| WC1 2| WC1 6| WC3

Op.2 1| WC1 4| WC2 4| WC2 6| WC1 5| WC1 4| WC2 5| WC2 - - -

Op.3 3| WC3 3| WC1 7| WC3 - - 5| WC3 - - - -

di 34 33 36 31 38 32 39 36 32 39
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5.1. Internal Performance Oriented Approaches–Scenario 1

In the case of an absolute importance or priority is given to the satisfaction of internal
performance measures, such as the typical total or maximum completion time of a set of
jobs to be processed in the manufacturing system (makespan) and/or other production
time-oriented measures, like the sum or the mean flow time of jobs, through appropri-
ate optimization algorithms selected, available from the whole set of CSS’s scheduling
algorithms.

5.2. External Performance Oriented Approaches–Scenario 2

In the case of an absolute importance or priority being given to the satisfaction of
external performance measures, typically based on the accomplishment of deadlines or due
dates for the jobs, namely measures through the number or tardy jobs (Nt), and/or through
other more or less closely related performance measures, such as the maximum tardiness
of jobs (Tmax), among others, namely the mean lateness of the jobs, also appropriate
optimization methods that have to be selected, from the whole set of scheduling algorithms
put available through the CSS of the IMSS to solve them.

5.3. Combined Performance Oriented Approaches–Scenario 3

In the case of the same importance or priority is given to the satisfaction of internal and
external performance measures, thus oriented to jobs’ production times and deadlines, by
using a 50–50% weighting that has to be attributed to the corresponding solving methods
selected from the whole set of scheduling algorithms available through the CSS of the IMSS.

6. Scheduling Model Application Analysis and Discussion

In Figure 5 are expressed the performance measure results obtained for the thirty
problem instances that were run under the corresponding application scenarios previously
described. These results are thus organized in three groups, from the upper to the lower
level, associated to the scenarios 1, 2 and 3 (Sc1, Sc2, and Sc3) about: the maximum
completion time of jobs (Cmax), the maximum tardiness of jobs (Tmax), and the number of
tardy jobs (Nt), correspondingly.
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The mean values obtained through the execution of the thirty problem instances
under the scenarios Sc1, Sc2, and Sc3, for the Cmax, Nt, and Tmax performance measures,
correspondingly, are expressed in Figure 6.
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The analysis of this Figure 6 permits to realize that the best mean value of the makespan
(Cmax) about the thirty problem instances run was obtained in the scenario Sc1, by applying
the Shorted Processing Time (SPT) rule to the sets of jobs with just one operation, along with
the Johnsons rule for the sets of jobs with two operations, to be processed in corresponding
two work centers flow shops, and the B&B algorithm from Ignall & Schrage, for the sets of
jobs integrating three operations, to be processed in three work centers flow shops [5,16].

Regarding the Nt, the best mean value about the thirty problem instances run was
obtained in the scenario Sc2, by applying the Earliest Due Date (EDD) rule to the sets of
jobs with just one operation, along with a modified version of the Hodgson’s algorithm [5]
for solving the sets of jobs with two operations, to be processed in two work centers flow
shops, and an adapted version of the Ignall & Schrage’s B&B algorithm to the set of jobs
with three operations, to be processed in three WorkCentre flow shops, for minimizing the
number of tardy jobs.

In terms of the Tmax the best mean value was reached for the scenario Sc1, by also
applying the SPT rule to the sets of jobs with one operation, along with the Johnson’s rule
for solving the sets of jobs to be processed in two work centers flow shops, and an adapted
version of the Ignall & Schrage’s B&B algorithm to the set of jobs with three operations, to
be processed in three work center flow shops, for minimizing the maximum tardiness of
the jobs.

In the Figures 7–9, are shown the Gantt charts about the best solutions found for
the scenarios Sc1, Sc2, and Sc3, correspondingly, after the application of the proposed
scheduling model presented in the Section 4.1, for the compilation of the complete sequence
of the jobs to be processes in the corresponding work center, and once selected the best one.
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As it can be realized by analyzing the Gantt charts about the best solutions obtained
for each application scenario, in the Figure 7 it is visible that a more compact solution
was reached, which enables a shorter total completion time of the whole set of jobs to be
processed in the corresponding three work centers, thus further enabling its most favorable
utilization rate, as just the work centers 2 and 3 (WC2, and WC3) present some relatively
reduced idle time, in opposite to what happens to the work centers in the scenarios 2 and 3,
on which the three work centers present idle times, being more significant ones.

Although, by further analyzing the summarized results about the performance measures
values obtained for the three scenarios about Cmax, Nt, and Tmax for these corresponding best
solutions, as expressed in the Table 4, it is possible to perform additional analysis.

Table 4. Best scheduling problems results.

Scenario (Sck) Cmax Nt Tmax

Sc1 (problem instance 5) 40 7 9

Sc2 (problem instance 27) 57 2 25

Sc3 (problem instance 27) 49 4 10

It is possible to realize that the best solution found about the minimization of the
Cmax–maximum completion time of the jobs, did occur in the scenario Sc1 (of 40 t.u.), but
the total number of tardy jobs (Nt) does correspond to the worst value among the three
best solutions, with 7 late jobs in the whole set of ten jobs to be processes. Contrarily, the
best (minimum) value for the Nt was obtained in the scenario Sc2, with 2 late jobs, but this
Sc2 did obtain the worst value for the makespan (Cmax = 57 t.u.), and also the worst value
for the maximum tardiness of the jobs (Tmax = 25 t.u.), among the three best solutions.

Besides, in terms of the minimization of the Tmax, the best value was also reached in
scenario Sc1, of 9-time units, very closely followed by the value obtained in the scenario Sc3
(10 t.u.). Moreover, it can be seen that this scenario Sc3 does further enable to reach a better
balance between the values obtained for the three performance measures among the best
three solutions reached, with a Cmax of 49-time units, and a Nt of 4 late jobs, besides the
Tmax with 10-time units. Therefore, although this balance can, in general, be seen as a good
solution to be adopted, once it is always visible a trade-off situation between the quality
of the solutions obtained, regarding the corresponding set of internal, external, and a mix
of internal and external performance measures considered, through the three application
scenarios explored, clearly an indication of priorities or preferences is required, by an
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experienced manufacturing management decision-maker, while selecting a considered best
final solution, regarding each specific manufacturing management conditions verified at a
given scheduling moment.

7. Conclusions

In this paper a proposed collaborative scheduling model was presented that consists
of an extension of the Jackson’s job shop scheduling model, and its results obtained were
analyzed through an industrial example of application, consisting of a set of thirty industrial
problem instances from a clothing company. The model was explored under three different
application scenarios, about internal, external, and combined performance measures, with
the same weight, related to the total completion time of the jobs, the number of late jobs
and the tardiness of the jobs being executed in a job shop environment with three work
centers. The resolution of the problem instances was carried out through the selection
of alternative algorithms put available through a developed interoperable scheduling
system, which enables to jointly process scheduling data from a historical repository and
information arising from clients, along with incomplete and uncertain data processing.
Through the study carried out, it was possible to realize the benefits associated with the
use of the presented scheduling system and underlying problem-solving model. One
main benefit is related to the possibility of decomposing complex scheduling problems,
occurring in job shop manufacturing environment in simpler sub-problems that can be
solved individually and then the partial solutions combined to obtain complete alternative
solutions for the whole problem to be further analyzed in order to select the one considered
best suited in a concrete manufacturing management situation. Moreover, the scheduling
algorithms can be selected from a set of varying kind of algorithms put available through
the interoperable scheduling system, which range from simple dispatching rules up to
more complex ones, for instance, based on branch-and-bound, among other optimization
methods and underlying techniques, along with other solving methods, namely a set
of heuristics, meta-heuristics, along with other AI-based approaches, including machine
learning and clustering algorithms.

The application of different kind of scheduling algorithms was explored, and through
the results obtained it was possible to realize that the selection of a certain final solution, will
much depend on the priorities or preferences defined by the decision maker, based on each
particular conditions underlying a given specific manufacturing and management situation,
as each potential possible alternative solution selected will have some drawback and benefit.
Although, it was possible to recognize that there are visible general or overall benefits when
some weights are attributed to the different kind of performance measures to be considered,
namely by using a considered 50-50 performance measures weighting or third scenario,
as the alternative solutions tend to present trade-offs, while tending to the optimization
of some performance measures, according to the corresponding solving algorithm used,
which in this case, were divided in two main subsets, intending the optimization of the
so-called internal and external performance measures.

This is a novel contribution, as far as our knowledge, existing contributions do not
explore a widened range of alternative methods combinations to solve a given scheduling
problem, while decomposing it into simple ones, to further enable different alternatives to
concatenate them, in order to permit a wider range of alternative final or complete solutions
to be evaluated for reaching a final decision about a considered best suited global solution
for a specific problem to be solved. This is considered a relevant contribution for the state
of the art in this domain, as it enables a set of entities (decision-makers and/or machines)
to collaborate for jointly exploring alternative solutions for solving a given scheduling
problem, by running different kind of scheduling algorithms for solving the sub-problems
integrating the global one.

As future work, it is planned to further analyze the potential of the proposed ex-
tended scheduling model, regarding its potential additional benefits and limitations for
carrying out the collaborative manufacturing scheduling in other kind of manufacturing
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environments, for instance, in the context of distributed manufacturing systems subject to
additional constraint, namely about the sets of jobs and their processing units.

Author Contributions: In this paper, the conceptualization and methodology definitions were
established by L.R.V.; the main investigation, preparation, writing—original draft was done by
L.R.V.; the writing—review and editing, and visualization, was jointly carried out by L.R.V., C.F.V.A.,
A.S.S., G.G.V., N.L. and G.D.P. The general supervision of this work was performed by L.R.V. and
G.D.P.; and the project administration, and funding acquisition, was accomplished by L.R.V. All
authors have read and agreed to the published version of the manuscript.

Funding: The project is funded by the FCT—Fundação para a Ciência e Tecnologia through the R&D
Units Project Scope: UIDB/00319/2020, and EXPL/EME-SIS/1224/2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work has been supported by national funds through the FCT—Fundação
para a Ciência e Tecnologia through the R&D Units Project Scope: UIDB/00319/2020 and EXPL/EME-
SIS/1224/2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Putnik, G.D.; Putnik, Z.; Shah, V.; Varela, L.; Ferreira, L.; Castro, H.; Catia, A.; Pinheiro, P. Collaborative Engineering definition:

Distinguishing it from Concurrent Engineering through the complexity and semiotics lenses. IOP Conf. Ser. Mater. Sci. Eng. 2021,
1174, 012027. [CrossRef]

2. Putnik, G.D.; Putnik, Z.; Shah, V.; Varela, L.; Ferreira, L.; Castro, H.; Catia, A.; Pinheiro, P. Collaborative Engineering: A Review of
Organisational Forms for Implementation and Operation. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1174, 012028. [CrossRef]

3. Eijnatten, F.M.; Putnik, G.D. Chaos, Complexity, Learning, and the Learning Organization: Towards a Chaordic Enterprise; Emerald
Group Publishing: Bingley, UK, 2004.

4. Lou, P.; Ong, S.K.; Nee, A.Y.C. Agent-based distributed scheduling for virtual job shops. Int. J. Prod. Res. 2010, 48, 3889–3910.
[CrossRef]

5. Vieira, G.; Varela, M.L.R.; Putnik, G.D. Technologies integration for distributed manufacturing scheduling in a virtual enterprise.
In International Conference on Virtual and Networked Organizations, Emergent Technologies, and Tools; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 337–347.

6. Canadas, N.; Machado, J.; Soares, F.; Barros, C.; Varela, L. Simulation of cyber physical systems behaviour using timed plant
models. Mechatronics 2018, 54, 175–185. [CrossRef]

7. Kays, H.M.E.; Karim, A.N.M.; Daud, M.R.C.; Varela, M.L.R.; Putnik, G.D.; Machado, J.M. A collaborative multiplicative
Holt-Winters forecasting approach with dynamic fuzzy-level component. Appl. Sci. 2018, 8, 530. [CrossRef]

8. Putnik, G.D.; Ferreira, L.G.M. Industry 4.0: Models, tools and cyber-physical systems for manufacturing. FME Trans. 2019, 47,
659–662. [CrossRef]

9. Deloitte, 2012. Retail Globalization. Deloitte Touche Tohmatsu Limited. Available online: https://www.deloitte.com/global/en.
html (accessed on 17 October 2022).

10. Hankel, M.; Rexroth, B. The reference architectural model industrie 4.0 (rami 4.0). ZVEI 2015, 2, 4–9.
11. Kagermann, H. Change through digitization—Value creation in the age of Industry 4.0. In Management of Permanent Change;

Springer Gabler: Wiesbaden, Germany, 2015; pp. 23–45.
12. Li, L. China’s manufacturing locus in 2025: With a comparison of “Made-in-China 2025” and “Industry 4.0”. Technol. Forecast. Soc.

Chang. 2018, 135, 66–74. [CrossRef]
13. Sony, M.; Naik, S.S. Ten lessons for managers while implementing Industry 4.0. IEEE Eng. Manag. Rev. 2019, 47, 45–52. [CrossRef]
14. Jackson, J.R. An extension of Johnson’s results on job lot scheduling. Nav. Res. Logist. Q. 1956, 3, 201–203. [CrossRef]
15. Arrais-Castro, A.; Varela ML, R.; Putnik, G.D.; Ribeiro, R.A.; Machado, J.; Ferreira, L. Collaborative framework for virtual

organisation synthesis based on a dynamic multi-criteria decision model. Int. J. Comput. Integr. Manuf. 2018, 31, 857–868.
[CrossRef]

16. Reddy, M.S.; Ratnam, C.; Agrawal, R.; Varela, M.L.R.; Sharma, I.; Manupati, V.K. Investigation of reconfiguration effect on
makespan with social network method for flexible job shop scheduling problem. Comput. Ind. Eng. 2017, 110, 231–241. [CrossRef]

17. Alves, F.; Varela, M.L.R.; Rocha, A.M.A.; Pereira, A.I.; Leitão, P. A human centered hybrid MAS and meta-heuristics based system
for simultaneously supporting scheduling and plant layout adjustment. FME Trans. 2019, 47, 699–710. [CrossRef]

http://doi.org/10.1088/1757-899X/1174/1/012027
http://doi.org/10.1088/1757-899X/1174/1/012028
http://doi.org/10.1080/00207540902927918
http://doi.org/10.1016/j.mechatronics.2017.10.009
http://doi.org/10.3390/app8040530
http://doi.org/10.5937/fmet1904659P
https://www.deloitte.com/global/en.html
https://www.deloitte.com/global/en.html
http://doi.org/10.1016/j.techfore.2017.05.028
http://doi.org/10.1109/EMR.2019.2913930
http://doi.org/10.1002/nav.3800030307
http://doi.org/10.1080/0951192X.2018.1447146
http://doi.org/10.1016/j.cie.2017.06.014
http://doi.org/10.5937/fmet1904699A


Machines 2022, 10, 1138 15 of 16

18. Azevedo, B.F.; Varela, M.L.R.; Pereira, A.I. Production Scheduling Using Multi-objective Optimization and Cluster Approaches.
In Proceedings of the International Conference on Innovations in Bio-Inspired Computing and Applications, Online, 16–18
December 2021; pp. 120–129.

19. Shen, W.; Wang, L.; Hao, Q. Agent-based distributed manufacturing process planning and scheduling: A state-of-the-art survey.
IEEE Trans. Syst. Man Cybern. Part C 2006, 36, 563–577. [CrossRef]

20. Manupati, V.K.; Gokula Krishnan, M.; Varela, M.L.R.; Machado, J. Telefacturing based distributed manufacturing environment
for optimal manufacturing service by enhancing the interoperability in the hubs. J. Eng. 2017, 2017, 9305989. [CrossRef]

21. Fu, Y.; Wang, H.; Huang, M. Integrated scheduling for a distributed manufacturing system: A stochastic multi-objective model.
Enterp. Inf. Syst. 2019, 13, 557–573. [CrossRef]

22. Cheng, Y.; Bi, L.; Tao, F.; Ji, P. Hypernetwork-based manufacturing service scheduling for distributed and collaborative manufac-
turing operations towards smart manufacturing. J. Intell. Manuf. 2020, 31, 1707–1720. [CrossRef]

23. Zhou, R.; Chen, G.; Yang, Z.H.; Zhang, J.B. Distributed manufacturing scheduling using a novel cooperative system. In
Proceedings of the 2008 IEEE International Conference on Service Operations and Logistics, and Informatics, Beijing, China,
12–15 October 2008; Volume 1, pp. 256–260.

24. Baker, K.R.; Trietsch, D. Safe scheduling: Setting due dates in single-machine problems. Eur. J. Oper. Res. 2009, 196, 69–77.
[CrossRef]

25. Pinedo, M.; Chao, X. Operations Scheduling with Applications in Manufacturing and Services; McGraw Hill: New York, NY, USA, 1999.
26. Pinedo, M.L. Scheduling Theory, Algorithms and Systems, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2012.
27. Mishra, N.; Singh, A.; Kumari, S.; Govindan, K.; Ali, S.I. Cloud-based multi-agent architecture for effective planning and

scheduling of distributed manufacturing. Int. J. Prod. Res. 2016, 54, 7115–7128. [CrossRef]
28. Zhang, X.; Liu, X.; Tang, S.; Królczyk, G.; Li, Z. Solving scheduling problem in a distributed manufacturing system using a

discrete fruit fly optimization algorithm. Energies 2019, 12, 3260. [CrossRef]
29. Mao, X.; Li, J.; Guo, H.; Wu, X. Research on Collaborative Planning and Symmetric Scheduling for Parallel Shipbuilding Projects

in the Open Distributed Manufacturing Environment. Symmetry 2020, 12, 161. [CrossRef]
30. Zijm, W.H.M. The integration of process planning and shop floor scheduling in small batch part manufacturing, Ann. CIRP 1995,

44, 429–432. [CrossRef]
31. Shen, Y.J.; Wang, M.S. Broadcast scheduling in wireless sensor networks using fuzzy Hopfield neural network. Expert Syst. Appl.

2008, 34, 900–907. [CrossRef]
32. Madureira, A.; Ramos, R.; Carmo Silva, S. Using Genetic Algorithms for Dynamic Scheduling. In Proceedings of the 14th Annual

Production and Operations Management Society Conference (POMS’2003), Savannah, GA, USA, 4–7 April 2003.
33. Alves, C.; Putnik, G.D.; Varela, M.L.R. How environment dynamics affects production scheduling: Requirements for development

of CPPS models. FME Trans. 2021, 49, 827–834. [CrossRef]
34. Goren, S.; Sabuncuoglu, I. Robustness and Stability Measures for Scheduling: Single Machine Environments. IIE Trans. 2008, 40,

66–83. [CrossRef]
35. Ouelhadj, D.; Petrovic, S. A Survey of Dynamic Scheduling in Manufacturing Systems. J. Sched. 2009, 12, 417–431. [CrossRef]
36. Aytug, H.; Lawley, M.A.; McKay, K.; Mohan, S.; Uzsoy, R. Executing production schedules in the face of uncertainties: A review

and some future directions. Eur. J. Oper. Res. 2005, 161, 86–110. [CrossRef]
37. Shen, W. Distributed manufacturing scheduling using intelligent agents. IEEE Intell. Syst. 2002, 17, 88–94. [CrossRef]
38. Saeidlou, S.; Saadat, M.; Amini Sharifi, E.; Jules, G.D. Agent-based distributed manufacturing scheduling: An ontological

approach. Cogent Eng. 2019, 6, 1565630. [CrossRef]
39. Ramakurthi, V.B.; Manupati, V.K.; Machado, J.; Varela, L. A hybrid multi-objective evolutionary algorithm-based semantic

foundation for sustainable distributed manufacturing systems. Appl. Sci. 2021, 11, 6314. [CrossRef]
40. Guo, Z.; Ngai, E.; Yang, C.; Liang, X. An RFID-based intelligent decision support system architecture for production monitoring

and scheduling in a distributed manufacturing environment. Int. J. Prod. Econ. 2015, 159, 16–28. [CrossRef]
41. Varela, M.L.R.; Putnik, G.D.; Manupati, V.K.; Rajyalakshmi, G.; Trojanowska, J.; Machado, J. Integrated process planning and

scheduling in networked manufacturing systems for I4.0: A review and framework proposal. Wirel. Netw. 2021, 27, 1587–1599.
[CrossRef]

42. Chiu, C.; Yih, Y. A learning-based methodology for dynamic scheduling in distributed manufacturing systems. Int. J. Prod. Res.
1995, 33, 3217–3232. [CrossRef]

43. Varela, M.L.R.; Ribeiro, R.A. Distributed Manufacturing Scheduling Based on a Dynamic Multi-criteria Decision Model. In Recent
Developments and New Directions in Soft Computing; Zadeh, L., Abbasov, A., Yager, R., Shahbazova, S., Reformat, M., Eds.; Studies
in Fuzziness and Soft Computing; Springer: Cham, Switzerland, 2014; p. 317. [CrossRef]

44. Vafaei, N.; Ribeiro, R.A.; Camarinha-Matos, L.M.; Varela, L.R. Normalization techniques for collaborative networks. Kybernetes
2019, 49, 1285–1304. [CrossRef]

45. Santos, A.S.; Madureira, A.M.; Varela, M.L.R. An ordered heuristic for the allocation of resources in unrelated parallel-machines.
Int. J. Ind. Eng. Comput. 2015, 6, 145–156.

46. Putnik, G.D.; Pabba, S.K.; Manupati, V.K.; Varela, M.L.R.; Ferreira, F. Semi-Double-loop machine learning based CPS approach
for predictive maintenance in manufacturing system based on machine status indications. CIRP Ann. Manuf. Technol. 2021, 70,
365–368. [CrossRef]

http://doi.org/10.1109/TSMCC.2006.874022
http://doi.org/10.1155/2017/9305989
http://doi.org/10.1080/17517575.2018.1545160
http://doi.org/10.1007/s10845-018-1417-8
http://doi.org/10.1016/j.ejor.2008.02.009
http://doi.org/10.1080/00207543.2016.1165359
http://doi.org/10.3390/en12173260
http://doi.org/10.3390/sym12010161
http://doi.org/10.1016/S0007-8506(07)62357-9
http://doi.org/10.1016/j.eswa.2006.10.024
http://doi.org/10.5937/fme2104827A
http://doi.org/10.1080/07408170701283198
http://doi.org/10.1007/s10951-008-0090-8
http://doi.org/10.1016/j.ejor.2003.08.027
http://doi.org/10.1109/5254.988492
http://doi.org/10.1080/23311916.2019.1565630
http://doi.org/10.3390/app11146314
http://doi.org/10.1016/j.ijpe.2014.09.004
http://doi.org/10.1007/s11276-019-02082-8
http://doi.org/10.1080/00207549508904870
http://doi.org/10.1007/978-3-319-06323-2_6
http://doi.org/10.1108/K-09-2018-0476
http://doi.org/10.1016/j.cirp.2021.04.046


Machines 2022, 10, 1138 16 of 16

47. Varela, M.L.R.; Amaral, G.; Pereira, S.; Machado, D.; Falcão, A.; Ribeiro, R.; Sousa, E.; Santos, J.; Pereira, A.F. Interoperable
Decision Support System based on Multivariate Time Series for Setup Data Processing and Visualization. In Proceedings of the
19th International on Intelligent Systems Design and Applications (ISDA 2019), Auburn, WA, USA, 3–5 December2019; Advances
in Intelligent Systems and Computing. Springer: Cham, Switzerland, 2019; pp. 550–560.

48. Ignall, E.; Schrage, L. Application of the branch and bound technique to some flow-shop scheduling problems. Oper. Res. 1965,
13, 400–412. [CrossRef]

http://doi.org/10.1287/opre.13.3.400

	Introduction 
	Manufacturing Scheduling Evolution 
	Scheduling Problems and Solving Approaches 
	The Jackson’s Scheduling Model 
	Scheduling Process Complexity 

	Interoperable Manufacturing Scheduling System 
	Scheduling System Architecture 
	Ilustrative Scheduling System Interface 

	Collaborative Scheduling 
	Proposed Scheduling Model 

	Scheduling Case Study in a Job Shop Environment under Three Different Scenarios 
	Internal Performance Oriented Approaches–Scenario 1 
	External Performance Oriented Approaches–Scenario 2 
	Combined Performance Oriented Approaches–Scenario 3 

	Scheduling Model Application Analysis and Discussion 
	Conclusions 
	References

