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Abstract: To reveal the nonlinear dynamic behavior of gear rattling vibration caused by gear back‑
lash, a 2‑DOF oscillator model with spring and damping elements was established. Based on the the‑
ory of discontinuous dynamical systems, the phase plane of gearmotionwas divided into three parts:
the domain of tooth surfacemeshingmotion, the domain of freemotion and the domain of tooth back
meshing motion. Introducing the global mapping and local mapping dynamics method, the process
of gear teeth from impact to meshing and then impact and meshing was accurately described. The
influence of different restitution coefficients on gear impact‑meshing motion was studied by numer‑
ical simulation. The results showed that the grazing bifurcation caused by gear backlash will lead
to complex mapping structures of the system and even chaos. The restitution coefficient directly af‑
fects the impact‑meshing behavior. The introduction of meshing stiffness and restitution coefficient
can reasonably characterize the elastic deformation and energy loss during gear meshing, which pro‑
vides a theoretical model for the application of the theory of discontinuous dynamical systems to a
more complex multi‑degree of freedom flexible contact gear transmission system.

Keywords: rattling vibration; backlash; impact‑meshing; bifurcation and chaos; discontinuous
dynamical systems

1. Introduction
The gear transmission system plays a key role in key parts of aviation, aerospace, au‑

tomobile, ship, mining, metallurgy, robot and other fields [1]. The safe, stable and reliable
operation of this equipment is related to economic benefits and all aspects of social life.

Gear transmission system dynamics is an engineering science to study the dynamic
behavior of gear transmission systems under dynamic excitation [2]. In the process of gear
transmission, due to the needs of manufacturing, installation and lubrication, backlash is
inevitable. The existence of gear backlashmakes the vibration phenomenonmore complex
and produces great noise and dynamic load, especially noise caused by light load [3].

In the aero‑engine accessory transmission system, the sudden change of driving force
caused by themaneuvering behavior of the aircraft will lead to high‑frequency impact and
meshing between gear teeth, which is intuitively shown as gear rattling vibration noise. In
a high‑precision gearbox, the nonlinear rattling vibration of the system will also cause de‑
fects of and damage to the gear [4]. It is of great significance to study the scientific laws
of impact, vibration and noise generated by gear transmission system in the process of
transmitting motion and power to provide theoretical guidance for designing and manu‑
facturing gear transmission systems with low noise, weak vibration, high efficiency and
high reliability.
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1.1. Research on Rattling Vibration of Gear Pairs
Rattling vibration is a strong nonlinear problem. In recent years, many scholars have

studied the nonlinear dynamic behavior of gear rattling vibration. He [5] established a
dynamic model of a single pair gear transmission and solved it by Runge Kutta method,
analysed the dynamic response of the model, and summarized the methods to reduce the
rattling vibration of the system. Liu [6] studied the nonlinear dynamic model of a non‑
circular gear system that considers gear backlash, static transmission error and multifre‑
quency parametric excitation, and found thatwith the increase in the amplitude of error, ec‑
centricity ratio and rotational speed, the system will experience nonrattling, unilateral rat‑
tling and bilateral rattling states. Rigaud [7] conducted an experimental study on rattling
vibration between gear teeth, analysed the influence of drag torque, driving excitation am‑
plitude and frequency on the system, and analysed the dynamic behavior of gear rattling
vibration. It was found that the ratio of excitation frequency to rotation frequency would
have a direct impact on rattling vibration between gear teeth. Guo [8] established a single
pair gear transmission model considering time‑varying backlash, time‑varying stiffness
and nonlinear oil film force, and analysed the influence of torque fluctuation and damping
viscosity on the dynamic behavior of gear rattling vibration. Liang [9] established an equiv‑
alent dynamic model of the gear rattling system, solved the nonlinear dynamic response
of the system by using the integral method, and studied the influence of key factors on the
nonlinear dynamic performance of the system by using the bifurcation diagram, spectrum
diagram and Poincaré map.

Zhang [10] established a non‑linear dynamic model to investigate the gear rattle issue
appearing in novel power‑split hybrid transmission, and found that the system resonances
are not directly related to the hybrid transmission rattle. Dong [11] established a lumped
mass gear‑rattling model with backlash considering the time‑varying mesh stiffness, com‑
posite transmission error and torque fluctuation. The concepts of “high speed impact”
and “low speed contact” in gear‑rattling are proposed. Yoon [12] investigated the gear
rattle phenomena on unloaded gear pairs with different excitation conditions and various
system parameters. The effects of various system parameters on the vibro‑impacts are ex‑
amined using a nonlinear system model.

1.2. Research on the Theory of Discontinuous Dynamical Systems
In the past, the method of continuous dynamic system was usually used in the study

of systems with backlash, while the theory of discontinuous dynamical systems was not
well applied.

In 1995, Han, Luo and Deng [13] jointly proposed the theory of discontinuous dynam‑
ical systems, and analysed the motion of a two‑degree‑of‑freedom oscillator model. Based
on the mapping dynamics, four transformation maps were given, and the periodicity and
bifurcation behavior of the motion in the steady state were analysed. Luo [14] determined
the global mapping structures of a single‑degree‑of‑freedom vibration system based on
mapping dynamics, studied the bifurcation under the change in external excitation fre‑
quency through numerical simulation, and analysed the stability of motion.

Luo [15] further proposed the theory of discontinuous dynamical systems in the time‑
varying domain in 2005. The key of the theory is that, inspired by the physical energy
layer, the core concept of “G function” is proposed for the time‑varying boundary of dis‑
continuous dynamical systems. In essence, the G function is to give a local measurement
method at any point of the time‑varying boundary with the method of limit, which makes
it possible to study the switch of flow on the time‑varying boundary in detail [16]. In 2009,
Luo [17] used a two‑degree‑of‑freedom oscillator model to simulate the impact and mesh‑
ing behavior between gears to reveal the impact‑meshing mechanism of gear pairs. The
existence of periodic motion was numerically analysed by using meshing and grazing con‑
ditions, and periodic motion was analysed and predicted with mapping structures, and
corresponding local stability and bifurcation analysis were carried out. However, due to
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its rigid contact model, it cannot reflect the actual working state of the gear and cannot be
directly applied to the actual working condition of the gear pair transmission.

In recent years, research on discontinuous dynamical systems has been deepened.
Guo [18] studied a discontinuous systemwith two circular boundaries, numerically solved
the motion state of the system using the theory of flow switchability on the discontinuous
boundary, and gave an analytical prediction of possible mapping structures based on the
theory of mapping dynamics. Xu [19–21] used an implicit mapping method to determine
period‑1 to period‑2,4,8 and even chaos in a nonlinear rotor system, developed the theory
of mapping dynamics. Guo [22] studied the existence and bifurcations of periodic motions
in a discontinuous dynamical system through a discontinuousmechanicalmodel. Luo [23]
studied the periodic motion of a discontinuous dynamical system with hyperbolic bound‑
ary by using the theory mapping structures, analysed the stability and bifurcation of the
periodic motion, and explained the switchability of complex periodic motion and flow on
the hyperbolic boundary.

In this paper, a two‑degree‑of‑freedom oscillator model of flexible contact was estab‑
lished. In this model, the meshing stiffness was introduced, the meshing deformation dur‑
ing gear meshing was considered, and the impact between gear teeth was characterized
by the restitution coefficient. The motion phase plane was divided into three motion do‑
mains by using the theory of discontinuous dynamical systems, and the motion of flow
at the boundary was studied by the theory of flow switchability, to reveal the complex
nonlinear dynamic behavior under gear rattling.

2. Materials and Methods
2.1. Discontinuous Model of Gear Pair with Backlash
2.1.1. Model Description

When the gear system operates with light load or no load, the system will produce
high‑frequency rattling vibration due to the fluctuation of driving torque. Figure 1 shows
a schematic diagram of gear pair with backlash. Ii (i = 1, 2) is the rotational inertia. Ri
and Rbi (i = 1, 2) are the pitch radii and basic radii of the driving gear and driven gear; K1,
D1 and K2, D2 are support stiffness and damping of the bearing to gear 1 and gear 2. φ1
and φ2 are the torsional angular displacements; the driving torque of the driving gear is
T cos Ωτ, and B is half of the gear backlash.
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For the case of gears meshing on both sides or no mesh, the equation of motion are:{
I1

..
φ1 + D1

.
φ1 + K1 φ1 = F cos ωt

I2
..
φ2 + D2

.
φ2 + K2 φ2 = 0

no mesh
I1

..
φ1 + D1

.
φ1 + K1 φ1 + D

(
Rb1

.
φ1 − Rb2

.
φ2

)
+K(Rb1 φ1 − Rb2 φ2 − B) = F cos ωt
I2

..
φ2 + D2

.
φ2 + K2 φ2 − D

(
Rb1

.
φ1 − Rb2

.
φ2

)
−K(Rb1 φ1 − Rb2 φ2 − B) = 0

mesh on the right side


I1

..
φ1 + D1

.
φ1 + K1 φ1 + D

(
Rb1

.
φ1 − Rb2

.
φ2

)
+K(Rb1 φ1 − Rb2 φ2 + B) = F cos ωt
I2

..
φ2 + D2

.
φ2 + K2 φ2 − D

(
Rb1

.
φ1 − Rb2

.
φ2

)
−K(Rb1 φ1 − Rb2 φ2 + B) = 0

mesh on the le f t side

(1)

Considering the characteristics of gear teeth along the meshing line, the model is sim‑
plified as the gear tooth vibration‑impact model with backlash as shown in Figure 2. Con‑
sider a set of dimensionless coefficients bd(m) and wd(s−1). The dimensionless displace‑
ments of the gears along the meshing line are x(1), x(2). The time history can be expressed
as t = wdτ. With the driving force F cos ωt, the vibrator with equivalent mass m1 impact
and mesh with the vibrator with equivalent mass m2, where mi = Ii/R2

bi (i = 1, 2). k1, r1 and
k2, r2 represent the dimensionless support stiffness and damping of the bearing to gear 1
and gear 2 respectively; k, r represents the meshing stiffness and meshing damping of the
two vibrators when they reach the meshing conditions. The dimensionless parameters are
defined by:

F = T/(w2
dbd)

w = Ω/wd
ki = Ki/(Rbiw2

d)
ri = Di/(Rbiwd) ,
k = K/w2

d
r = D/wd
b = B/bd

x(i) = Rbi φi/bd (i = 1, 2
)

(2)
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In Figure 2, the equilibrium of the driving gear is at the centre of the two teeth from
the driven gear placed at equilibrium, and the relative displacement is defined as:

z = x(1) − x(2) (3)

The relative velocity is:
.
z =

.
x(1) − .

x(2) (4)
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When the displacement of the two gear teeth reaches the contact boundary (z = b
or z = −b) and the relative speed meets

.
z ̸= 0, the impact will occur. Because the time

of impact is very short, the deformation caused by gear impact is usually not considered,
and the restitution coefficient e is used to describe the simple impact process before gear
meshing. The speed of any gear after impact can be expressed as:

.
x(i)+ = I(i)1

.
x(i)− + I(i)2

.
x(i)− (5)

where, the superscripts “−” and “+” represent before and after impact; the subscripts
“i = 1, 2” represent vibrator 1 and vibrator 2 respectively, and “.” represents derivation.
The corresponding coefficients are:

I(1)1 = m1−m2e
m1+m2

, I(1)2 = (1+e)m2
m1+m2

I(2)1 = m2−m1e
m1+m2

, I(2)2 = (1+e)m1
m1+m2

}
(6)

2.1.2. Discontinuous Boundary and Domain
As shown in Figure 3, the motion domain is divided into the domain of tooth surface

meshing motion α = 1, the domain of free motion α = 2 and the domain of tooth back
meshing motion α = 3: 

Ω1 = {z|z > b}
Ω2 = {z||z| < b}
Ω3 = {z|z < −b}

(7)
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The contact boundary is divided into impact boundary and meshing boundary. In
the relative state space, the mathematical expression of the boundary is:

Impact boundary: {
BdΩR

2∞ =
{

z
∣∣φR

2∞ = z = b,
.
z ̸= 0

}
BdΩL

2∞ =
{

z
∣∣φL

2∞ = z = −b,
.
z ̸= 0

} (8)

where, “BdΩ” represents the boundary, the superscript ”R”, “L” mean left and right re‑
spectively, and the subscript “2∞” represents impact.

Meshing boundary: {
BdΩ21 =

{
z
∣∣φ12 = z = b,

.
z = 0

}
BdΩ23 =

{
z
∣∣φ23 = z = −b,

.
z = 0

} (9)

where the subscript “21” represents the boundary between domain 2 and domain 1, and
the subscript “23” represents the boundary between domain 2 and domain 3.
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According to the properties of the set, the complete set satisfies:

Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ BdΩR
2∞

∪BdΩL
2∞ ∪ BdΩ21 ∪ BdΩ23

(10)

2.1.3. Equations of Motion in Relative Coordinates
When the relative displacement of the vibrator satisfies −b < z < b, the movement

of the vibrators is in the domain of free motion Ω2, and the motion equation is shown
in Equation (11). When two gears move in this domain, they reach the contact boundary
(z = −b or z = b) at a moment, but the relative speed at this time satisfies

.
z = 0. At this

time, if the two gears still have a tendency of relative extrusion (whether this tendency
exists will be judged by the G function later), the motion will enter the meshing domain
Ωα. The equations of motion for α = 1 when meshing on the right boundary and α = 3
when meshing on the left boundary are shown in Equations (12) and (13):

When α = 2: {
m1

..
x(1)2 + r1

.
x(1)2 + k1x(1)2 = F cos ωt

m2
..
x(2)2 + r2

.
x(2)2 + k2x(2)2 = 0

(11)

When α = 1: m1
..
x(1)1 + r1

.
x(1)1 + k1x(1)1 + r

( .
x(1)1 − .

x(2)1

)
+ k

(
x(1)1 − x(2)1 − b

)
= F cos ωt

m2
..
x(2)1 + r2

.
x(2)1 + k2x(2)1 − r

( .
x(1)1 − .

x(2)1

)
− k

(
x(1)1 − x(2)1 − b

)
= 0

(12)

When α = 3: m1
..
x(1)3 + r1

.
x(1)3 + k1x(1)3 + r

( .
x(1)3 − .

x(2)3

)
+ k

(
x(1)3 − x(2)3 + b

)
= F cos ωt

m2
..
x(2)3 + r2

.
x(2)3 + k2x(2)3 − r

( .
x(1)3 − .

x(2)3

)
− k

(
x(1)3 − x(2)3 + b

)
= 0

(13)

Define the state space:
vα =

.
zα, gα =

..
zα

zα = (zα,
.
zα)

T
= (zα, vα)

T

gα =
.
zα = (

.
zα,

.
vα)

T
= (vα, gα)

T
(14)

From the equation of motion of the vibrators, when α = 2:{
v2 =

.
z2 =

.
x(1)2 − .

x(2)2

g2 =
..
z2 =

..
x(1)2 − ..

x(2)2

(15)

When α = 1: {
v1 =

.
z1 =

.
x(1)1 − .

x(2)1

g1 =
..
z1 =

..
x(1)1 − ..

x(2)1

(16)

When α = 3: {
v3 =

.
z3 =

.
x(1)3 − .

x(2)3

g3 =
..
z3 =

..
x(1)3 − ..

x(2)3

(17)

2.1.4. The Definition of Mapping Structures
According to the impact boundary and meshing boundary, the switching planes of

impact boundary are: ∑R
2∞ =

[
(tk, x(1)k ,

.
x(1)k , x(2)k ,

.
x(2)k )

∣∣zk = b,
.
zk ̸= 0

]
∑L

2∞ =
[
(tk, x(1)k ,

.
x(1)k , x(2)k ,

.
x(2)k )

∣∣zk = −b,
.
zk ̸= 0

] (18)
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The switching planes of meshing boundary are: ∑21 =
[
(tk, x(1)k ,

.
x(1)k , x(2)k ,

.
x(2)k )

∣∣zk = b,
.
zk = 0

]
∑23 =

[
(tk, x(1)k ,

.
x(1)k , x(2)k ,

.
x(2)k )

∣∣zk = −b,
.
zk = 0

] (19)

According to the gear motion state, the mapping structure is divided into the no‑
meshing mappings and the meshing mappings. The no‑meshing mappings refers to the
mapping structures in Ω2, which can be divided into the following four types:

P2 : ∑R
2∞ → ∑R

2∞ or ∑R
2∞ → ∑21 or ∑21 → ∑R

2∞
P5 : ∑L

2∞ → ∑L
2∞ or ∑L

2∞ → ∑23 or ∑23 → ∑L
2∞

P3 : ∑R
2∞ → ∑L

2∞ or ∑21 → ∑L
2∞ or ∑R

2∞ → ∑23
or ∑21 → ∑23

P6 : ∑L
2∞ → ∑R

2∞ or ∑23 → ∑R
2∞ or ∑L

2∞ → ∑21
or ∑23 → ∑21

(20)

where P2 and P5 are localmappings, and P3 and P6 are globalmappings; “A → B” indicates
the switching planes fromA to B. Themeshingmappings refers to themappings of motion
in Ωα (α = 1, 3), and can be expressed as:{

P1 : ∑21 → ∑21 or ∑21 → ∑R
2∞

P4 : ∑23 → ∑23 or ∑23 → ∑L
2∞

(21)

where P1 and P4 represent mesh mappings in Ω1 and Ω3, respectively.
Figure 4 shows several possible scenarios for the above mappings.

Machines 2022, 10, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 4. The mapping structures. 

To simplify the mapping structures of the system, impact is implied in the equation 
of motion. The impact motion is embedded into the mappings in 2Ω , that is, 2P , 3P , 5P , 

6P  are followed by a impact: 

1
(1) (1)

1
(2) (2)

1
(1) 1 (1) 1 (2)

1 1 2
(2) 2 (2) 2 (1)

1 1 2

k k

k k

k k

k k k

k k k

t t

x x

x x

x I x I x

x I x I x

+

+

+

+

+

=


=
 =
 = +
 = +

  

  

 (22) 

where, the subscript ” k ” represents the state before impact and ” 1k + ” represents the 
state after impact. In order to study the periodic motion of the impact-meshing model of 
the gear transmission system, the basic mapping symbol [24] is used to describe the map-
ping motion: 

2 1 2 1k kn n n n n nP P P P=    (23) 

where jn ∈{1, 2,...,6}, j∈{1, 2,..., k }. Define a general mapping structure with period-s: 

4 3 2 1 1314 12 11(2 64 5 31 ) (2 64 5 31 )k k k k kk k ks s s s

s terms

P
−


 

4 3 2 1 1314 12 11(2 64 5 31 ) (2 64 5 31 )k k k k kk k ks s s s

s terms

P P
−

= 


 

(24) 

where 0kμν ≥ , μ =  1, 2,...,s, ν =  1, 2, 3, 4. 
If there is a period-1 mapping structure as follows: 

6 32 65 3 2 5m n m nP P P P P=    (25) 

where n , 0m ≥ , means that in this periodic motion, two gears have n + 1 impacts at the 
left boundary 2

LBd ∞Ω , and m + 1 impacts at the right boundary 2
RBd ∞Ω . The same is true 

for multi-period motion. For example, a period-2 motion can be expressed as: 

2(2 65 3) 2 65 3 2 65 3m n m n m nP P P=   (26) 
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To simplify the mapping structures of the system, impact is implied in the equation
of motion. The impact motion is embedded into the mappings in Ω2, that is, P2, P3, P5, P6
are followed by a impact: 

tk+1 = tk

x(1)k+1 = x(1)k

x(2)k+1 = x(2)k
.
x(1)k+1 = I1

1
.
x(1)k + I1

2
.
x(2)k

.
x(2)k+1 = I2

1
.
x(2)k + I2

2
.
x(1)k

(22)

where, the subscript ”k” represents the state before impact and ”k + 1” represents the state
after impact. In order to study the periodic motion of the impact‑meshing model of the
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gear transmission system, the basic mapping symbol [24] is used to describe the mapping
motion:

Pnk ···n2n1 = Pnk ◦ · · · ◦ Pn2 ◦ Pn1 (23)

where nj ∈{1, 2, . . . ,6}, j ∈ {1, 2, . . . ,k}. Define a general mapping structure with period‑s:
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where kµν ≥ 0, µ = 1, 2, . . . , s, ν = 1, 2, 3, 4.
If there is a period‑1 mapping structure as follows:

P2m65n3 = P2m P6 ◦ P5n ◦ P3 (25)

where n, m ≥ 0, means that in this periodic motion, two gears have n + 1 impacts at the
left boundary BdΩL

2∞, and m + 1 impacts at the right boundary BdΩR
2∞. The same is true

for multi‑period motion. For example, a period‑2 motion can be expressed as:

P
(2m65n3)2 = P2m65n3 ◦ P2m65n3 (26)

Extended to period‑2l motion:

P
(2m65n3)2l = P

(2m65n3)2l−1 ◦ P
(2m65n3)2l−1 (27)

When the motion is chaos, l → ∞ . The grazing bifurcation may induce new map‑
ping structures, resulting in complex dynamic behavior. This is a typical path from period
doubling bifurcation to chaos. Equation (28) lists τ kinds of possible mapping structures:
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where, D represents the total differential of t, Equation (29) is the 0-order G function, 
which represents the component of the boundary gradient of the difference between the 
state vector g  in αΩ and the boundary, and Equation (30) is the 1-order G function, 
which represents the rate of change of this component over time. αg  represents the state 
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,
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ϕ∂Ω
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where, ( ), Tz v∇ = ∂ ∂ ∂ ∂  is a Hamiltonian operator. 
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The appearance of this grazing bifurcation may lead to chaotic motion between peri‑
odic motions P2m2 65n2 32m1 65n1 3 and P2mτ 65nτ 3···2m1 65n1 3.

2.2. The Theory of Flow Switchability
2.2.1. G Function

In order to accurately depict the process of gear teeth from impact to meshing, and
then impact and meshing, G function is introduced from the perspective of discontinu‑
ous dynamics according to the discontinuous domain and discontinuous boundary of the
vibrators [25]:

G(0)
α (zα, tm±)

= nT
BdΩαβ

·
[
gα(zα, tm±)− gαβ(zαβ, tm±)

] (29)

G(1)
α (zα, tm±)

= 2DnT
BdΩαβ

·
[
gα(zα, tm±)− gαβ(zαβ, tm±)

]
+nT

BdΩαβ
·
[

Dgα(zα, tm±)− Dgαβ(zαβ, tm±)
] (30)
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where,D represents the total differential of t, Equation (29) is the 0‑orderG function, which
represents the component of the boundary gradient of the difference between the state vec‑
tor g inΩα and the boundary, and Equation (30) is the 1‑orderG function, which represents
the rate of change of this component over time. gα represents the state vector in domain
α, and gαβ represents the state vector on the boundary ∂αβ. tm represents the time when
the flow switching occurs, tm− and tm+ represent the moments before and after the flow
switching respectively. The normal vector n∂αβ

represents the gradient of boundary ∂Ωαβ
:

n∂Ωαβ
= ∇φαβ =

(
∂φαβ

∂z
,

∂φαβ

∂v

)T

(31)

where, ∇ = (∂/∂z, ∂/∂v)T is a Hamiltonian operator.
Since the components of state vector on the boundary in the direction of the boundary

gradient meet:
nT

BdΩαβ
· gαβ(zαβ, tm±) = 0 (32)

The simplified form of G function is given below: G(0)
α (zα, tm±) = nT

BdΩαβ
· gα(zα, tm±)

G(1)
α (zα, tm±) = nT

BdΩαβ
· Dgα(zα, tm±)

(33)

The normal vector of impact boundary and meshing boundary can be obtained from
Equation (31): {

n∂ΩR
2∞

= n∂ΩL
2∞

= (1, 0)T

n∂Ω21 = n∂Ω23 = (0, 1)T (34)

On the impact boundary:
G(0)

1 (z1, tm±) = nT
BdΩ2∞

· g2(z1, tm±) = v1

G(0)
2 (z2, tm±) = nT

BdΩ2∞
· g2(z2, tm±) = v2

G(0)
3 (z3, tm±) = nT

BdΩ2∞
· g3(z3, tm±) = v3

(35)

On the meshing boundary:

G(0)
1 (z1, tm±) = nT

BdΩ21
· g1(z1, tm±) = g1(z1, t)

G(0)
2 (z2, tm±) = nT

BdΩ21
· g2(z2, tm±) = g2(z2, t)

G(0)
3 (z3, tm±) = nT

BdΩ21
· g3(z3, tm±) = g3(z3, t)

G(1)
1 (z1, tm±) = DnT

BdΩ21
· g1(z1, tm±) =

.
g1(z1, t)

G(1)
2 (z2, tm±) = DnT

BdΩ21
· g2(z2, tm±) =

.
g2(z2, t)

G(1)
3 (z3, tm±) = DnT

BdΩ21
· g3(z3, tm±) =

.
g3(z3, t)

(36)

2.2.2. Conditions of Flow Switching
The vibrators can only enter the meshing domain from the meshing boundary. When

the vibrator in Ω2 reaches the meshing boundary ∂Ωαβ (α, β = 1, 2 or 3, 4), the conditions
for the vibrators to cross the meshing boundary and enter the meshing domain Ω1, Ω3 are:

G(0)
2 (z2, tm−) > 0

G(0)
1 (z1, tm+) > 0

}
on BdΩ21

G(0)
2 (z2, tm−) < 0

G(0)
3 (z3, tm+) < 0

}
on BdΩ23

(37)
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If the vibrator does not meet the meshing condition when it reaches the meshing
boundary, it will continue to move in Ω2, which is shown as the grazing motion in the
no‑meshing domain.

In addition, the vibrators can be returned to Ω2 from the meshing domain Ω1 and
Ω3 through the impact boundary or meshing boundary. The conditions of gear disengag‑
ing are: 

G(0)
1 (z1, tm−) = 0

G(1)
1 (z1, tm+) < 0

G(1)
2 (z2, tm+) < 0

on BdΩ21

G(0)
3 (z3, tm−) = 0

G(1)
3 (z3, tm+) > 0

G(1)
2 (z2, tm+) > 0

on BdΩ23

G(0)
1 (z1, tm−) < 0

G(0)
2 (z2, tm+) < 0

}
on BdΩR

2∞

G(0)
3 (z3, tm−) > 0

G(0)
2 (z2, tm+) > 0

}
on BdΩL

2∞

(38)

Similarly, if the vibrator does not meet the meshing conditions when it reaches the
meshing boundary, it will continue to move in the meshing domain, which is shown as
the grazing movement in the meshing domain.

3. Results
According to the impact‑meshing phenomenon that may occur during the actual op‑

eration of the gear system, the dynamic behavior of the active vibrator is taken as the main
observation object, and the motion state of the vibrator under different restitution coeffi‑
cients is accurately described. Based on the mapping structures of periodic motion, the
mapping structure and motion state of the vibrator under different restitution coefficients
are solved. To demonstrate motion, dimensionless parameters of model are selected as
shown in Table 1.

Table 1. Parameters of model.

Dimensionless Coefficients Symbol Value

Equivalent mass of gear 1 m1 2
Equivalent mass of gear 2 m2 1
Support damping of gear 1 r1 0.6
Support damping of gear 2 r2 0.6

Meshing damping r 1
Support stiffness of gear 2 k1 30
Support stiffness of gear 2 k2 20

Meshing stiffness k 1000
Amplitude of driving force F 50

Excitation frequency ω 5.6
Backlash of gear pair 2b 1

Taking the impact switchingplane andmeshing switchingplane |zk| = b as the Poincaré
surface of section, the bifurcation diagram of the displacement of the two gear vibrators
changing with the restitution coefficient e is shown in Figure 5.

It can be seen from Figure 5 that when the restitution coefficient is e ∈ [0, 0.543), the
periodic motion of the vibrators shows obvious symmetry. When the restitution coeffi‑
cient is e ∈ [0.543, 0.605), the system has a defect pitchfork bifurcation, and the periodicity
of the system motion has not changed, and it is still a single periodic motion; when the
restitution coefficient is e = 0.605, it is observed that the motion of the vibrators has a graz‑
ing bifurcation, and it quickly enters the chaos with the increase in e; the periodic motion
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occurs in e ∈ [0.605, 0.851), and the grazing bifurcation is observed when the restitution
coefficient is e = 0.742; when the restitution coefficient is e ∈ [0.851, 0.932), saddle‑node
bifurcation is observed; the grazing bifurcation is also observed (when e = 0.934) before the
system enters chaos.
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3.1. The Grazing Bifurcation
When the relative phase space trajectories of two vibrators are tangent to the impact

boundary, the grazing bifurcation occurs. The appearance of grazing bifurcationwillmake
themotion of the vibrators uncertain, leading to the singularity of Poincarémapping of the
vibrators, and have an essential influence on the formation and evolution of the system dy‑
namic behavior [26]. The grazing bifurcation studies the transition process of the response
of the vibrators from the no‑meshing periodic motion through the grazing critical state to
the impact motion. When the grazing bifurcation occurs, the vibrators maymove from the
original periodicmotion into a different periodicmotion of another structure, or into chaos.

3.1.1. Periodic Structure Mutation Induced by Grazing Bifurcation
Figure 6 shows the grazing bifurcation near the restitution coefficient e = 0.0997. When

e = 0.0997, the system moves in a period‑1, and its mapping structure is p6532. The sys‑
tem has an impact on the right impact boundary from its starting point (x(1) ≈ −0.8008,
.
x(1) ≈ 5.2444, x(2) ≈−1.3008, .

x(2) ≈−0.1840, t ≈ 85.3515), and has another impact though
a local mapping p2, then impacts on the left boundary through a global mapping p3, and
then impacts on the left boundary through a local mapping p5. After an impact on the
left boundary again, the vibrators then return to the initial point through a symmetric
mapping p6, forming a periodic trajectory. When the restitution coefficient reaches 0.0998
through the bifurcation point, the mapping structure of the periodic motion of the system
changes. The trajectory of vibrators is tangent to the right boundary when it goes through
the p3 mapping from the initial point, and to the left boundary when it goes through
the p6 mapping, so that the mapping structure suddenly changes into the p63 period‑1
mapping structure.
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In Figure 8a, when x(1) = x(2) + b, it means that the trajectory of the vibrators reaches
the right impact boundary (referred to as the right boundary), and when x(1) = x(2) − b, it
means that the trajectory of the vibrators reaches the left impact boundary (referred to
as the left boundary). The vibrators periodic movement starts from the starting point
(x(1) ≈ −0.9185, .

x(1) ≈ 0.9908, x(2) ≈ −1.4185, .
x(2) ≈ 5.3685, t ≈ 134.6826), and first

reaches the left boundary from the right boundary through mapping p3. When reaching
the left boundary, it can be seen that the two gears have different speeds, so the impact
occurs, resulting in a sudden change in speed. After impact, the gear reaches the right
boundary throughmapping p6, and then returns to the initial state after successively going
through mapping p3, p5, p6, p3, p6, p3, p5, p6, forming a stable period‑4 motion. Figure 8b
is the phase diagram of the period‑4 motion, and Figure 8c is the phase diagram of the
motion when the restitution coefficient e = 0.875. It can be seen that when the restitution
coefficient increases near this point, the oscillator motion has an inverse bifurcation, and
the period‑4 motion is converted to period‑2 motion.

3.3. Impact‑Meshing Motion
When the restitution coefficient is relatively small, the energy loss during gear impact

is large. After several impacts, the speed of two gears meets the conditions for meshing,
and meshing may occur. It is pointed out here that meshing does not necessarily occur if
the speedmeets themeshing conditions, and there are other requirements formeshing con‑
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ditions in addition to the speed requirements. See the description of meshing conditions
in Section 2.2.2.

Figure 9 shows the periodic motion of the gear vibrators when e = 0.06. The mapping
structure of the system is:

p12264523 = p1 ◦ p22 ◦ p6 ◦ p4 ◦ p52 ◦ p3 (40)
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The starting point of this periodic motion is (x(1) ≈ 0.1184,
.
x(1) ≈ 6.3427,

x(2) ≈ −0.3816, .
x(2) ≈ 6.5333, t ≈ 44.0097). After going through the global mapping p3, it

reaches the left boundary and collides with the left boundary. Then it goes through two
local mapping p5, making the vibrators reach the meshing conditions. The gray part in
the figure is the meshing section. It can be clearly seen from the partial enlarged view that
when the gears are meshing x(1) < x(2) − b, the meshing deformation occurs between the
gears during meshing. In the meshing mapping p4, there is a flexible coupling of spring
and damping between gear 1 and gear 2. After the spring recovers its deformation, the
gear is disengaged and enters the next global mapping p6. The gear collides with the right
boundary through mapping p6. Then it goes through two local mapping p2. The gear
enters the meshing state (the mapping p1), which is the motion state of the system in a pe‑
riod. When the driving force is a simple harmonic force, under low restitution coefficient,
the gear may experience several impacts before meshing. When the force is reversed, the
gear will disengage and move in reverse with impact and meshing; with the increase in
the restitution coefficient, when the load reverses, the gears will collide reversely with the
change of the load before they reach the meshing condition after several impacts. There‑
fore, in the gear transmission with variable loading, low restitution coefficients will make
the gears easier to mesh.

4. Conclusions
In this paper, the theory of discontinuous dynamical systems is used to study the

nonlinear dynamic behavior of rattling vibration in gear transmission problems. A two‑
degree‑of‑freedom vibrator model is established, which considers the meshing stiffness
and meshing deformation and uses damping to characterize the energy loss during mesh‑
ing and the damping resistance ofmaterials. The theory of flow switchability andmapping
dynamics are applied to study the model. Research shows:
• As the coefficient of restitution changes, the grazing bifurcation occurs frequently.

The phenomenon of grazing bifurcation in gear transmission system with backlash
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will lead to complex dynamic behavior of the system, which will directly lead to bi‑
furcations, new periodic mapping structure, and even chaos of the system. It is nec‑
essary to select appropriate coefficients to avoid this phenomenon, and the theory of
discontinuous dynamical systems is quite suitable for gear systems.

• Gear pairs with low restitution coefficient are more likely to mesh, that is, gear mate‑
rials with strong plasticity are more likely to mesh, and the number of impacts before
engagement will be significantly reduced. With large restitution coefficient, the speed
of the gear pair has difficulty reaching the meshing condition, so it is difficult to mesh.
Reasonable selection of gear materials can increase the meshing opportunity as much
as possible and reduce the rattling energy loss.

• Because the gear teeth are elastic‑plastic, the introduction of gear meshing stiffness
and impact restitution coefficient can more effectively represent the elastic deforma‑
tion and energy loss in the process of gear impact‑meshing motion, which provides a
theoretical model for further gear transmission systems with flexible contact consid‑
ering the more complex multi degree of freedom.
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