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Abstract: Six-dimensional pose estimation for non-Lambertian objects, such as metal parts, is essential
in intelligent manufacturing. Current methods pay much less attention to the influence of the surface
reflection problem in 6D pose estimation. In this paper, we propose a cross-attention-based reflection-
aware 6D pose estimation network (CAR6D) for solving the surface reflection problem in 6D pose
estimation. We use a pseudo-Siamese network structure to extract features from both an RGB image
and a 3D model. The cross-attention layers are designed as a bi-directional filter for each of the
inputs (the RGB image and 3D model) to focus on calculating the correspondences of the objects.
The network is trained to segment the reflection area from the object area. Training images with
ground-truth labels of the reflection area are generated with a physical-based rendering method.
The experimental results on a 6D dataset of metal parts demonstrate the superiority of CAR6D in
comparison with other state-of-the-art models.

Keywords: 6D pose estimation; non-Lambertian objects; physical-based rendering; dense matching; PnP

1. Introduction

Six-dimensional pose estimation of objects is a fundamental problem in computer
vision. The application scenarios of 6D pose estimation include automatic driving [1],
robotic surgery [2], AR/VR [3], bin picking [4–6], and auto-assembly [7,8].

The 6D pose estimation problem can be fundamentally solved in two steps. The first
step is finding correspondences between the objects in an image and objects in 3D mod-
els. The second step is the calculation of the 3D translation and 3D rotation with the
Perspective-n-Points (PnP) algorithm [9] via the correspondences. Different manually
designed key-point descriptors, such as SIFT [10], SURF [11], and ORB [12], are used to
find the correspondences. However, these descriptors tend to find key points whose color
gradients vary sharply in the image. When the objects are textureless, these descriptors
cannot find reliable key points for computing the poses. To tackle this issue, some template-
based methods [13,14] were proposed. These kinds of methods build templates of objects
from different angles and distances. Several functions that can determine which template
is the most similar to an object in an image have been designed to find the most suitable
poses for the objects. These methods work well on textureless objects when they have
intact appearances in the image, but it is easy for them to fail when the objects are occluded.
Varying light conditions also have a great influence on pose estimation due to the changing
color gradients of objects.

With the rapid development of deep learning technologies in recent years, convolu-
tional neural networks (CNNs) have been used to solve 6D pose estimation problems, and
they have achieved great improvements in comparison with conventional methods [15–17].

The direct way for CNNs to predict a pose is to first detect the 2D position of an object
in an image, which can be done with object detection networks such as YOLO, SSD, and
faster-RCNN. The features in the bounding box, which contains the information of the
objects, are fed into a CNN structure to regress the six parameters of the pose. Similarly to
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template-based methods, direct regression through CNNs cannot handle circumstances of
occlusion. Occluded states vary too much for CNNs to learn to distinguish features.

To figure out this problem, semantic segmentation has been leveraged to first find all
of the pixels that belong to the objects, and then a neural network is trained to vote for the
3D translation of the object. The 3D rotation expressed in the quaternion is then regressed
through tiny sub-branch multi-layer perceptions (MLPs).

However, direct pose regression that uses sparse constraint signals has difficulties in
leading neural networks with large numbers of parameters to efficiently predict the circum-
stances. In order to train CNNs with dense constraint signals, two-stage pipelines have been
proposed in order to first extract key points from the image and then calculate the poses
with the PnP method. This new framework can be seen as replacing conventional manually
designed key-point descriptors with descriptors that are obtained via data-driven learning.
CNNs can better describe the geometric features of objects than conventional human-made
descriptors can. The performance of learned descriptors is acceptable even under occluded
or varying light conditions, and state-of-the-art performance has been achieved.

Despite the success of dense matching methods in the 6D pose estimation of daily-life
objects with Lambertian surfaces, current methods can easily fail when considering non-
Lambertian objects, such as metal parts in an industrial environment. The refection of the
non-Lambertian surface causes the appearance of such objects to change all the time, which
heavily disturbs the prediction of the dense matching of neural networks.

In this paper, we propose a solution for the 6D pose estimation of non-Lambertian
objects based on the detection of the reflection area. We build our model on top of a dense
matching framework with an additional reflection-aware sub-module. We used physical-
based rendering (PBR) to generate synthetic images with different levels of light strength,
roughness, and coating (strength of the surface reflection). These images were used to train
the reflection-aware sub-module to detect the reflection area of the object, which was re-
moved during the prediction of the dense matching of the correspondences. A bi-directional
cross-attention module is proposed to further improve the reflection segmentation and the
dense matching accuracy of our proposed framework. The main contributions of this paper
are summarized as follows:

(1) We propose a novel framework for the 6D pose estimation of objects with non-
Lambertian surfaces. The framework leverages a reflection-aware module to prevent
the dense matching of the correspondences from encountering disturbances from
specular surfaces caused by light reflection.

(2) We use a simplified PBR model to synthesize virtual images for training the reflection-
aware module. The synthetic images are automatically generated; this can save a
huge amount of work in taking and labeling real images for training.

(3) We introduce a bi-directional cross-attention module into our framework to further
improve the accuracy of the reflection segmentation and the dense matching.

(4) We demonstrate that our method outperforms other state-of-the-art methods on a 6D
pose estimation dataset of metal parts.

2. Related Work

In this section, we briefly go through the 6D pose estimation methods that are based
on deep learning.

2.1. Holistic Methods

This kind of method aims to estimate the 3D position and 3D rotation of an object in
a single shot. PoseNet [15] uses a CNN architecture to directly regress a 6D camera pose
from an RGB image. However, directly localizing the object’s 3D translation is difficult
due to the lack of depth information on the object. PoseCNN [16] first segmented objects
from images; then, the segmented features were fed into a sub-branch to regress the center
location and 3D rotation of each object. Direct regression of the 3D location is difficult due
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to the nonlinearity of the rotation space. The authors of [18] discretized the rotation space
into a classification task to solve this problem.

2.2. Key-Point Regression Methods

Unlike holistic methods, key-point regression methods adopt a two-stage pipeline.
The pre-defined key points are first voted on by neural networks; then, the 6D pose of
the object is computed with the PnP algorithm. PVNet [17] selected eight key points
from an object’s surface via the farthest-point-sampling algorithm. A voting-based key
point scheme was used to determine the final locations of the key points. HybridPose [19]
extended the idea of PVNet with more geometric constraints, such as the distance between
the key points and the symmetry of the key points within symmetric objects. PVN3D [20]
further applied the key-point regression idea to a 3D point cloud and showed its robustness
to occlusions. CDPN [21] treated rotation and translation differently for their discrepant
data distributions. The 3D translation was regressed based on scale-invariant translation,
while the 3D rotation was acquired through a confidence map and the PnP method.

2.3. Dense Key-Point Matching Methods

Noticing that regressing key points has limitations when the key points are unseen in
an image, some researchers tried to match the seen pixels with the 3D model. DPOD [22]
mapped a 3D model into UV space as a 2D representation; then, the dense correspondences
could be determined with a dense regression method. PSGMN [23] used a pseudo-Siamese
graph-matching framework to directly match the pixels from an image to a 3D model.
SurfEmb [24] learned dense, continuous 2D–3D correspondence distributions over the
surfaces of objects from data with no prior knowledge of visual ambiguities, such as
symmetry. Though the dense matching scheme achieved state-of-the-art performance on
several datasets, it needs a predefined coarse pose and iteratively computes the final pose,
and it cannot be used in real-time applications.

3. Proposed Approach

The task of 6D pose estimation is to compute the relative 3D translation and 3D rotation
between the camera coordinate system and the object coordinate system taken from an RGB
image given as an input. As we adopt the two-stage pipeline for pose estimation, we first
find the correspondences between the image and the 3D model, and then calculate the pose
through the image projection model with the PnP method from a multi-view geometry [25]:

p = K[R | t]P, (1)

with

K =

 fx 0 cx
0 fy cy
0 0 1

, (2)

where p = [u v 1]> is the 2D projection in the image of a 3D point P = [x y z 1]> on the
3D model of the object. K symbolizes the intrinsic parameters of the camera that provide
the perspective transformation from the camera coordinate system to the image coordinate
system. R and t are the 3D rotation and 3D translation, respectively, of the object coordinate
with respect to the camera coordinate.

3.1. Network Architecture

Similarly to most recent research [21,22,24], we separate the pipeline into an object
detection stage and a pose estimation stage, as shown in Figure 1. The input image is first
fed into an object detector to detect objects, which are picked out through bounding boxes.
Then, the zoom-in strategy [21] is used to fit the bounding box into a predefined size. In
the pose estimation stage, we apply a U-Net-like structure as the backbone to extract pixel-
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wise deep features xI ∈ R H
4 ×

W
4 ×d from the cropped image. H and W denote the height

and width of the cropped images, respectively. d is the dimension of the deep features.
The self-attention layers, on the other hand, extract node-wise deep features xM ∈ RV×d,
with V being the number of nodes from the 3D model of the object. xI and xM are then fed
into the bi-directional cross-attention layers to fuse the features. The corresponding fused
features are denoted as f I and f M, respectively. f I contains pixels that do not belong to the
object and pixels under reflection area. Two sub-branches with convolutional layers are
designed to seperately predict the object segmentationMo and the reflection segmentation
Mr. The final segmentation of the objectM f is then obtained through

M f =Mo − (Mo ∩Mr) (3)
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Figure 1. The architecture of the cross-attention reflection-aware network.

Only the fused image features f I that lie in the final segmentation mask are selected to
calculate the scoring matrix with f M:

S(i, j) =
1√
d

〈
f I
i , f M

j

〉
(4)

The softmax operator is then applied on both dimensions of S to convert the scoring
matrix into a confidence matrix C [26].

C(i, j) = So f tmax(S(i, ·)) · So f tmax(S(·, j)) (5)

The confidence matrix decides the final correspondences of the feature matching. The 6D
pose of the object is then calculated with the PnP method by using the correspondences.

3.2. Bi-Directional Cross-Attention Layers

Given the great improvements that transformer-based models have achieved in com-
puter vision, we tried to look for a better way to combine the advantages of CNNs and
transformers in the 6D pose estimation task. As a 3D model consists of vertices and edges,
it is naturally suitable for the structure of the transformer. We use two conventional self-
attention layers to extract deep features from the model. The self-attention operation is
defined as:

qM
i = WqM xM

i kM
j = WkM xM

j vM
j = WvM xM

j (6)

where WqM , WkM , and WvM ∈ Rd×d are learnable projection matrices. The superscript M
denotes that the parameters are from the 3D model. The query vector qM and the key
vector kM are gathered to calculate the similarity of each feature through the dot product.
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The similarity score weights the value vector vM to be passed on. The input feature x is
then updated through

xM ← xM + MLP(∑
j

aM
ij vM

j ) (7)

where aM
ij = so f tmax(qM

i kMT
j /
√

d) is the attention weight, and MLP(·) is a two-layer fully
connected network.

As shown in Figure 2, the bi-directional cross-attention module has a similar structure
to that of a self-attention module. The difference mainly lies in that the input vectors q and
(k, v) come from different inputs. Taking the cross-attention of the cropped image feature
xI as an example, the output feature is defined as

xI ← xI + MLP(∑
j

aI
ijv

I
j ) (8)

where aI
ij = so f tmax(qM

i kIT
j /
√

d). The query vector and the key vector come from different
inputs to generate mixed features for the mask filtering and the correspondence matching.
Intuitively, it can be seen that each of the inputs (image and the 3D model) acts as a
geometric filter for the other. The cross-attention structure forces the image to pay more
attention to the features that are more related to the 3D model and vice versa. We also use
the multi-head version of the attention layer, as is done in a conventional transformer [27].
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Figure 2. The structure of the cross-attention layer.

3.3. Reflection Label Acquisition

Currently, obtaining the reflection area of an object from a real image is very challenging.
The inverse rendering problem [28] is ill conditioned due to the low rank of the input
image. With the development of physical-based rendering technology, synthetic images
have become very similar to real images. Many 6D pose estimation methods have shown
that the estimation accuracy can be improved by a large margin with the help of PBR images.
Thus, instead of obtaining the reflection area for training with inverse rendering methods,
we use the PBR method to generate synthetic images with accurate reflection area labels.

Formally, as shown in Figure 3, assuming that the non-Lambertian object does not
emit light, the outgoing radiance Lo in direction v from a surface point p can be described
by the following rendering equation:

Lo(p, v) =
∫

Ω
fr(p, v, ω)Li(p, ω)(ω � n) dω (9)

where Ω is the unit hemisphere centered at surface point p, with the z axis being parallel to
the surface normal n. ω represents the negative direction of incoming light. fr(p; v; ω) rep-
resents the bi-directional reflectance function (BRDF) that relates to the material properties
(e.g., color, roughness, and reflection) of surface S at p, and Li(p; ω) is the radiance coming
toward p from ω. This integral computes the total effect of the reflection of every possible
light ray that hits p and bounces in direction v.
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𝜔 Ω 

𝑝 

𝑟𝜔  

Camera c

n
v

Surface S

Figure 3. Notation and convention for viewpoint and illumination parameterization.

Our goal in using synthetic images is to mark out the reflection area of the object for
network training. The PBR model is superior in the authenticity of its rendering, but fr
combines diffuse light and specular light in one function, which makes it very difficult to
figure out the reflection area. Instead of allowing an arbitrary BRDF fr, the Phong reflection
model [29] decomposes the outgoing radiance from point p in direction v into the diffusion
and speculation functions. The view-independent part of the illumination is modeled by
the following diffuse function:

Idi f f use(p) = ∑
ω∈Ω

(ω · n)Iω (10)

while the view-dependent part is modeled through the following speculation function:

Ispecular(p, v) = ∑
ω∈Ω

(rω,n · v)α Iω (11)

According to the speculation function, we can directly mask out the reflection area.
Note that it is important to find the reflection area for 6D pose estimation. As shown in
Figure 4, the object segmentation is responsible for the whole structure of the object, while
the reflection segmentation only focuses on partial high-light areas. As for dense matching,
the pixels in the reflection area are supervised to match their correspondences to the 3D
model. However, the image features of these pixels have bare information for the matching,
which leads to the failure of finding correspondences at the inference stage and a bigger
loss at the training stage.

(a) origin image (b) object mask

(c) reflection area (d) mask without reflection

Figure 4. Illustration of the necessity of reflection removal. (a) The original rendered image.
(b) The segmentation mask of the object. (c) The reflection area. (d) The object mask without
the reflection.
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4. Experiments

In this section, we first show the implementation details of our proposed network.
Then, the MP6D dataset [30] and evaluation metrics are introduced. Qualitative and
quantitive comparison results are given based on the MP6D dataset. Ablation studies are
performed to show the effectiveness of the bi-directional cross-attention layers and the
reflection-aware strategy of the proposed framework.

4.1. Implementation Details

Mesh model simplification: To reduce the memory usage of the network, we simplified
the 3D mesh model of the objects from more than 5000 vertices to 2000 vertices through
quadric edge collapse decimation in MeshLab [31]. This simplification helped the network
train with a batch size of 16 for each GPU card.

Details of the network structure: We implemented our proposed network using
Pytorch [32]. The image feature extraction module used Resnet18 from the Pytorch model-
zoo as the backbone, which downsampled the input image at a scale of 8x. An upsampling
layer was applied to the module, which resulted in an output feature map with a size of
H
4 ×

W
4 . The height and width of the cropped image were both set to 240 pixels. The feature

dimension d was set to 64. The head count h of the attention layer was set to 4 to reduce the
memory cost.

Training strategy: As we only had the reflection segmentation labels from the synthetic
images generated through PBR, we first trained our network using only the synthetic images
for 20 epochs. After 20 epochs of training, the network could coarsely segment the reflection
area. Then, we use real images from the MP6D dataset to train our network for another
20 epochs. Finally, another 10 epochs were processed to further refine the performance of
the reflection segmentation task. We set the initial learning rate to 0.001 with a weight decay
of 0.8 for every 10 epochs. For each object, we trained an independent model to achieve
better performance. All models were trained using the Adam optimizer with 4 Nvidia RTX
2080Ti GPUs.

4.2. Dataset

In total, the MP6D dataset contained 77 video segments (20,100 frames in total) with
occlusion and illumination changes. Twenty metal parts (15 parts from aluminum oxide
material and 5 parts from copper oxide surface material) were collected from the industrial
environment. The metal parts had sizes that ranged from 17 to 125 mm. All of the objects
were textureless, symmetric, of a complex shape, and with a uniform color. The images
were taken from different scenes to ensure the diversity of the data. The original dataset
used PBR to render 50,000 synthetic images for training. However, these images did not
contain the reflection segmentation labels. Therefore, we rendered synthetical images
through PBR and calculated the reflection segmentation masks with the Phong model, as
described in Section 3.3. The last 30% of the frames in each video segment were used as
the test dataset to evaluate the performance of the 6D pose estimation methods.

4.3. Methods Used for Comparison and Metrics

We compared our method with other state-of-the-art 6D pose estimation methods,
including PVNet [17] and PSGMN [23]. To quantitatively evaluate the performance, we
used two commonly used metrics: average distance—symmetric (ADD-S) [16] and visible
surface discrepancy (VSD) [33]. The ADD-S score was obtained with

ADD− S =
1
m ∑

x1∈M
min

x2∈M
‖ (Rx1 + t)− (R̃x2 + t̃) ‖ (12)

where m is the number of vertices in the 3D model. ADD-S finds the closest distance of a
point to evaluate the performance in solving the symmetric situation, while the VSD metric
pays more attention to the visible surface of the matching.
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4.4. Comparison Results

Quantitative comparison: Table 1 gives the ADD-S scores and VSD scores of the
different methods on the MP6D dataset. Apparently, our method achieved the best quan-
titative results for both metrics, demonstrating that our framework worked better with
non-Lambertian objects. PVNet is a typical key-point regression method that regresses
eight key points’ 2D locations through a voting scheme. The main drawback of these kinds
of methods is that they neglect the visibility of the key points. Therefore, the accuracy of the
regressed key points goes down when they are invisible in the image. The method of [23]
uses a dense matching strategy to find correspondences. The accuracy of this method is
similar to that of our proposed method in reflection-free scenes, but it performs poorly
when objects have reflective surfaces. Figure 5 shows the performance of the different
methods in terms of the VSD score under varying light reflection conditions. It can be
seen that our proposed method remained stable as the reflection area increased. The other
methods suffered from a large decline with the increasing ratio of the reflection area.

Table 1. Quantitative evaluation of 6D poses in the MP6D dataset. The highest score for each object
is shown in bold.

PVNet [17] PSGMN [23] Ours

Object ADDS VSD ADDS VSD ADDS VSD

Obj_01 73.1 57.3 70.4 58.9 72.3 62.1
Obj_02 65.9 58.9 74.2 57.6 81.5 60.3
Obj_03 51.2 29.1 61.4 28.5 63.4 32.1
Obj_04 60.1 48.5 53.2 51.7 53.3 56.2
Obj_05 56.6 46.4 60.8 41.8 61.5 60.2
Obj_06 62.2 46.2 68.7 61.8 71.2 63.7
Obj_07 73.3 62.4 75.7 66.8 72.2 72.3
Obj_08 70.3 54.4 70.1 51.2 74.4 55.8
Obj_09 58.8 29.5 64.0 19.8 68.1 24.5
Obj_10 61.1 45.7 70.6 61.7 53.4 65.3
Obj_11 50.5 32.2 61.5 32.8 74.6 38.3
Obj_12 34.5 29.5 69.3 41.2 70.3 43.5
Obj_13 63.3 26.4 70.2 39.5 78.2 42.2
Obj_14 58.9 39.8 70.1 40.9 73.9 44.1
Obj_15 46.7 5.5 59.2 8.4 62.5 10.2
Obj_16 57.2 25.3 63.5 27.5 59.8 31.8
Obj_17 64.0 56.1 72.2 57.3 79.6 59.5
Obj_18 64.9 59.2 51.7 68.4 80.5 80.2
Obj_19 62.4 40.3 70.1 34.8 71.3 41.9
Obj_20 59.3 50.1 69.4 53.8 73.4 42.8

Average 59.7 42.1 66.3 45.2 69.8 49.3

Qualitative comparison: Figure 6 visually compares the 6D pose estimation results of
our proposed method with those of the other state-of-the art methods. Our method was
able to successfully predict the pose under reflection, while the other methods suffered
from the high-light areas that lacked rich features. We found that high-light areas may
lead to incorrect correspondence matching. The cross-attention layers helped to filter out
these reflection areas and infer feature correlations. The reflection segmentation branch
further prevented the reflection areas from disturbing the 6D pose estimation process. We
also show some examples of the pose estimation results from the test set of the MP6D
dataset in Figure 7. This shows that our method works robustly under different challenging
conditions, such as illumination variation, occlusion, and light reflection.
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Figure 5. Comparison among PVNet, PSGMN, DPOD, and our proposed CAR6D method in terms of
the VSD performance under different levels of light reflection.

3D Model PVNet PSGMN Ours3D Model PVNet PSGMN Ours

Figure 6. Comparison among PVNet, PSGMN, and our proposed CAR6D method. The ground-truth
poses are presented in blue boxes, while the estimated poses are shown in red boxes.

4.5. Ablation Studies

We performed ablation studies on the model structure and the segmentation mask to
verify the effectiveness of the cross-attention layers and the reflection segmentation.

We first replaced the cross-attention layers with self-attention layers. This action
made the 3D model features and image features independent of each other. The result of
this action is shown in Table 2. mAP∗ denotes a ratio that is used as follows: When the
intersection over union (IOU) of the predicted segmentation mask to the ground-truth
mask is higher than a given ratio (50% and 75% were used in the evaluation), the mask
is regarded as valid. The cross-attention layers help the network segment the object and
reflection, with an increase of more than 8% in both object segmentation and reflection
segmentation in terms of mAP0.75.
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Figure 7. Some qualitative results of our proposed method.
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Table 2. A comparison of the cross-attention layers and the self-attention layers.

Model Structure Object Segmentation Reflection Segmentation
mAP0.5 mAP0.75 mAP0.5 mAP0.75

Cross-attention layers 83.13 80.62 72.68 69.52
Self-attention layers 80.79 72.58 67.77 60.21

We also tested the impact of reflection segmentation on non-Lambertian surfaces. As
shown in Table 3, if only self-attention layers were used without reflection segmentation,
the results were inferior to those of PSGMN [23], which used a deeper graph neural network
for the feature extraction of the 3D model. With the refection segmentation, our model
outperformed the other methods by 0.9% in terms of VSD. With both cross-attention and
refection segmentation, our model achieved a 6.2% improvement, thus demonstrating the
effectiveness of the proposed framework.

Table 3. Ablation study on the model structure and segmentation mask.

Model Self-attention layers X X
Structure Cross-attention layers X X

Reflection with X X
Segmentation without X X

Results ADD-S 61.7 66.5 67.5 69.8
VSD 43.1 46.1 44.6 49.3

5. Conclusions

In this paper, we proposed CAR6D, a cross-attention-based reflection-aware network
for 6D pose estimation. We solved the problem of light reflection in pose estimation for
non-Lambertian objects in two ways. We proposed a framework for training the network
that is aware of the reflection area. PBR and the Phong model were used to generate
synthetic images with reflection segmentation labels for training. We also proposed a
bi-directional cross-attention structure to fully fuse the image features with the model
features. The experimental results showed that the proposed method outperformed the
other state-of-the-art methods on MP6D, a dataset of non-Lambertian metal parts. We note
that the current way to segment the reflection area mainly depends on the data distribution.
Further study on the elimination of high-light areas should be carried out in order to
achieve better performance in 6D pose estimation for non-Lambertian objects.
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