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Abstract: For a 2UPR-RPU over-constrained parallel manipulator, some geometric errors result in
internal forces and deformations, which limit the improvement of the pose accuracy of the moving
platform and shorten the service life of the manipulator. Analysis of these geometric errors is
important for restricting them. In this study, an evaluation model is established to analyse the
influence of geometric errors on the limbs’ comprehensive deformations for this manipulator. Firstly,
the nominal inverse and actual forward kinematics are analysed according to the vector theory
and the local product of the exponential formula. Secondly, the evaluation model of the limbs’
comprehensive deformations is established based on kinematics. Thirdly, 41 geometric errors causing
internal forces and deformations are identified and the results are verified through simulations based
on the evaluation model. Next, two global sensitivity indices are proposed and a sensitivity analysis
is conducted using the Monte Carlo method throughout the reachable workspace of the manipulator.
The results of the sensitivity analysis indicate that 10 geometric errors have no effects on the average
angular comprehensive deformation and that the identified geometric errors have greater effects on
the average linear comprehensive deformation. Therefore, the distribution of the global sensitivity
index of the average linear comprehensive deformation is more meaningful for accuracy synthesis.
Finally, simulations are performed to verify the results of sensitivity analysis.

Keywords: 2UPR-RPU parallel manipulator; over-constrained parallel manipulator; geometric error;
deformation; sensitivity analysis

1. Introduction

Parallel mechanisms with three DOFs have been successfully applied to hybrid serial–
parallel machine tools, such as the well-known Eco-speed series, Tricept, and Exechon [1–6],
owing to their high stiffness, large payload, and good dynamics. To achieve a simpler
structure, Li et al. [3] designed a 2R1T (R denotes a rotational DOF, and T denotes a
translational DOF) parallel mechanism named 2UPR-RPU. This mechanism is not only
easier to control but also suitable for many operations along the surfaces. However, it is an
over-constrained parallel mechanism with common constraints and over-constraints [7,8].
Some geometric errors in a manipulator based on this mechanism break the common
constraints and over-constraints, resulting in internal forces and deformations. The internal
forces and deformations not only limit the further improvement of the pose accuracy of the
moving platform but also shorten the service life of the manipulator [9,10]. Therefore, it
is necessary to restrict the internal-force-and-deformation-related geometric errors in the
2UPR-RPU parallel manipulator.

The accuracy design [11–13] can be applied to restrict geometric errors by determining
the tolerances of the fabrication and assembly of machines. It consists of three components:
error modelling [14–16], sensitivity analysis [17–19], and accuracy synthesis [20–22], where
error modelling is the basis of sensitivity analysis and accuracy synthesis. Zhang et al. [13]
applied the closed-loop vector and first-order perturbation methods to establish a geometric
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error model for a 2UPR-RPS over-constrained manipulator, and they identified the geomet-
ric errors that affected the pose errors of the moving platform. Zhang et al. [15] utilised the
screw theory to establish a geometric error model for a 4RSR-SS over-constrained parallel
tracking machine. With the use of the geometric error model, 53 geometric errors that
had a significant influence on the pose errors of the moving platform were identified after
sensitivity analysis. However, neither of the above two methods considers the deformations
caused by internal forces in over-constrained parallel manipulators. Taking parameter
uncertainties into account, Tang et al. [23] built a general interval kinetostatic model for a
2UPR-SPR over-constrained parallel machine to perform sensitivity analysis and tolerance
allocation. To predict the pose errors of an over-constrained extendible support structure,
Yu et al. [24] proposed a comprehensive model that simultaneously considered geometric
errors, joint gaps, and link flexibility. In spite of good accuracy, these two models are
complicated for the stiffness matrix needs to be derived and the stiffness coefficients of
parts need to be obtained via finite element software.

Affected by geometric errors, the end poses of different limbs of a parallel manip-
ulator should be theoretically inconsistent. However, they can be consistent in non-
overconstrained parallel manipulators due to the existence of the moving platform and the
motion deviations of passive joints. On this basis, a numerical iterative algorithm [25,26]
was proposed to analyse the kinematics of non-overconstrained parallel manipulators
with kinematic errors. Inspired by this algorithm, this study aims to establish an evalua-
tion model based on kinematics to analyse the influence of geometric errors on the limbs’
comprehensive deformations for the 2UPR-RPU over-constrained parallel manipulator.

Based on the established evaluation model, sensitivity analysis can help reveal the
influence of different internal-force-and-deformation-related geometric errors on the limbs’
comprehensive deformations. The interval analysis method and probabilistic method
have been commonly used for sensitivity analysis of the moving platform’s pose error in
literature. The interval analysis method treats geometric errors as interval variables and can
get a balance between calculation speed and accuracy [11,18]. Treating geometric errors as
random variables with a normal distribution, the probabilistic method can be divided into
the Monte Carlo method and the probability modelling method. The Monte Carlo method
calculates the moving platform’s pose errors according to the geometric error model and lots
of random values of a geometric error [22,27]. It has good accuracy and low computational
efficiency. The probability modelling method establishes an analytical model between
the standard deviation of each geometric error and that of the moving platform’s pose
error based on the geometric error model [28]. In spite of high computational efficiency,
this method needs prior knowledge about probability distributions. Considering that
the interval analysis method and probability modelling method are not suitable when
the geometric error model is iterative, the Monte Carlo method is utilised to analyse the
influence of geometric errors on the limbs’ comprehensive deformations in this paper.

The remainder of this paper is organised as follows. In Section 2, the 2UPR-RPU paral-
lel mechanism is briefly introduced. Section 3 presents an analysis of the nominal inverse
kinematics and actual forward kinematics. Section 4 establishes an evaluation model of the
limbs’ comprehensive deformations caused by geometric errors. Based on the evaluation
model, the internal-force-and-deformation-related geometric errors are identified and the
results are verified through simulations in Section 5. In Section 6, two global sensitivity
indices are proposed and sensitivity analysis is conducted. Simulations are also performed
to verify the results of sensitivity analysis. Finally, the conclusions are drawn in Section 7.

2. 2UPR-RPU Parallel Mechanism

As shown in Figure 1, the 2UPR-RPU parallel mechanism mainly consists of a moving
platform, two UPR limbs, one RPU limb, and one fixed base, where the moving platform
and fixed base are represented by the isosceles right triangles ∆A1A2A3 and ∆B1B2B3. U,
P, and R denote universal, prismatic, and revolute joints, respectively. B1, B2 and A3 are
the centres of U, and A1, A2 and B3 are the centres of R. Because each universal joint is
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equivalent to two mutually perpendicular revolute joints, the UPR limb is equivalent to
the RRPR limb, and the RPU limb is equivalent to the RPRR limb. The axis of the jth joint
of the ith limb is denoted by si,j. A fixed coordinate system {oB; x, y, z} is established at
the midpoint between B1 and B2, where x points from B2 to B1 and y points from oB to
B3. Similarly, a moving coordinate system {oA; u, v, w} is also established, where u points
from A2 to A1 and v points from oA to A3. The coordinate axes z and w are determined
using the right-hand rule. For the 2UPR-RPU parallel mechanism, each limb exerts a force
and a couple on the moving platform [8], where the two forces from the UPR limbs are
parallel to v, and the three couples from the UPR and RPU limbs rotate around w. It is
worth mentioning that the two forces parallel to v will lead to over-constraint, and the
three couples rotating around w will lead to common constraints. Thus, the 2UPR-RPU
parallel mechanism is an over-constrained parallel mechanism.
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3. Kinematics

Inverse kinematics aims to calculate the displacements of all joints relative to their
initial positions or angles according to a given target pose of the moving platform. Forward
kinematics is the reverse operation of inverse kinematics. Inverse kinematics without
considering geometric errors is called nominal inverse kinematics. In this section, the
nominal inverse kinematics of actuated joints and passive joints is first introduced. Then,
the actual forward kinematics of the limbs is derived.

3.1. Nominal Inverse Kinematics

The position and orientation of the moving platform shown in Figure 1 can be de-
scribed by

[
x y z

]T and
[
α β γ

]T, respectively, where
[
x y z

]T denotes the position

coordinates of oA with respect to {oB; x, y, z} and
[
α β γ

]T denotes the Euler angle with
respect to z-x-v. Because only the translation motion along oBoA and the rotations around
x and v can be achieved by the moving platform [8],

[
z β γ

]T is sufficient to represent
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the poses. For a given target pose of the moving platform, the nominal displacements of
actuated P-joints can be derived using the closed-loop vector method [10] as follows:

q1,3 = ‖B1A1‖ − ‖B1
~
A1‖

q2,3 = ‖B2A2‖ − ‖B2
~
A2‖

q3,2 = ‖B3A3‖ − ‖B3
~
A3‖

(1)

where ‖ · ‖ represents the Euclidean norm.
~
Ai denotes the initial position of Ai, which is

determined by
B1A1 =

[
lA cos γ− lB lA sin β sin γ− z tan β −lA cos β sin γ + z

]T
B2A2 =

[
− lA cos γ + lB −lA sin β sin γ− z tan β lA cos β sin γ + z

]T
B3A3 =

[
0 lA cos β− z tan β− lB lAsinβ + z

]T (2)

where lA = ‖A1A2‖/2 and lB = ‖B1B2‖/2.
For the first UPR limb, the first, second, and fourth joints are passive. The nominal

displacement of the first joint can be expressed as

q1,1 = β (3)

The nominal displacement of the second joint can be expressed as

q1,2 = arccos

(
eT

1 B1A1

‖B1A1‖

)
− arccos

 eT
1 B1

~
A1

‖B1
~
A1‖

 (4)

where e1 is the unit vector along x.
The nominal displacement of the fourth joint can be expressed as

q1,4 = arccos


−
(

A1
~
A2

)T(
B1

~
A1

)
‖A1

~
A2‖‖B1

~
A1‖

− arccos

(
−(A1A2)

T(B1A1)

‖A1A2‖‖B1A1‖

)
(5)

Because the two UPR limbs are symmetrically distributed with respect to oAoB, we have

q2,1 = β (6)

q2,2 = arccos

(
eT

1 B2A2

‖B2A2‖

)
− arccos

 eT
1 B2

~
A2

‖B2
~
A2‖

 (7)

q2,4 = arccos

(
(A1A2)

T(B2A2)

‖A1A2‖‖B2A2‖

)
− arccos


(

A1
~
A2

)T(
B2

~
A2

)
‖A1

~
A2‖‖B2

~
A2‖

 (8)

Similarly, the nominal displacements of the first, third, and fourth joints of the RPU
limb can be expressed as

q3,1 = arccos

(
−eT

2 B3A3

‖B3A3‖

)
− arccos

−eT
2 B3

~
A3

‖B3
~
A3‖

 (9)
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q3,3 = arccos

(
(Re2)

T(B3A3)

‖B3A3‖

)
− arccos


( ~

Re2

)T
(

B3
~
A3

)
‖B3

~
A3‖

 (10)

q3,4 = γ (11)

Here, e2 is the unit vector along y, and
~
R denotes the initial state of R, which is given

as follows:

R =

 cos γ 0 sin γ
sin β sin γ cos β − sin β cos γ
− cos β sin γ sin β cos β cos γ

 (12)

3.2. Actual Forward Kinematics

The nominal inverse kinematics described above does not consider geometric errors.
However, geometric errors exist in the 2UPR-RPU parallel manipulator. In this section, the
actual forward kinematics of the limbs in the manipulator is derived in detail.

As shown in Figure 2, four local coordinate systems {Fi,j; xi,j, yi,j, zi,j} are assigned to
each limb to describe the geometric errors of the 2UPR-RPU parallel manipulator, where
the initial pose of the moving platform is

[
z0 β0 γ0

]T
=
[
−0.2m 0 0

]T under the
home configuration. The coordinate systems {oB; x, y, z} and {oA; u, v, w} are identical
to those in Figure 1. For brevity, we use {Fi,j} instead of {Fi,j; xi,j, yi,j, zi,j}. It is worth
mentioning that this figure only shows xi,j and zi,j of the local coordinate systems, and yi,j
can be determined according to the right-hand rule, which will not be illustrated in detail
here. The definitions of the local coordinate systems for the two UPR limbs and the RPU
limb are listed in Tables 1–3.
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Table 1. Definitions of local coordinate systems for the first UPR limb.

{Fi,j} The Location Fi,j xi,j zi,j

{F1,1} On the revolute shelf

The intersection of the right
hole axis of the revolute shelf
and the right end face of the
revolute shelf

Parallel to the intersection of the
front and rear symmetry plane
of the right hole of the revolute
shelf and the vertical plane of
the right hole axis

Coincide with the right
hole axis of the
revolute shelf

Point down Point outwards

{F1,2} On the slider seat The midpoint of the hole axis
of the slider seat

Parallel to the intersection of the
slider mounting plane and the
vertical plane of the hole axis of
the slider seat

Coincide with the hole
axis of the slider seat

Point to the moving platform Point to the RPU limb

{F1,3} On the lead screw

The intersection of the lead
screw axis and the plane
passing through z1,2 and
perpendicular to the slider
mounting plane

Parallel to the intersection of the
guide rail plane and the vertical
plane of the lead screw axis

Coincide with the lead
screw axis

Point in the direction opposite to
the RPU limb

Point to the moving
platform

{F1,4} On the moving platform The midpoint of the right hole
axis of the moving platform

Parallel to the intersection of the
vertical plane of the right hole axis
of the moving platform and the
plane constructed with v and w

Coincide with the right
hole axis of the moving
platform

Point down Point to the RPU limb

Table 2. Definitions of local coordinate systems for the second UPR limb.

{Fi,j} The Location Fi,j xi,j zi,j

{F2,1} On the revolute shelf
The intersection of the left hole
axis of the revolute shelf and the
left end face of the revolute shelf

Parallel to the intersection of the
front and rear symmetry plane
of the left hole of the revolute
shelf and the vertical plane of
the left hole axis

Coincide with the left hole
axis of the revolute shelf

Point down Point inwards

{F2,2} On the slider seat The midpoint of the hole axis
of the slider seat

Parallel to the intersection of the
slider mounting plane and the
vertical plane of the hole axis of
the slider seat

Coincide with the hole
axis of the slider seat

Point to the moving platform Point to the RPU limb

{F2,3} On the lead screw

The intersection of the lead
screw axis and the plane
passing through z2,2 and
perpendicular to the slider
mounting plane

Parallel to the intersection of the
guide rail plane and the vertical
plane of the lead screw axis

Coincide with the lead
screw axis

Point in the direction opposite to
the RPU limb

Point to the
moving platform

{F2,4} On the moving platform The midpoint of the left hole
axis of the moving platform

Parallel to the intersection of the
vertical plane of the left hole axis
of the moving platform and the
plane constructed with v and w

Coincide with the left
hole axis of the
moving platform

Point down Point to the RPU limb
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Table 3. Definitions of local coordinate systems for the RPU limb.

{Fi,j} The Location Fi,j xi,j zi,j

{F3,1} On the slider seat The midpoint of the hole axis
of the slider seat

Parallel to the intersection of the
slider mounting plane and the
vertical plane of the hole axis of
the slider seat

Coincide with the hole
axis of the slider seat

Point to the moving platform Point to the first UPR limb

{F3,2} On the lead screw

The intersection of the lead
screw axis and the plane
passing through z3,1 and
perpendicular to the slider
mounting plane

Parallel to the intersection of the
guide rail plane and the vertical
plane of the lead screw axis

Coincide with the lead
screw axis

Point to the second UPR limb Point to the
moving platform

{F3,3} On the U joint The midpoint of the hole axis
of the U joint

Parallel to the intersection of the
vertical planes of the two hole
axes of the U joint

Coincide with the hole
axis of the U joint

Point down Point to the first UPR limb

{F3,4} On the moving platform

The intersection of the rear
hole axis of the moving
platform and the rear end face
of the moving platform

Parallel to the intersection of the
vertical plane of the rear hole axis
of the moving platform and the
plane constructed with v and w

Coincide with the rear
hole axis of the
moving platform

Point down Point to the RPU limb

The end poses of the ith limb can be obtained from the local product of the exponential
formula [25] as

gi(qi) = gi,0e
^
ζi,1qi,1gi,1e

^
ζi,2qi,2gi,2e

^
ζi,3qi,3 gi,3e

^
ζi,4qi,4gi,4, i = 1, 2, 3 (13)

where gi denotes the homogeneous transformation matrix (HTM) of {oA; u, v, w} with
respect to {oB; x, y, z} calculated using the ith limb. ζi,j denotes the screw coordinates of si,j
with respect to {Fi,j}, which can be written as [25,26]{

ζi,j =
[

0 0 1 0 0 0
]T for R joint

ζi,j =
[

0 0 0 0 0 1
]T for P joint

(14)

Here, e
^
ζi,jqi,j denotes the exponential map from the Lie algebra se(3) to the special

Euclidean group SE(3), which can be obtained using (A1)–(A4) in Appendix A. gi,j is the
HTM between adjacent coordinate systems when the parallel manipulator is under the
home configuration. To be more specific, gi,0 denotes the HTM of {Fi,1} with respect to {oB;
x, y, z}; gi,4 denotes the HTM of {oA; u, v, w} with respect to {Fi,4}; when j 6= 0 and j 6= 4, gi,j
is the HTM of {Fi,j+1} with respect to {Fi,j}. gi,j can be written as

g1,0 = Trans(x, lB + d)Rot(y, π/2)
g1,1 = Trans(z,−d)Rot(x,−π/2)Rot(z, q̃1,2 − π/2)
g1,2 = Rot(y, π/2)
g1,3 = Trans(z, q̃1,3)Rot(y,−π/2)Rot(z,−q̃1,2 + π/2)
g1,4 = Trans(y, lA)Rot(y,−π/2)Rot(z,−π/2)

(15)
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
g2,0 = Trans(x,−lB − d)Rot(y, π/2)
g2,1 = Trans(z, d)Rot(x,−π/2)Rot(z, q̃2,2 − π/2)
g2,2 = Rot(y, π/2)
g2,3 = Trans(z, q̃2,3)Rot(y,−π/2)Rot(z,−q̃2,2 + π/2)
g2,4 = Trans(y,−lA)Rot(y,−π/2)Rot(z,−π/2)

(16)


g3,0 = Trans(y, lB)Rot(y, π/2)Rot(z, q̃3,1 − π/2)
g3,1 = Rot(y, π/2)
g3,2 = Trans(z, q̃3,2)Rot(y,−π/2)Rot(z,−q̃3,1 + π/2)
g3,3 = Trans(y,−c)Rot(x,−π/2)
g3,4 = Trans(z, c− lA)Rot(y,−π/2)Rot(z,−π/2)

(17)

where Trans(x, lB) denotes the HTM that translates by lB along x, and Rot(y, π/2) denotes
the HTM that rotates by π/2 around y. q̃1,2 is the initial angle between x and B1A1, q̃2,2
is the initial angle between B2B1 and B2A2, and q̃3,1 is the initial angle between B3oB and
B3A3, which can be expressed as

q̃1,2 = arccos

 eT
1 B1

~
A1

‖B1
~
A1‖

 (18)

q̃2,2 = arccos

 eT
1 B2

~
A2

‖B2
~
A2‖

 (19)

q̃3,1 = arccos

−eT
2 B3

~
A3

‖B3
~
A3‖

 (20)

In contrast to q̃1,2, q̃2,2, and q̃3,1, q̃1,3, q̃2,3, and q̃3,2 are the initial positions of the actuated
P-joints, and we have

q̃1,3 = ‖B1
~
A1‖ (21)

q̃2,3 = ‖B2
~
A2‖ (22)

q̃3,2 = ‖B3
~
A3‖ (23)

The linear errors δi,j of {Fi,j+1} along xi,j, yi,j, and zi,j can be expressed as follows:

δi,j =
[
δx

i,j δ
y
i,j δz

i,j

]T
, i = 1, 2, 3 and j = 0, · · · , 4 (24)

In addition to linear errors, angular errors also exist. The angular errors εi,j of {Fi,j+1}
around xi,j, yi,j, and zi,j can be expressed as follows:

εi,j =
[
εx

i,j ε
y
i,j εz

i,j

]T
, i = 1, 2, 3 and j = 0, · · · , 4 (25)

where δi,0 and εi,0 denote the linear and angular errors of {Fi,1} with respect to {oB; x, y, z},
respectively. δi,4 and εi,4 denote the linear and angular errors of {Fi,4} with respect to {oA;
u, v, w}, respectively. Among the 90 error parameters, εx

1,0, ε
y
1,1, δz

1,3, εx
1,3, εx

2,0, ε
y
2,1, δz

2,3, εx
2,3,

εx
3,0, δz

3,2, εx
3,2, and ε

y
3,3 represent the initial displacement errors of the 12 joints. In addition,

the values of δx
1,2, δx

2,2, ε
y
1,4, ε

y
2,4, δx

3,1, εz
3,3, and ε

y
3,4 are zeros since the definitions of local

coordinate systems. Therefore, the rest 71 error parameters represent the linear and angular
geometric errors.
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Setting the values of error parameters other than geometric errors to zeros, the HTM
of the geometric errors between adjacent coordinate systems can be written as

∆gi,j =

[
e

^
εi,j δi,j

01×3 1

]
, i = 1, 2, 3 and j = 0, · · · , 4 (26)

where e
^
εi,j denotes the exponential map from the Lie algebra so(3) to the special orthogonal

group SO(3), which can be determined using (A3) and (A5) in Appendix A.
The end poses of the ith limb that include sthe linear and angular geometric errors can

then be obtained as follows:

gge
i (qi) = ∆gi,0gi,0e

^
ζi,1qi,1 ∆gi,1gi,1e

^
ζi,2qi,2 ∆gi,2gi,2e

^
ζi,3qi,3 ∆gi,3gi,3e

^
ζi,4qi,4gi,4∆g−1

i,4 , i = 1, 2, 3
(27)

which can be rewritten as

gge
i (qi) = gge

i,0e
^
ζi,1qi,1gge

i,1e
^
ζi,2qi,2gge

i,2e
^
ζi,3qi,3 gge

i,3e
^
ζi,4qi,4gge

i,4, i = 1, 2, 3 (28)

4. Evaluation Model of Deformations

As mentioned previously, the 2UPR-RPU parallel manipulator is over-constrained.
Theoretically, the end poses of any two limbs can also be consistent with each other through
the motion deviations of passive joints when the internal-force-and-deformation-related
geometric errors are zero, which can be expressed as

gge
i + ∆gge

i = gge
k + ∆gge

k (29)

where ∆gge
i and ∆gge

k denote the end-pose deviations of the ith and kth limbs caused by the
motion deviations of passive joints, respectively. The end-pose deviation between the ith
and kth limbs can be written as [25,26]

∆µk,i =

{
log
[

gge
k

(
gge

i

)−1
]}∨

(30)

where log[·] stands for the logarithmic operation from SE(3) to se(3), and it can be obtained
using (A6) and (A7) in Appendix A. ∨ represents the reverse operation of (A1). The
end-pose deviation can be rewritten in screw form as follows:

∆µk,i = ∆µi − ∆µk (31)

where the screws ∆µi and ∆µk denote the end-pose deviations of the ith and kth limbs
originating from the motion deviations of passive joints, respectively. Take ∆µi as an
example. Taking the partial differential of (28) with respect to the displacements of the
passive joints, ∆µi can be expressed as follows:

∆µi = ΨiΦi∆qi, i = 1, 2, 3 (32)

where ∆qi denotes the motion deviation of the passive joints of the ith limb.
When i = 1 and i = 2, we have

∆qi =
[
∆qi,1 ∆qi,2 ∆qi,4

]T (33)

and when i = 3, we have
∆qi =

[
∆qi,1 ∆qi,3 ∆qi,4

]T (34)
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For the coefficient matrices Ψi and Φi, when i = 1 and i = 2, we obtain

Ψi =

[
I6 Ad

(
e

^
ξi,1qi,1

)
Ad
(

e
^
ξi,1qi,1 e

^
ξi,2qi,2 e

^
ξi,3qi,3

)]
∈ R6×18 (35)

Φi = Blkdiag(ξi,1,ξi,2,ξi,4) ∈ R18×3 (36)

When i = 3, we obtain

Ψi =

[
I6 Ad

(
e

^
ξi,1qi,1 e

^
ξi,2qi,2

)
Ad
(

e
^
ξi,1qi,1 e

^
ξi,2qi,2 e

^
ξi,3qi,3

)]
∈ R6×18 (37)

Φi = Blkdiag(ξi,1,ξi,3,ξi,4) ∈ R18×3 (38)

where I6 is an identity matrix of order six. Ad(·) is an adjoint representation of SE(3) and is
given in (A8) in Appendix A. Blkdiag(·) denotes a block-diagonal matrix. ξi,j denotes the
screw coordinates of si,j with respect to {oB; x, y, z}, which can be written as follows [25]:

ξi,j = Ad
(

gge
i,0, gge

i,1, · · · , gge
i,j−1

)
ζi,j (39)

Combining (31) with (32) yields∆µ2,1
∆µ3,2
∆µ1,3

 =

 Ψ1Φ1 −Ψ2Φ2 0
0 Ψ2Φ2 −Ψ3Φ3

−Ψ1Φ1 0 Ψ3Φ3

∆q1
∆q2
∆q3

 (40)

Let
∆µ =

[
∆µT

2,1 ∆µT
3,2 ∆µT

1,3

]T
∈ R18×1 (41)

∆q =
[
∆qT

1 ∆qT
2 ∆qT

3
]T ∈ R9×1 (42)

J =

 Ψ1Φ1 −Ψ2Φ2 0
0 Ψ2Φ2 −Ψ3Φ3

−Ψ1Φ1 0 Ψ3Φ3

 ∈ R18×9 (43)

Note that when ∆µ is obtained using (30) and (41), the motion deviations of passive
joints can be calculated as

∆q =
(

JTJ
)−1

JT∆µ = Jc∆µ (44)

Based on the above work, an iterative model can be proposed to evaluate the defor-
mations caused by geometric errors of the 2UPR-RPU over-constrained manipulator. The
detailed processes are described below.

As shown in Figure 3, the proposed evaluation model mainly includes the following
steps. Firstly, a target pose of the moving platform is input, and specified values are
assigned to some of the 71 geometric errors; secondly, the nominal displacements of
all joints are calculated based on the inverse kinematics; thirdly, the displacements of
the passive joints are iteratively updated starting with the nominal values and the end
condition is given as the maximum number of iterations or the target value of the infinity
norm ‖∆µj − ∆µj−1‖∞; finally, the latest end-pose deviation ∆µj for the target pose is
output. When the internal-force-and-deformation-related geometric errors are not all zeros,
the end poses of the limbs cannot be consistent without deformations. Therefore, the latest
∆µj and indices based on it can be used to indirectly evaluate the limbs’ comprehensive
deformations caused by geometric errors of the 2UPR-RPU over-constrained manipulator.
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Figure 3. Scheme I: Evaluation of the limbs’ comprehensive deformations caused by geometric errors
of the 2UPR-RPU over-constrained manipulator.

Considering that a large amount of matrix calculation is included in the proposed
evaluation model, MATLAB is used for programming in Sections 5 and 6.

5. Geometric Error Identification

Finding the internal-force-and-deformation-related geometric errors is the basis of
sensitivity analysis. In this section, the reachable workspace of the 2UPR-RPU parallel
manipulator is described. For geometric error identification and verification, 692 and
1738 target poses are selected in the reachable workspace. Subsequently, internal-force-
and-deformation-related geometric errors in the manipulator are identified based on the
proposed evaluation model and an evaluation index. Finally, simulations are conducted to
verify the correctness of the identification results.
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5.1. Identification Analysis

The structural parameters of the 2UPR-RPU parallel manipulator are presented in
Table 4. Using the space search method [29], the reachable workspace of the manipulator
can be obtained. The search results are shown in Figure 4. Because the end poses at
the boundaries of the reachable workspace are more sensitive to geometric errors, the
692 target poses shown in Figure 5 are uniformly selected for geometric error identification.
To identify the internal-force-and-deformation-related geometric errors, the evaluation
index of the maximum comprehensive deformation of a limb can be written as

∆µmax = max
(
‖∆µj

2,1‖, ‖∆µ
j
3,2‖, ‖∆µ

j
1,3‖
)

(45)

Table 4. Structural parameters of the 2UPR-RPU parallel manipulator.

Symbols Values Units

lA 0.06 m
lB 0.15 m
c 0.025 m
d 0.115 m
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Based on Scheme I and (45), 692 ∆µmaxs can be calculated for the selected target poses
of the moving platform. If the 692 ∆µmaxs are not close to zero, it means that there are
internal-force-and-deformation-related geometric errors among the geometric errors that
were assigned specified values. Without loss of generality, three groups of specified values
for geometric errors are given, as listed in Table 5. The maximum iteration number λ and
specified tolerance τ in Scheme I are set to 50 and 10−15, respectively.

Table 5. Specified geometric errors [13,26] for geometric error identification.

Symbols Group 1 Group 2 Group 3 Units

δi,j 0.005 0.001 5 × 10−5 m
εi,j 0.005 π/180 π/7200 rad

Taking group 1 as an example, the detailed processes are described as follows:
(1) δx

1,0 is set to 0.005 m, and the remaining geometric errors are set to 0. (2) 692 ∆µmaxs
are calculated according to Scheme I and (45). (3) If the number of ∆µmaxs that are
smaller than 10−15 is less than 657 (≈95% of 692), then δx

1,0 is referred to as an internal-
force-and-deformation-related geometric error. After repeating the above steps for the
71 geometric errors, 39 internal-force-and-deformation-related geometric errors were
initially identified and are listed in Table 6. In the table, “X” denotes the internal-force-
and-deformation-related geometric error; “–” denotes the error parameter that is not a
geometric error.

Table 6. Initially identified internal-force-and-deformation-related geometric errors.

i j δx
i,j δ

y
i,j δz

i,j εx
i,j ε

y
i,j εz

i,j

1, 2 0 X X – X X
1, 2 1 X X –
1, 2 2 – X X X
1, 2 3 X – – X X
1, 2 4 X X – X
3 0 – X X
3 1 – X X
3 2 – – X X
3 3 X – –
3 4 X – X

Some geometric errors between any two adjacent coordinate systems in a limb may be
linearly dependent. Therefore, it is necessary to analyse geometric errors simultaneously. Based
on the results in Table 6, the set of the six error parameters,

[
δx

i,j, δ
y
i,j, δz

i,j, εx
i,j, ε

y
i,j, εz

i,j

]
, are regarded

as one unit. Take
[
δx

1,1, δ
y
1,1, δz

1,1, εx
1,1, ε

y
1,1, εz

1,1

]
as an example.

[
δx

1,1, δ
y
1,1, δz

1,1, εx
1,1, ε

y
1,1, εz

1,1

]
is set

to [0.005 m, 0, 0.005 m, 0, 0, 0.005 rad], and the remaining units are set to [0,0,0,0,0,0]. Then,
692 ∆µmaxs are calculated according to Scheme I and (45). If the number of ∆µmaxs that are
smaller than 10−15 is less than 657, the internal-force-and-deformation-related geometric errors
are included in δx

1,1, δz
1,1, and εz

1,1. Then, δx
1,1, δz

1,1, and εz
1,1 are set to 0 in turn, and the remaining

units are unchanged. The ∆µmaxs are recalculated. If the number of ∆µmaxs that decrease
significantly is greater than 656, it is determined that the geometric error, which is set as 0,
will cause internal forces and deformations. These steps were repeated for each error unit and
the results are listed in Table 7. The identification results for groups 2 and 3 in Table 5 are the
same as those shown in Table 7. The results demonstrate that there are 41 internal-force-and-
deformation-related geometric errors, where the number of angular geometric errors is greater
than that of linear geometric errors. In addition, the internal-force-and-deformation-related
geometric errors of the first UPR limb are the same as those of the second UPR limb because of
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the symmetric distribution of the two limbs. For the RPU limb, the geometric errors that cause
internal forces and deformations are angular geometric errors.

Table 7. Identified internal-force-and-deformation-related geometric errors.

i j δx
i,j δ

y
i,j δz

i,j εx
i,j ε

y
i,j εz

i,j

1, 2 0 X X – X X
1, 2 1 X X – X
1, 2 2 – X X X
1, 2 3 X – – X X
1, 2 4 X X – X
3 0 – X X
3 1 – X X
3 2 – – X X
3 3 X – –
3 4 X – X

5.2. Simulation Analysis

To validate the correctness of the identified results listed in Table 7, three groups of
numerical simulations were conducted using 1738 target poses of the 2UPR-RPU parallel
manipulator, as shown in Figure 6. It is assumed that geometric errors are normally
distributed with zero means [19,22]. Three groups of standard deviations are listed in
Table 8. In the simulation, the internal-force-and-deformation-related geometric errors
identified in Table 7 were set to 0, and the remaining 30 geometric errors were assigned
random values generated by randn function using the standard deviations of δi,j and εi,j
listed in Table 8. Then, according to Scheme I and (45), 1738 ∆µmaxs were calculated for
each group. The simulation results are shown in Figure 7. It can be seen that ∆µmaxs of
Group 1, Group 2, and Group 3, are all smaller than 10−15. This demonstrates that the
internal-force-and-deformation-related geometric errors identified in Section 5.1 are correct.
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Table 8. Standard deviations of the geometric errors for the numerical simulations.

Symbols Group 1 Group 2 Group 3 Units

The standard
deviations of δi,j

1.6667 × 10−3 3.3333 × 10−5 1.6667 × 10−5 m

The standard
deviations of εi,j

1.6667 × 10−3 π/540 π/21,600 rad
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and 

Figure 7. Simulation results using the standard deviations listed in Table 8. (a) Group 1; (b) Group 2;
(c) Group 3.

6. Sensitivity Analysis

Sensitivity analysis can help reveal the influence of different internal-force-and-deformation-
related geometric errors on the limbs’ comprehensive deformations. Since ∆µj is calculated
iteratively in Scheme I, the Monte Carlo method [22] is utilised to conduct sensitivity analysis in
this section. Two global sensitivity indices are proposed and the results of sensitivity analysis
are verified through simulations.

6.1. Sensitivity Indices

According to (41), ∆µj consists of ∆µj
2,1, ∆µj

3,2, and ∆µj
1,3, which can be written as

∆µj
k,i =

[
ω

j
k,i,1 ω

j
k,i,2 ω

j
k,i,3 vj

k,i,1 vj
k,i,2 vj

k,i,3

]T
(46)

The end-orientation and end-position volumetric deviations between any two limbs are

∆ω
j
k,i =

√(
ω

j
k,i,1

)2
+
(

ω
j
k,i,2

)2
+
(

ω
j
k,i,3

)2
(47)

and

∆vj
k,i =

√(
vj

k,i,1

)2
+
(

vj
k,i,2

)2
+
(

vj
k,i,3

)2
(48)
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Then, the evaluation indices of the average angular and linear comprehensive defor-
mations of the three limbs can be written as

∆ω
j
a =

∆ω
j
2,1 + ∆ω

j
3,2 + ∆ω

j
1,3

3
(49)

and

∆vj
a =

∆vj
2,1 + ∆vj

3,2 + ∆vj
1,3

3
(50)

Under the condition that geometric errors are normally distributed with zero means,
the sensitivity indices of the average angular and linear comprehensive deformations with
respect to a geometric error can be written as

µω,p =
σ
(

∆ω
j
a,p

)
σ
(
Gep

) , p = 1, 2, · · · , 25 (51)

and

µv,p =
σ
(

∆vj
a,p

)
σ
(
Gep

) , p = 1, 2, · · · , 25 (52)

where σ(·) denotes the standard deviation and can be calculated by std function. Geps are
the internal-force-and-deformation-related geometric errors of the first and third limbs.
Because of the symmetric distribution of the first and second limbs, the internal-force-and-
deformation-related geometric errors of the second limb are not considered. Generally, the
values of sensitivity indices vary with different target poses of the moving platform. Hence,
m target poses should be chosen and the global sensitivity indices can be written as [16]

µ
g
ω,p =

m
∑

i=1
µω,p,i

m
+ σ

(
µω,p

)
(53)

and

µ
g
v,p =

m
∑

i=1
µv,p,i

m
+ σ

(
µv,p

)
(54)

6.2. Sensitivity Analysis

Based on the equations in Section 6.1 and Scheme I, the detailed processes to
calculate the two global sensitivity indices with respect to Gep are described as follows:
(1) Set σ

(
Gep

)
to 1 mm (0.001 m) or 1◦ (π/180 rad) for linear or angular geometric error.

And the other 40 internal-force-and-deformation-related geometric errors are set to 0. In
addition, the rest 30 linear or angular geometric errors are set to 1 mm or 1◦. (2) Assign
1000 random values that obey the normal distribution to Gep and calculate 1000 ∆ω

j
a,ps

and ∆vj
a,ps. (3) Calculate σ

(
∆ω

j
a,p

)
, µω,p, σ

(
∆vj

a,p

)
, and µv,p for a target pose of the

moving platform. (4) Repeat the above steps for m target poses and calculate the global
sensitivity indicesµ

g
ω,p and µ

g
v,p.

In order to improve the computational efficiency, 158 of the 1738 target poses shown
in Figure 6 were selected uniformly to perform the above steps for each Gep. The global
sensitivity indices of the average angular and linear comprehensive deformations with
respect to Geps are shown in Figures 8 and 9, respectively. It can be seen that the values
of µ

g
ω,p with respect to Ge5(δy

1,1), Ge7(εz
1,1), Ge8(δz

1,2), Ge11(δx
1,3), and Ge14(δy

1,4), are zero. This
indicates that the corresponding geometric errors have no effects on the average angular
comprehensive deformation. It is worth mentioning that δ

y
2,1, εz

2,1, δz
2,2, δx

2,3, and δ
y
2,4, have

also no effects on the average angular comprehensive deformation due to the symmetric
distribution of the first and second limbs. Comparing Figure 8 with Figure 9, it can also
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be found that the value of µ
g
v,p is larger than that of µ

g
ω,p for each Gep. This demonstrates

that the internal-force-and-deformation-related geometric errors have greater effects on the
average linear comprehensive deformation. Thus, the distribution of the global sensitivity
index µ

g
v,p is more useful for accuracy synthesis. According to Figure 9, Geps can be sorted in

descending order as follows: Ge16(εz
1,4), Ge25(εz

3,4), Ge15(εx
1,4), Ge4(εz

1,0), Ge24(εx
3,4), Ge12(εy

1,3),
Ge6(εx

1,1), Ge3(εy
1,0), Ge13(εz

1,3), Ge9(εx
1,2), Ge18(εz

3,0), Ge23(εx
3,3), Ge17(εy

3,0), Ge19(εx
3,1), Ge22(εz

3,2),
Ge10(εy

1,2), Ge20(εy
3,1), Ge21(εy

3,2), Ge8(δz
1,2), Ge14(δy

1,4), Ge5(δy
1,1), Ge11(δx

1,3), Ge1(δy
1,0), Ge2(δz

1,0),
and Ge7(εz

1,1). In order to lower the cost of fabrication and assembly, the allowable range of
geometric errors should be larger and larger from Ge16 to Ge7.
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6.3. Verification
6.3.1. Average Angular Comprehensive Deformation

As shown in Table 9, three groups of specified values for geometric errors are given.
For each group, 1738 ∆ω

j
as were calculated according to Scheme I and using the target

poses shown in Figure 6. The maximum and average values of ∆ω
j
a are listed in Table 9. It

can be seen that both the maximum and average values of ∆ω
j
a do not change from Group

1 to Group 3. This indicates that Ge5, Ge7, Ge8, Ge11, Ge14, δ
y
2,1, εz

2,1, δz
2,2, δx

2,3, and δ
y
2,4, have

no effects on the average angular comprehensive deformation.
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Table 9. Sensitivity analysis results of the average angular comprehensive deformation.

Group Number
Ge5, Ge7, Ge8, Ge11, Ge14, δ

y
2,1,

εz
2,1, δz

2,2, δx
2,3, δ

y
2,4 [mm or ◦]

Other Geometric
Errors [mm or ◦]

The Maximum
Value of ∆ω

j
a [◦]

The Average Value
of ∆ω

j
a [◦]

Group 1 0.1 0.1 0.1430 0.0961
Group 2 0.01 0.1 0.1430 0.0961
Group 3 0.001 0.1 0.1430 0.0961

6.3.2. Average Linear Comprehensive Deformation

As shown in Table 10, Ge7(εz
1,1), which has the smallest effect on the average linear

comprehensive deformation, is set to 1◦. Then, the other Geps are set to µ
g
v,7/µ

g
v,p mm or

◦. It is worth mentioning that the corresponding internal-force-and-deformation-related
geometric errors of the second limb are assigned the same values as the first limb due to the
symmetric distribution of the two UPR limbs. The remaining 30 geometric errors are set to
0.1 mm or ◦. According to Scheme I and using the target poses shown in Figure 6, 1738∆ω

j
as

and ∆vj
as were calculated. For comparison, the internal-force-and-deformation-related

linear and angular geometric errors are set to their average values, 0.0209 mm and 0.0743 ◦,
respectively, while the values of the remaining 30 geometric errors are unchanged. After
recalculation, the maximum and average values of ∆ω

j
a and ∆vj

a are listed in Table 11. It
can be seen that both the maximum and average values of ∆vj

a are larger than that of ∆ω
j
a

for each group. This indicates that the internal-force-and-deformation-related geometric
errors have greater effects on the average linear comprehensive deformation. It can also be
found that from Group 2 to Group 1, the maximum and average values of ∆ω

j
a and ∆vj

a
decreased by 84%, 83%, 91%, and 89%, respectively. This demonstrates that at the same
cost, restricting the values of geometric errors according to the sensitivity analysis results
of the average linear comprehensive deformation can dramatically decrease the average
angular and linear comprehensive deformations. Furthermore, it indirectly verifies the
sensitivity analysis results of the average linear comprehensive deformation.

Table 10. Specified geometric errors for verification.

i j δx
i,j [mm] δ

y
i,j [mm] δz

i,j [mm] εx
i,j [◦] ε

y
i,j [◦] εz

i,j [◦]

1, 2 0 0.1 0.0177 0.0381 – 0.0054 0.0033
1, 2 1 0.1 0.0174 0.1 0.0053 – 1
1, 2 2 – 0.1 0.0173 0.0056 0.0092 0.1
1, 2 3 0.0174 0.1 – – 0.0037 0.0056
1, 2 4 0.1 0.0174 0.1 0.0028 – 0.0022
3 0 0.1 0.1 0.1 – 0.0079 0.0057
3 1 – 0.1 0.1 0.0083 0.0135 0.1
3 2 0.1 0.1 – – 0.0137 0.0084
3 3 0.1 0.1 0.1 0.0061 – –
3 4 0.1 0.1 0.1 0.0037 – 0.0024

Table 11. Sensitivity analysis results of the average linear comprehensive deformation.

Group Number The Maximum Value
of ∆ω

j
a [◦]

The Average Value
of ∆ω

j
a [◦]

The Maximum Value
of ∆vj

a [mm]
The Average Value

of ∆vj
a [mm]

Group 1 0.0165 0.0118 0.0696 0.0390
Group 2 0.1061 0.0714 0.8374 0.3581
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7. Conclusions

This paper deals with error modelling and sensitivity analysis of geometric errors
that cause internal forces and deformations in the 2UPR-RPU over-constrained parallel
manipulator. Conclusions are drawn as follows:

(1) The nominal inverse kinematics and actual forward kinematics of the over-constrained
parallel manipulator are analysed according to the vector theory and the local product of the
exponential formula. On this basis, an iterative model is established to indirectly evaluate the
limbs’ comprehensive deformations caused by geometric errors.

(2) Based on the iterative evaluation model, the maximum Euclidean norm of the end-
pose deviations of limbs is defined as an evaluation index of the maximum comprehensive
deformation of a limb. Programming with MATLAB, 41 internal-force-and-deformation-
related geometric errors are identified. Among the 41 geometric errors, the number of
angular geometric errors is greater than that of linear geometric errors; the geometric errors
of the first UPR limb are the same as those of the second UPR limb; the geometric errors of
the RPU limb are all angular geometric errors. The correctness of the identification results
is verified through simulations under the condition that geometric errors are normally
distributed with zero means.

(3) The global sensitivity indices of the average angular and linear comprehensive
deformations with respect to internal-force-and-deformation-related geometric errors are
proposed and calculated based on the Monte Carlo method. The results of sensitivity
analysis demonstrate that δ

y
1,1, εz

1,1, δz
1,2, δx

1,3, δ
y
1,4, δ

y
2,1, εz

2,1, δz
2,2, δx

2,3, and δ
y
2,4, have no

effects on the average angular comprehensive deformation. Furthermore, the internal-
force-and-deformation-related geometric errors have greater effects on the average linear
comprehensive deformation. Therefore, the distribution of the global sensitivity index of
the average linear comprehensive deformation with respect to geometric errors is more
meaningful for accuracy synthesis. Finally, the results of sensitivity analysis are verified
through simulations.

Based on the work presented in this paper, we will establish a model for accuracy
synthesis and determine the tolerances of the fabrication and assembly of the manipulator
in the future.
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Appendix A. Lie Groups and Lie Algebras

Some equations about Lie groups and Lie algebras [25,30,31] are introduced here so that
this work can be clearly understood. For a screw ζ =

[
ωT νT]T, the ∧ operation denotes

^
ζ =

[
^
ω ν

01×3 0

]
∈ se(3) (A1)
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The exponential map from the Lie algebra se(3) to the special Euclidean group SE(3)
can be determined by

e
^
ζq =

[
I3 + sin q

^
ω+ (1− cos q)

^
ω

2
Vν

01×3 1

]
∈ SE(3) (A2)

where I3 is an identity matrix of order three.
^
ω and V are expressed as

^
ω =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 ∈ so(3) (A3)

V = qI3 + (1− cos q)
^
ω+ (q− sin q)

^
ω

2
(A4)

The exponential map from the Lie algebra so(3) to the special orthogonal group SO(3)
can be determined by

e
^
ω = I3 +

sin ‖ω‖
‖ω‖

^
ω+

1− cos ‖ω‖
‖ω‖2

^
ω

2
(A5)

For a HTM g ∈ SE(3), the Lie algebra se(3) can be obtained as

log(g) =
1
8

csc3 θ

2
sec

θ

2


θ cos 2θ − sin θ

−θ cos θ − 2θ cos 2θ + sin θ + sin 2θ
2θ cos θ + θ cos 2θ − sin θ − sin 2θ

−θ cos θ + sin θ


T

I4
g
g2

g3

 (A6)

where

θ = arccos
(

Tr(g)− 2
2

)
, θ ∈ (−π, π) (A7)

The adjoint representation of g can be written as

Ad(g) = Ad
([

R t
01×3 1

])
=

[
R 03×3

^
tR R

]
∈ R6×6 (A8)
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