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Abstract: A binary feature description and registration algorithm for a 3D point cloud based on
retina-like sampling on projection planes (RSPP) are proposed in this paper. The algorithm first
projects the point cloud within the support radius around the key point to the XY, YZ, and XZ planes
of the Local Reference Frame (LRF) and performs retina-like sampling on the projection plane. Then,
the binarized Gaussian density weight values at the sampling points are calculated and encoded
to obtain the RSPP descriptor. Finally, rough registration of point clouds is performed based on
the RSPP descriptor, and the RANSAC algorithm is used to optimize the registration results. The
performance of the proposed algorithm is tested on public point cloud datasets. The test results show
that the RSPP-based point cloud registration algorithm has a good registration effect under no noise,
0.25 mr, and 0.5 mr Gaussian noise. The experimental results verify the correctness and robustness of
the proposed registration method, which can provide theoretical and technical support for the 3D
point cloud registration application.

Keywords: 3D point cloud registration; point cloud feature description; retina-like sampling;
binary descriptor

1. Introduction

In recent years, with the rapid development of three-dimensional (3D) point cloud
sensor hardware, point cloud data has been widely used in unmanned driving [1], intelli-
gent robot [2], surveying and mapping [3], remote sensing [4], and virtual reality [5]. Point
cloud registration is a fundamental problem in 3D computer vision and photogrammetry.
Given two groups of point clouds with overlapping information, the aim of registration
is to find the transformation that best aligns the two groups of point clouds to the same
coordinate system [6,7]. Point cloud registration plays a significant role in the above point
cloud applications. Point cloud registration is generally achieved by matching point cloud
feature descriptors. Although significant progress has been made in point cloud feature
description and registration, several problems, such as sensitivity to noise [8] and large
storage memory [9], still require further study. The measured point cloud usually contains
much noise, and the memory of the mobile hardware platform is often limited. Therefore,
it is urgent to develop a point cloud feature description and registration algorithm that
is robust to noise and occupies less memory, which is of great significance to the practi-
cal application of the point cloud registration algorithm. Retina-like sampling has been
successfully applied in the field of image registration, reducing the impact of the image
registration algorithm on noise and improving image registration accuracy [10]. Inspired
by this, this paper attempts to explore whether the retina-like sampling can improve point
cloud registration accuracy. Binary feature descriptors have less memory than floating-
point feature descriptors [11]. Therefore, to reduce the sensitivity of the cloud registration
algorithm to noise, reduce descriptor storage memory and improve algorithm accuracy,
combining the retina-like sampling technology and binary feature idea, this paper proposes
a binary feature description and registration method based on retina-like sampling on
projection planes according to the structural characteristics of the common 3D point cloud.
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The main contributions of this paper are as follows:
1. A binary feature description method for 3D point cloud based on retina-like sam-

pling on projection planes (RSPP) is proposed, and Gaussian kernel function is introduced
to reduce the sensitivity of the feature descriptor to noise;

2. A point cloud registration method based on RSPP is proposed, and the accuracy of
the registration algorithm is verified on commonly used 3D point cloud datasets.

2. Related Work

Up to now, scholars have proposed many point cloud local feature description meth-
ods. This section mainly reviews some well-known 3D point cloud feature description
methods. Spin Images (SI) [12] is one of the most popular feature descriptors in the early
stage. SI forms its descriptor by accumulating the number of adjacent points into a two-
dimensional histogram. However, the descriptiveness of SI is relatively low and easily
affected by the mesh resolution (mr) of the point cloud. Therefore, to improve the descrip-
tiveness, 3D Shape Context (3DSC) [13] expands the 2D shape context to the 3D shape
context and accumulates the number of weighted points into 3D spatial point density
according to spatial division. Point Feature Histogram (PFH) [8] encodes the angle between
point pairs formed by the combination of all adjacent points in the local surface support
domain and the surface normal, but PFH has high computational complexity and poor
real-time performance. To improve the calculation efficiency, Fast Point Feature Histogram
(FPFH) [14] calculates the Simplified Point Feature Histograms (SPFH) of all points in the
local surface support domain and assigns different weights to form the final descriptor.
Signature of Histograms of OrienTations (SHOT) [15] first establishes a Local Reference
Frame (LRF) at key points and then divides the local sphere into a group subspace along
the radial, azimuth, and elevation axes. The local 3D surface is described by coding the
normal histogram of adjacent points in the LRF coordinate system. Rotational Projection
Statistics (ROPS) [16] rotates and projects the point cloud onto a two-dimensional (2D)
plane, computes distribution statistics of these projection points, including the low-order
central moment and entropy, and finally combines these distribution statistics into the
feature histogram. Signature of Geometric Centroids (SGC) [17] establishes an LRF for key
points, divides the voxel grid along the three axes of the LRF, counts the number of points
in each voxel grid, and calculates the center of gravity of the points. Descriptors of SGC
will be generated by combining the number of points and the center of gravity of each
voxel. 3DHOPD [18] uses the location of key points and the one-dimensional Histogram
of Point Distributions (HOPD) along each axis of the LRF as a feature description. Triple
Orthogonal Local Depth Images(TOLDI) [19] firstly projects the local point cloud around
the key point to the XY, YZ, and XZ planes of the LRF coordinate system. Then, each
plane is evenly divided into grids, and the value at the grid is the minimum projection
distance between the projected points and the plane. Finally, the values of all grids are
concatenated into a descriptor. Binary Shape Context (BSC) [20] is a robust and descriptive
3D binary shape context descriptor. Based on the TOLDI, the Gaussian weighted projection
point distance feature and the Gaussian weighted projection point density feature are
comprehensively considered and binarized, respectively, and finally are spliced into a BSC
descriptor. Weighted Height Image (WHI) [21] encodes local point cloud distance features
by introducing a custom weighting function. Rotational Contour Signatures (RCS) [22]
describe 2D contour information derived from 3D to 2D projection of local surfaces. Local
Voxelized Structure (LoVS) [11] generates a string of binary feature descriptors according to
whether the local voxel structure around the feature points contains points. On this basis,
multi-scale Local Voxelized Structure (mLoVS) [23] makes up for the limitations of LoVS
on scale variation. Further based on LoVS features, Voxel-based Buffer-weighted Binary
Descriptor (VBBD) [24] enhances the robustness of feature descriptors to boundary effects
and density variations by introducing a Gaussian kernel function. Divisional Local Feature
Statistics(DLFS) [25] divides a local space into several partitions along the projected radial
direction and then performs statistics of one spatial and three geometric properties for each
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partition. Local Angle Statistics Histogram (LASH) [26] forms a description of local shape
geometry by encoding its attribute as the angle between the normal vector of the point and
the vector formed by the point and other points in its local neighborhood. Kernel Density
Descriptor (KDD) [27] encodes information about the entire 3D space around feature points
through kernel density estimation. Grid Normals Deviation Angles Statistics (GNDAS) [28]
firstly divides the local surface into several grids evenly along the x-axis and y-axis of the
LRF and then counts the deviation angle of the normal at grid points.

3. Binary Feature of Retina-like Sampling on Projection Planes

The binary feature description process of retina-like sampling on the projection planes
is shown in Figure 1. Firstly, the key points are detected from the input point cloud. Sec-
ondly, the LRF is constructed at key points. Then, all points within the support radius are
projected onto the XY, YZ, and XZ planes, retina-like sampling is performed on the projec-
tion planes, and the Gaussian density weight values at the sampling points are calculated.
Finally, the weight values are binarized and encoded to form the RSPP feature descriptor.
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3.1. Key Points Detection

Key point detection is a basic and important step in point cloud registration. A key
point detector has at least two requirements: high repeatability and good discrimination.
At present, the widely used key point detectors include Harris 3D [29], 3D SURF [30],
NARF [31], ISS [32], etc. Due to the good repeatability and high computational efficiency
of the ISS key point detector [17], this paper selects the ISS key point detector. The specific
process of ISS is as follows:

(1) Assuming P is the input point cloud, an LRF is established for each point pi, and a
search radius rsearch is set for all points;

(2) Determine all points in the area with pi as the center and rsearch as the search radius,
and calculate the weight wij of these points, whose expression is as follows:

wij =
1

‖pi−pj‖
, ‖pi − pj‖ < rsearch, (1)

(3) Establish the covariance matrix cov(pi) of pi:

cov(pi) = ∑
‖pi−pj‖<rsearch

wij

(
pi − pj

)(
pi − pj

)T
/

∑
‖pi−pj‖<rsearch

wij, (2)



Machines 2022, 10, 984 4 of 16

(4) The eigenvalues of covariance matrix cov(pi) are solved and arranged as
{

λ1
i , λ2

i , λ3
i
}

from large to small,
(5) Set the thresholds ε1 and ε2, and select the pi point satisfying λ2

i /λ1
i < ε1 and

λ3
i /λ2

i < ε2 as the key point

3.2. LRF Construction

A unique and stable LRF plays an essential role in the accuracy and stability of feature
matching. Suppose pi is a key point in the input point cloud P, and the point set in the

sphere with pi as the center and radius rLRF is defined as Qi =
{

qij, ‖qij − pi‖ < rLRF

}
,

where qij is other points around pi, and ‖qij − pi‖ is the Euclidean distance between qij and
pi. Similar to reference [15], the distance weight covariance matrix Cov of feature points
and neighborhood points are used to construct the LRF, and the matrix Cov is defined
as follows:

Cov =
1

∑ wij
∑

qij∈Qi

wij

(
qij − pi

)(
qij − pi

)T
, (3)

wij = R− ‖qij − pi‖, (4)

The eigenvalue decomposition is performed on matrix Cov. The eigenvector corre-
sponding to the minimum eigenvalue is the normal vector n(pi) at the key point, and the
eigenvector corresponding to the maximum eigenvalue is the candidate X-axis direction
Xcand of the LRF. Since the direction of the feature vector has symbol uncertainty, the symbol
ambiguity is eliminated by the following methods:

Z(pi) =

 n(pi)
i f n(pi) · ∑

qij∈Qi

−
(

qij − pi

)
≥ 0

−n(pi) else
, (5)

X(pi) =

 Xcand
i f Xcand · ∑

qij∈Qi

wij

{(
qij − pi

)
−
[(

qij − pi

)
· Z(pi)

]
· Z(pi)

}
≥ 0

−Xcand else
, (6)

Then, the constructed LRF is:

L(pi) = {X(pi), Z(pi)× X(pi), Z(pi)}, (7)

3.3. RSPP Descriptor

Some studies have shown that retina-like sampling has many successful cases in image
feature matching, such as BRISK [33], FREAK [10], and DAISY [34]. These cases show that
retina-like sampling can improve the accuracy of image registration. The original intention
of this paper is to apply the idea of retina-like sampling to point cloud registration and
explore its potential in improving the accuracy of point cloud registration. Therefore, a
point cloud feature extraction method based on retina-like sampling on the projection plane
is proposed in this paper, as shown in Figure 2. Firstly, all local points within a sphere
of radius R centered on the key point are acquired in 3D space, as shown in Figure 2a.
Secondly, the local point cloud is projected onto the XY, YZ, and XZ planes of the LRF,
and the retina-like sampling points centered on the key point are established on each
projection plane, as shown in Figure 2b. Then, we calculate and accumulate the Gaussian
density weights of all points within the sampling radius to the feature sampling point,
binarize the weight sum according to whether it is greater than the weight threshold and
arrange the binarized weight sum of all feature sampling points in a fixed order to form
a sub binary feature histogram, as shown in Figure 2c. Finally, the sub binary feature
histograms of different projection planes are merged into the fused feature histogram, as
shown in Figure 2d.
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Figure 2. Schematic diagram of the point cloud feature extraction method based on retina-like
sampling on projection planes. (a) Local point cloud; (b) Sampling mode of retina-like sampling on
each projection plane; (c) Sub binary feature histograms; (d) Fused binary feature histogram.

The schematic diagram of the retina-like sampling mode designed in this paper is
shown in Figure 3.
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In Figure 3, the blue dot represents the sampling point, the red circle represents the
sampling area, the radius of the sampling circle of the same layer is the same, and the
radius from the inside to the outside is h0, h1, . . . , hn; the distance between the center of the
sampling circle of the same layer and the origin of the local coordinate system is the same,
and the distance from the inside to the outside is r1, . . . , rn; n is the number of layers of the
sampling circle; The number of sampling circles in each layer is N0, N1, . . . , Nn and N0 = 1.

It is assumed that for a specific sampling point psi, the point set in the circle with the

sampling radius of hs is defined as Csi =
{

qsij, ‖qsij − psi‖ < hs

}
. It is believed that each

point in the sampling area impacts the feature description of the sampling point psi. The
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impact is represented by the sum of Gaussian density weights in this paper, as shown in
the following formula:

wsi =
msi

∑
n=1

1√
2πσs

e
−
‖qsij−psi‖

2

2σ2
s , qsij ∈ Csi, (8)

where σs represents the sampling standard deviation, let σs = hs/3 in this paper, and msi
represents the number of points in the sampling area.

In order to enhance the robustness of feature description and improve the speed of
feature matching, the weight sum is binarized, as shown in the following formula:

wsi =

{
1 wsi ≥ wthread
0 else

, (9)

The binary Gaussian density weight sum of the sampling points in each projection
plane is arranged in a clockwise order from the inside out to obtain three sub binary his-
tograms, and the three sub binary histograms are spliced to form a fused feature histogram.

3.4. Feature Matching

Suppose Ps and Pt represent the source point cloud and the target point cloud, re-
spectively, their corresponding key point sets are {Ps

1, Ps
2, · · · , Ps

n} and
{

Pt
1, Pt

2, · · · , Pt
m
}

,
and the corresponding feature descriptors of the key point sets are {fs

1, fs
2, · · · , fs

n} and{
ft

1, ft
2, · · · , ft

m

}
. In order to register the source point cloud and the target point cloud, the

Hamming distance is used to describe the similarity between the two descriptors. Find the
nearest feature descriptor through the following formula for the descriptor fs

i of a key point
in the source point cloud.

ft
j = arg min

j=1,2,...,m

(
H
(

ft
j, fs

i

))
, (10)

where H(·) represents the Hamming distance.
The corresponding matching key point pair

〈
Ps

i , Pt
j

〉
can be obtained through the

descriptor matching point pair
〈

fs
i , ft

j

〉
. Since there will inevitably be mismatches in the

registered key point pairs, to improve the registration accuracy, the Hamming distances of
the descriptor matching pairs of all key points are sorted increasingly, and the smallest K-
pairs of matching pairs are selected as the input of RANSAC to estimate the transformation
matrix between two clouds finally.

4. Experimental Verification
4.1. Point Cloud Dataset

In order to prove the feasibility of the point cloud feature description and matching
method based on retina-like sampling proposed in this paper, the commonly used Stanford
3D Scanning Repository [35–38] is selected as the input point cloud for algorithm verifi-
cation. Most Stanford models in the Stanford 3D Scanning Repository are scanned with
a Cyberware 3030 MS scanner. The Stanford models used in this paper include Stanford
Bunny, Happy Buddha, Dragon, and Armadillo, as shown in Figure 4.

4.2. Evaluation Criteria

Recall vs. 1—Precision Curve (RP Curve) is widely used to evaluate the performance
of point cloud feature descriptors [11,15,16]. Therefore, to quantitatively evaluate the
performance of the proposed RSPP feature description and matching method, the RP curve
is also adopted in this paper.
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(d) Armadillo.

Given a source point cloud, a target point cloud, and their transformation relationship,
match the descriptors of the source point cloud with the descriptors of the target point
cloud and find the target point closest to the source point according to the distance of
feature descriptors. If the ratio of the minimum distance to the second minimum distance
is less than the threshold, the source point is considered to match the closest target point
cloud. Moreover, only when the actual distance between the two points is small enough is
the matching considered a true positive. Otherwise, it is considered a false positive. The
specific calculation method of 1− Precision and Recall is as follows. The Precision is the
number of correct matching descriptors divided by the total number of descriptor matching,
then 1− Precision is the number of false matching descriptors divided by the total number
of descriptor matching. The Recall is the number of correct matching descriptors divided
by the number of corresponding features.

1− Precision =
No. of false matches

No. of matches
, (11)

Recall =
No. of correct matches

No. of corresponding features
, (12)

where No. of represents “the number of”.
At the same time, to quantitatively evaluate the registration algorithm’s accuracy, the

registration accuracy index is used and defined as follows:

Accuracy =
No. of correct matches

No. of total matches
, (13)

In order to evaluate whether a pair of registration points
{

pi, pj

}
is correct, the root

mean square error of the distance between the two coordinate positions drmse is used as a
criterion. If drmse is less than the distance threshold εrmse, it is a correct match; Otherwise, it
is a wrong match. The drmse is defined as follows:

drmse = ‖pj − Ti2jpi‖, (14)
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where Ti2j represents the real coordinate transformation matrix between two clouds.
To sum up, the evaluation indicators used in this paper include the RP curve and

accuracy. The larger the area under the RP curve and the higher the accuracy, indicating
that the better the registration result is, the better the point cloud registration algorithm’s
performance.

4.3. Parameter Analysis

It can be seen from the above that the variable parameters involved in the calculation
process of the binary feature based on retina-like sampling on the projection planes include
the support radius R, the number of sampling layers n, the number of sampling circles
per layer N0, N1, . . . , Nn, the radius of the sampling circle h0, h1, . . . , hn, and the distance
r0, r1, . . . , rn between the center of the sampling circle and the origin of the LRF.

For the convenience of expression, let{
hi = (kh)

n × h0
ri = ki

r × h0
, (15)

where kh represents the radius coefficient of the sampling circle, and ki
r represents the

distance coefficient of the center of the sampling circle.
The parameter combination of the RSPP feature descriptor will significantly affect

the performance of the descriptor. For example, when the support radius is large, but
the number of sampling circles per layer is small, the performance of the descriptor will
be poor. When the support radius is large and the number of sampling circles per layer
is also large, the noise will seriously interfere with the performance of the descriptor.
Therefore, finding an optimal combination of parameters is necessary to improve the
performance of descriptors. To obtain the best parameter combination, take dragon data
as an example to analyze the performance of the RSPP feature descriptor under different
parameter combinations.

(1) Support radius

The support radius indicates the influence ability of point clouds around key points
on the RSPP feature descriptors. The larger the support radius, the better the descriptors’
distinguishability, but the requirements for the repeatability of the point cloud are higher.
Therefore, it is necessary to find a suitable support radius. In order to analyze the impact
of different support radii on the performance of the RSPP feature descriptor, the support
radius is changed, and other parameters are fixed. The specific parameter combinations are
shown in Table 1, where mr represents the mesh resolution of the point cloud.

Table 1. Parameter combination of different support radii.

No n N0, N1, . . . , Nn k1
r , . . . , kn

r kh R (mr)

1

5 1, 12, 14, 16, 18, 20 1.5, 3, 5, 7, 9 1.2

20
2 30
3 40
4 50
5 60

The RP curves of different support radii are shown in Figure 5.
It can be seen from Figure 5 that the larger the support radius, the larger the area under

the RP curve, which means that the larger the support radius, the better the performance
of the feature descriptor. When the support radius is 60 mr, the performance of the RSPP
feature descriptor is the best.
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(2) Radius of sampling circle

The sampling circle radius coefficient indicates the impact of different sampling layers
around the key points on the RSPP feature descriptor. The larger the sampling circle radius
coefficient, the smaller the impact of the point cloud in the outer layer on the descriptor. It
means that the farther away from the key points, the smaller the impact on the descriptor.
In order to analyze the influence of the sampling circle radius on the performance of the
RSPP feature descriptor, the sampling circle radius is changed, and other parameters are
fixed. The specific parameter combinations are shown in Table 2.

Table 2. Parameter combination of different radii of sampling circle.

No n N0, N1, . . . , Nn k1
r , . . . , kn

r kh R (mr)

1

5 1, 12, 14, 16, 18, 20 1.5, 3, 5, 7, 9

1.1

60
2 1.2
3 1.3
4 1.4
5 1.5

The RP curves of different radii of sampling circle are shown in Figure 6.
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It can be seen from Figure 6 that when the radius coefficient kh of the sampling circle
is taken as 1.1 or 1.2, the performance of the RSPP feature descriptor is the best. In this
paper, kh is taken as 1.2.

(3) Sampling layers

The number of sampling layers indicates the fineness of RSPP feature descriptors. The
larger the number of sampling layers, the richer the point cloud details described by RSPP.
In order to analyze the influence of the sampling layers on the performance of the RSPP
feature descriptor, the number of sampling layers is changed, and other parameters are
fixed. The specific parameter combinations are shown in Table 3.

Table 3. Parameter combination of different sampling layers.

No n N0, N1, . . . , Nn k1
r , . . . , kn

r kh R (mr)

1 3 1, 12, 14, 16 1.5, 3, 5
1.2 602 4 1, 12, 14, 16, 18 1.5, 3, 5, 7

3 5 1, 12, 14, 16, 18, 20 1.5, 3, 5, 7, 9

The RP curves of different sampling layers are shown in Figure 7.
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Figure 7. RP curves of different sampling layers.

It can be seen from Figure 7 that when the number of sampling layers n is 4 and 5, the
performance of the RSPP feature descriptor is similar. n is taken as 5 to increase the feature
description ability of the descriptor in this paper.

Based on the above analysis, the combination of parameters shown in Table 4 can
better exert the performance of the RSPP feature descriptor.

Table 4. Parameter combination adopted in this paper.

No n N0, N1, . . . , Nn k1
r , . . . , kn

r kh R (mr)

1 5 1, 12, 14, 16, 18, 20 1.5, 3, 5, 7, 9 1.2 60

4.4. Performance Analysis

To intuitively verify the performance of the proposed RSPP feature descriptor, the
RSPP is compared with the commonly used point cloud feature descriptors, including
3DSC, SHOT, FPFH, TOLDI, and RCS. The performance of these feature descriptors under
noiseless and noisy conditions is analyzed, respectively. In addition, to keep the test
conditions consistent, the support radius of all feature descriptors is taken as 60 mr, as
shown in Table 5.

It can be seen from Table 5 that the binary RSPP descriptor occupies the slightest
memory, which is very helpful for mobile platform applications.
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Table 5. Feature descriptor parameter Settings.

Descriptor Support Radius (mr) Dimension Length Type Memory (Byte)

3DSC 60 15 × 12 × 11 1980 float 7920
SHOT 60 8 × 2 × 2 × 11 352 float 1408
FPFH 60 3 × 11 33 float 132

TOLDI 60 3 × 20 × 20 1200 float 4800
RCS 60 6 × 12 72 float 288
RSPP 60 3 × 81 243 binary 31

(1) Performance analysis without noise

Point cloud feature extraction and matching are performed on the point cloud data of
the Stanford Models without adding noise. The RP curve is shown in Figure 8.
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Bunny dataset; (b) RP curve of Buddha dataset; (c) RP curve of Dragon dataset; (d) RP curve of
Armadillo dataset.

As can be seen from Figure 8, under noise-free conditions, the RP curve of the RSPP
for the Bunny and Armadillo datasets is superior to other feature descriptors, and the RP
curve of the RSPP for the Buddha and Dragon datasets is close to the RP curve of FPFH
and is better than other feature descriptors.

(2) Performance analysis with noise

To compare the sensitivity of different point cloud feature descriptors to noise, the perfor-
mance of different feature descriptors is tested when the Gaussian noise standard deviations
are 0.25 mr and 0.5 mr, and their RP curves are shown in Figures 9 and 10, respectively.
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Figure 9. RP curves of different feature descriptors under 0.25 mr Gaussian noise: (a) RP curve of
Bunny dataset; (b) RP curve of Buddha dataset; (c) RP curve of Dragon dataset; (d) RP curve of
Armadillo dataset.

It can be seen from Figures 9 and 10 that under the conditions of 0.25 mr and 0.5 mr
Gaussian noise, the RP curves of RSPP on the test dataset are better than other feature
descriptors, indicating that RSPP has good robustness against noise.

To quantitatively evaluate the accuracy of the registration algorithm, the registration
accuracy of different feature descriptors under the conditions of Figure 8 to Figure 10 is
calculated, as shown in Table 6. The two top accuracy values under different datasets in
the table are displayed in bold. The distance threshold εrmse for judging whether a pair of
registration points are correctly matched is 3 mr.

It can be seen from Table 6 that the proposed RSPP feature descriptor has good
registration accuracy on different datasets and under different noise conditions, which
verifies the accuracy and reliability of the RSPP-based point cloud registration algorithm
proposed in this paper.

To intuitively show the effect of point cloud registration, Figure 11 shows the point
cloud registration examples of different datasets. The red point represents the original
point cloud, and the green point represents the registered point cloud.
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Figure 10. RP curves of different feature descriptors under 0.5 mr Gaussian noise: (a) RP curve of
Bunny dataset; (b) RP curve of Buddha dataset; (c) RP curve of Dragon dataset; (d) RP curve of
Armadillo dataset.

Table 6. Registration accuracy of different feature descriptors.

Gaussian
Noise (mr) Dataset

Registration Accuracy (%)

3DSC SHOT FPFH TOLDI RCS RSPP

0

Bunny 24.4 51.3 58.8 62.2 47.9 52.9
Buddha 25.0 61.2 68.4 65.8 57.5 65.5
Dragon 26.1 71.2 73.5 71.2 69.3 72.9

Armadillo 28.3 71.7 68.9 59.2 47.9 76.5

0.25

Bunny 20.2 49.6 25.2 39.5 31.1 51.3
Buddha 21.3 42.8 50.3 48.3 39.1 51.4
Dragon 17.0 46.1 51.6 50.7 40.2 53.3

Armadillo 16.8 57.6 23.7 27.9 15.0 55.5

0.5

Bunny 17.7 36.1 28.6 36.1 25.2 37.8
Buddha 16.1 34.2 40.5 35.3 36.8 40.8
Dragon 12.1 36.0 40.5 39.2 29.7 42.8

Armadillo 11.3 40.6 21.7 16.4 11.3 41.2

It can be seen from Figure 11 that after the point cloud registration algorithm based
on RSPP, the original point cloud and the registered point cloud basically coincide. Fur-
thermore, even in the case of partial data missing and a low point cloud coincidence rate, a
good registration effect can still be achieved, which intuitively verifies the performance of
the registration algorithm based on the RSPP proposed in this paper.
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5. Conclusions

This paper proposes a binary feature description called RSPP and an RSPP-based
3D point cloud registration algorithm to reduce the sensitivity to point cloud noise. The
primary process of feature description and registration algorithm is as follows. Firstly, the
key points of the input point cloud are detected, and the corresponding LRF is established.
Secondly, the point cloud within the support radius around the key point is projected to the
XY, YZ, and XZ planes of the LRF, and a retina-like sampling mode is established on each
projection plane. At the same time, the Gaussian density weight value at the sampling point
is calculated and binarized. Then, the binary Gaussian density weight value at all sampling
points is encoded to obtain the RSPP feature descriptor. Finally, coarse registration of the
point cloud is performed based on the RSPP descriptor, and the RANSAC algorithm is
used to optimize the registration result. The performance of the proposed algorithm is
tested and verified on the public Stanford 3D Scanning Repository point cloud dataset.
The results show that compared with some typical point cloud feature descriptors, the
RSPP-based point cloud registration algorithm has a relatively good registration effect
on the test 3D point cloud datasets under noise-free, 0.25 mr, and 0.5 mr Gaussian noise
conditions. It indicates that the proposed RSPP-based point cloud registration algorithm
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has lower sensitivity to noise, and its overall performance is better than other comparative
methods. At the same time, even in the case of partial data missing and a low point
cloud coincidence rate, a good registration effect can still be achieved. Furthermore, a
binary RSPP feature descriptor occupies 31 bytes of memory, which is significantly smaller
than other mentioned classical descriptors and has good mobile hardware application
potential. The results verify the correctness and robustness of the proposed point cloud
registration method, which can provide theoretical and technical support for 3D point
cloud registration applications.
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