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Abstract: This paper modifies the single rigid body (SRB) model, and considers the swinging leg as
the disturbances to the centroid acceleration and rotational acceleration of the SRB model. This paper
proposes deep reinforcement learning (DRL)-based model predictive control (MPC) to resist the
disturbances of the swinging leg. The DRL predicts the swing leg disturbances, and then MPC gives
the optimal ground reaction forces according to the predicted disturbances. We use the proximal
policy optimization (PPO) algorithm among the DRL methods since it is a very stable and widely
applicable algorithm. It is an on-policy algorithm based on the actor–critic framework. The simulation
results show that the improved SRB model and the PPO-based MPC method can accurately predict the
disturbances of the swinging leg to the SRB model and resist the disturbance, making the locomotion
more robust.

Keywords: biped robots; single rigid body; model predictive control; deep reinforcement learning

1. Introduction

In this paper, deep reinforcement learning (DRL) is used to predict the disturbances of
the swinging leg to the single rigid body (SRB) model, and the SRB-based model predictive
control (MPC) method is transplanted to the biped robots with a non-negligible leg mass.

Compared with other types of robots, legged robots have huge application value and
development prospects. At present, quadruped robots and biped robots are the research
hotspots in the field of legged robots. Due to the complex nonlinear dynamics and higher
degrees of freedom of biped robots, it is a challenging task to realize the stable walking of
biped robots [1]. Compared with quadruped robots, it is difficult to achieve static stability
with biped robots due to their mechanical structure design. Since the rectangular foot
area of biped robots is very small, some biped robots even have linear feet. This results in
a small or even a non-existent support field for biped robots during static standing and
locomotion. From the point of view of stability analysis, the biped robots do not have
the condition of static stability, but only have the condition of dynamic stability. This
means that bipedal robots can only stabilize themselves during locomotion. Therefore,
the design of the locomotion controller of biped robots is much more difficult than that of
quadruped robots.

At present, there are two main control methods for legged robots, namely model-based
control methods and model-free control methods. DRL is the most dominant of the model-
free methods. Currently, in the field of legged robots, proximal policy optimization [2]
(PPO) and deep deterministic policy gradient [3] (DDPG) are the two most commonly used
DRL methods. The DRL methods successfully realize the navigation of mobile robots [4]
and the motion control of manipulators [5]. The DRL methods avoid the complex modeling
and parameter adjustment process. Through the guidance of different reward functions,
the agent can learn different target strategies, which is a more flexible control method.
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Recent studies have achieved many control goals on bipedal robots with the help of DRL
methods, such as blindly climbing stairs [6], adapting to rough terrains [7], and carrying
various dynamic loads [8].

Most DRL methods learn joint positions in joint space [9,10] and then implement
joint torque control through a low-level proportional derivative (PD) controller. However,
the dimensions of observation space and action space of such methods are large, which
require a long training time. The model-based control method is what we usually call the
traditional control method.

To design a model-based control method, the controlled object must be modeled first.
In the field of legged robots, there are many ways to model robots. These models can be
roughly divided into two categories: one is full-order models and the other is reduced-order
models. The main difference between them is whether the dynamic model of the robot
is simplified. The full order model is to model the legged robot as accurately as possible,
preserving all quantifiable dynamic properties. In physics, the full-order model of a legged
robot is one of a multi-rigid-body floating-base dynamic model. The Newton–Euler method
and the Lagrange method are two commonly used modeling methods for multi-rigid-body
floating-base dynamic models.

Compared with the full-order model, the modeling process of the reduced-order model
is much simpler. In the field of legged robots, the most classic reduced order model is the
linear inverted pendulum (LIP) model [11]. The LIP model simplifies the robot into a system
consisting of a mass point and two massless links with freely varying lengths attached to
it. The model assumes that the height of the center of mass remains unchanged during
the movement process, which degenerates the complex nonlinear dynamic equation into a
linear equation and greatly reduces the design difficulty of the controller. The simplicity
and effectiveness of LIP make it widely used in the field of legged robots. Subsequently,
many improved models based on LIP appeared, such as the same classical spring-loaded
inverted pendulum (SLIP) model [12]. Another commonly used model in the field of biped
robots is the five-link model. The LIP model is mainly used to plan the landing point and
gait cycle of the robot, and the five-link model can be used to directly solve the joint torque.
The torso and legs of the biped robot are simplified into five mass-concentrated connecting
links. As an approximate simplified model of the full-order models, the five-link model can
also be modeled by the Newton–Euler method and Lagrange method mentioned above,
and the modeling process is relatively simple. A recent study on quadruped robots [13]
proposed a reduced-order model called the SRB model. Unlike the LIP model and the
five-link model, the SRB model contains only one rigid body that can move freely. Relative
to the point and the link, the SRB contains the posture information of the robot, so the
SRB model is a more accurate simplified model than the LIP and the five-link model. The
hybrid zero dynamics (HZD) is a feedback control method based on virtual constraints.
It is commonly used in the control of full-order models and five-link models [14]. Recent
research has improved the Cassie robot’s adaptability to rough terrains with the help of
HZD [15]. There are many control methods based on the LIP model, such as capture point
(CP) control [16], zero moment point (ZMP) control [17], linear quadratic regulator (LQR),
and other optimal control methods [18]. A recent study on bipedal robots [19] applied the
SRB-based MPC method to bipedal robots. However, the popularization of the SRB-based
MPC in the field of biped robots faces a major challenge. The SRB model does not consider
the influence of the leg mass on the overall motion of the robot, which is a very reasonable
assumption for a quadruped robot whose leg mass accounts for about 10%. At present, the
mass of the legs of most biped robots accounts for a large proportion, and the influence of
the mass of the legs on the overall motion cannot be ignored. Recent studies [20–22] have
combined the whole body control (WBC) based on floating-base dynamics with the SRB-
based MPC and achieved good control results. However, such methods are complex and
computationally intensive. Recent studies have also attempted to combine model-based
and model-free approaches, such as learning foothold locations in the task space [23] and
combining DRL with HZD to achieve higher-level control objectives [24].
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Based on the above reasons, we propose an MPC method based on DRL. In this
paper, we use the PPO algorithm among DRL methods to learn the prediction policy of the
disturbances of the swinging leg. Since it is a very popular algorithm, it is often used as the
baseline method. Its effect may not be the best, but it is a very stable and widely applicable
algorithm. It is an on-policy algorithm based on the actor–critic framework. Videos of
the experimental results can be found at https://github.com/houshang1991/dsrb-mpc.git
(accessed on 7 October 2020). The main contributions of this paper are as follows:

1. The SRB-based MPC method generally assumes that the robot’s leg mass has a neg-
ligible effect on its locomotion. However, the mass of the legs of most biped robots
accounts for a large proportion of the total mass, which will disturb the locomotion
of the SRB model. We describe the disturbances of the swinging leg as the centroid
acceleration disturbance and the rotational acceleration disturbance. Furthermore, we
use the PPO algorithm to train a policy to accurately predict the disturbances of the
swinging leg.

2. In this paper, we improve the SRB-based MPC method by adding the disturbances
of the swing leg to the SRB model. This method can give the true optimal ground
reaction forces (GRFs), enabling the biped robot to resist the disturbances of the
swinging leg while tracking the desired forward velocity.

3. In this paper, we verify the improved SRB-based MPC method through three sim-
ulation experiments. Experiments show that the disturbances of the swinging leg
can be accurately predicted and resisted. We expand the scope of application of the
SRB-based MPC method, and provide a robust control method for biped robots with
non-negligible leg mass.

2. Control Architecture

The control method proposed in this paper consists of four parts, as shown in Figure 1.
A finite state machine (FSM) is responsible for generating a walking gait pattern. The swing
leg controller is responsible for solving the joint torque of the swing leg. The stance leg
controller uses the MPC based on a modified SRB model to solve for the optimal GRFs. The
trained policy is responsible for predicting the disturbances caused by the swinging leg to
the SRB model. The structure of the biped robot used in this paper is shown in Figure 2.
This section mainly introduces the first three parts.
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Figure 1. The block diagram of the control architecture. The stance leg controller and the policy run
at 80 Hz, and the swing leg controller runs at 230 Hz. Reference signal includes desired torso Euler
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angles, centroid velocity and centroid height, which are Θd, ṗd and pd
z , respectively. zd

h represents the
desired height of the hip joint of the swinging leg, which can be calculated from the above reference
signals. ṗd

h represents the desired velocity of the hip joint of the swinging leg in Cartesian space,
which can also be calculated from the above reference signals. Θ and ω represent the actual torso
Euler angles and angular velocity. p and ṗ represent the actual centroid position and velocity. q
and q̇ represent the position and velocity of the leg joints in joint space, respectively. z indicates the
completion percentage of swing or supporting. τsw and τst represent the swinging leg joints torques
and the stance leg joints torques. αb(t) and βb(t) represent the disturbances of the swinging leg to
the centroid acceleration and rotational acceleration expressed in body frame. π is the disturbances
prediction policy obtained by the PPO algorithm.

Abad joint/link

Yaw joint/link

Hip joint

Hip link

Knee joint

Knee link

Foot joint

Foot link

 BX Y

Z

Abad joint/link

Yaw joint/link

Hip joint

Hip link

Knee joint

Knee link

Foot joint

Foot link

X Y

Z

 S

Figure 2. The structure of the biped robot. {B} is the body frame, {S} is the inertia frame.

2.1. Finite State Machine

The FSM generates a walking gait pattern based on the fixed swing duration and
stance duration. It gives the time phase (swing phase or stance phase) that each leg is in at
the current moment and the percentage z ∈ [0, 1] of completion of the current time phase.
The swing phase and stance phase of each leg accounted for 40% and 60% of the entire gait
cycle, respectively, of which the double stance phase accounted for 10%. The walking gait
pattern is shown in Figure 3. In this paper, the swing phase duration Tsw is equal to 0.12 s,
and the stance phase duration Tst is equal to 0.18 s.
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Figure 3. The walking gait pattern generated by the FSM.

2.2. Swing Leg Controller

The block diagram of the swing leg controller is shown in Figure 4. The swinging leg
controller firstly solves the desired foothold point pd

f
. Then it calculates the desired foot

position pd
f according to pd

f
. Then it calculates the desired joint position qd and velocity

q̇d according to the inverse kinematics of the leg. It finally calculates the joint torques τsw
through a PD controller in the joint space. To alleviate the impact on the body when the
swinging leg touches the ground, this paper applies three touchdown policies to ensure the
stability of the robot’s motion.

The touchdown policy 1 is to imitate the habit of human walking and increase the
lateral stability of the biped robot. It adjusts the angle of the yaw joint in real time, making
the toe slightly outward. It works from the beginning to the end of the swing phase,
tracking a set initial yaw joint angle in real time. In the simulation environment, the
collision between the foot of the swinging leg and the ground is the elastic collision. The
touchdown policy 2 sets the desired speed of each joint to 0 so that the command speed
output by the PD controller is as small as possible. It can reduce the impact of elastic
collision on the motion state of the robot. It works just before the foot touches the ground
until the end of the swing phase. Before the foot of the swinging leg is fully in contact with
the ground, the yaw joint torque output by the PD controller may cause the front or rear
end of the foot to contact the ground early. As a result, unexpected elastic collisions occur,
and even relative sliding between the foot and the ground occurs. The above two situations
will cause significant disturbances to the motion state of the robot. The touchdown policy 3
also starts working near the end of the swing phase, and by forcing the yaw joint torque to
zero, the above-mentioned accidents can be avoided to the greatest extent possible. The
above three touchdown policies are run synchronously, but the start time is different, and
the specific situations to be dealt with are different. However, their ultimate goal is to
improve the stability of the robot’s locomotion.

In foothold planning, we use the following formula to calculate the real-time desired
foothold position:

pd
f
= p

h
+ Tst

2 ṗd
h
+

√
zd

h
g

(
ṗ

h
− ṗd

h

)
, (1)

where pd
f

is the desired foot landing point on the horizontal ground represented in {S}; p
h

is the projection of the actual position of the hip joint on the horizontal ground represented
in {S}; ṗd

h
is the projection of the desired speed of the hip on the horizontal ground

represented in {S}; ṗ
h

is the projection of the actual speed of the hip on the horizontal

ground represented in {S}; zd
h is the desired height of the hip from the ground; Tst is the

duration of the swing phase; and g is the acceleration of gravity.
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Figure 4. Block diagram of the swing leg controller. p f represents the actual foot position. pd
f

represents the desired foot position. pd
f

represents the projection of pd
f on the horizontal ground. q

and q̇ represent the actual position and velocity of the swinging leg joints in joint space. qd and q̇d

represent the desired position and velocity of the swinging leg joints in joint space. τ represents the
joint torque of the swinging leg. Subscripts 0, 1, 2, 3, and 4 refer to abad, yaw, hip, knee, and foot
joints, respectively. ṗd

h represents the desired velocity of the hip joint of the swinging leg in Cartesian
space. zd

h represents the desired height of the hip joint of the swinging leg.

In foot-gait planning, the desired foot position in the joint space is generated by fitting
a 6th-order Bezier curve. Note that the joint positions and velocities mentioned below
are representations in the joint space. To imitate the toe outstretching behavior of human
walking and enhance the stability of dynamic walking, touchdown policy 1 adjusts the
desired position and desired speed of the yaw joint of the biped robot in real-time. For the
foot to be in full contact with the ground at the end of the swing phase, we add a horizontal
constraint with the foot parallel to the ground. According to this constraint, the desired
position and desired velocity of the foot joint can be solved.

Except for the yaw joint and the foot joint, each leg of the biped robot has 3 degrees
of freedom, and the inverse kinematics happens to have a unique solution. According to
the desired foot joint position, the desired position and velocity of the abad, hip, and knee
joints can be solved. To reduce the impact on the ground, when z ≥ 0.85, touchdown policy
2 sets the desired velocity of all joints of the swinging leg to 0 rad/s. Touchdown policy 2
further improves the stability of the biped robot when the leg transitions from the swing
phase to the stance phase.

After solving for the desired positions and velocities of all joints, we filter the actual
joint velocities using a first-order digital low-pass filter with a cutoff frequency lower than
the operating frequency of the swing leg controller. Then, this paper uses a PD controller in
joint space to calculate the torque of each joint according to the actual joint position errors
and joint velocity errors:

τsw = Kp

(
qd − q

)
+ Kd

(
q̇d − q̇

)
, (2)

where q and q̇ are the actual joint position and velocity vector, respectively; qd and q̇d are
the desired joint position and velocity vector, respectively; and Kp and Kd are the error gain
matrices of the PD controller, respectively.

When z ≥ 0.97, touchdown policy 3 sets the foot joint torque to 0 N ·m. When the foot
touches the ground, touchdown policy 3 can reduce the impact caused by the fluctuation
of the foot joint torque.

2.3. Stance Leg Controller

The block diagram of the support leg controller is shown in Figure 5. We treat the
body of the biped robot as the SRB model that can move and rotate freely in 3D space. We
add external disturbances to the centroid acceleration and rotational acceleration of the
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model, and call the new model the disturbed single rigid body (DSRB) model. Unlike the
original SRB-based MPC (SRB-MPC) method, we treat the effect of swinging the leg on the
locomotion of the body as two predictable bounded disturbances. Then, the optimal GRFs
at the foot of the stance leg can be solved by the DSRB-based MPC (DSRB-MPC) method.
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Figure 5. Block diagram of the stance leg controller. αb(t) and βb(t) represent the disturbances to the
centroid acceleration and rotational acceleration expressed in {B}, whereas α(t) and β(t) express in
{S}. Θd represents the desired Euler angles, whereas Θ represents the actual value. ṗd represents
the desired centroid velocity, whereas ṗ represents the actual value. ω represent the actual angular
velocity. pd

z represents desired centroid height. p represents the actual centroid position. fi is the GRF.
τ4 represents the torque of foot joint. τst represents the torques of the stance leg. s

bR is the rotation
matrix which transforms from {B} to {S}. J is the foot joint Jacobian.

The approximate linear dynamics of the DSRB model are as follows:

p̈ =
∑n

i=1 fi

m
− g + α(t), (3)

ω̇ ≈ I−1
(
∑n

i=1 ri × fi

)
+ β(t), (4)

where p is the position of the center of mass of the body; p̈ is the acceleration of the center
of mass of the body; ω is the rotational angular velocity of the body; ω̇ is the rotational
acceleration of the body; m is the mass of the body; fi is the reaction force exerted by the
ground on the center of mass of the body through the ith foot; ri is the moment arm of fi; I
is the inertia tensor of the body; α(t) and β(t) are the uncertain centroid acceleration and
rotational acceleration disturbances imposed by the outside on the body expressed in {S},
respectively; and n is the number of legs of the robot.

Equations (3) and (4) can be rewritten as the following equation of state:

d
dt



Θ

p

ω

ṗ

β(t)

α(t)− g


=



03×3 03×3
s
bR 03×3 03×3 03×3

03×3 03×3 03×3 E3×3 03×3 03×3

03×3 03×3 03×3 03×3 E3×3 03×3

03×3 03×3 03×3 03×3 03×3 E3×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3





Θ

p

ω

ṗ

β(t)

α(t)− g



+



03×3 03×3

03×3 03×3

I−1[r1]× I−1[r2]×
1
m E3×3

1
m E3×3

03×3 03×3

03×3 03×3


[

f1

f2

]
,

(5)
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where Θ is the Euler angles in ZYX order, representing the orientation of the body; s
bR is

the rotation matrix, which transforms from {B} to {S}; 03×3 is the zero matrix; E3×3 is the
identity matrix; and [d]× is the skew-symmetric matrix generated by the vector d.

We take the discrete form of the state Equation (5) as the equality constraint, the
friction cone constraints of the GRFs as the inequality constraint, and the quadratic form
of the state error and input as the objective function. The problem of solving the optimal
GRFs can be written in the following standard MPC form:

min
x,u ∑k−1

i=0

∥∥∥xi+1 − xi+1,re f

∥∥∥
Q
+ ‖ui‖R, (6)

s.t. xi+1 = Adixi + Bdiui, i = 0 . . . k− 1, (7)

c ≤ Cdiui ≤ c, i = 0 . . . k− 1, (8)

where k is the horizon length; xi =
[
Θ>, p>, ω>, ṗ>, β>, (α− g)>

]>
is the predicted state

of the system at the ith moment; xi+1,re f is the reference state of the system at the next

time after the ith moment; ui =
[

f>1 , f>2
]>

is the input of the system at the ith moment;
xi+1 = Adixi + Bdiui is the discrete form of Equation (5) at the ith moment; c ≤ Cdiui ≤
c, i = 0 . . . k− 1 is the friction cone constraints at the ith moment; and Q and R are diagonal
positive semi-definite matrices of weights.

Equation (7) can be rewritten as the following compact form:

X = Aqpx0 + BqpU, (9)

where X =
[
x>1 . . . x>k

]>
is the state trajectory of the system in the horizon; U =

[
u>0 . . . u>k−1

]>
is the input sequence of the system in the horizon.

Finally, we put Equation (9) into Formula (6), and the standard MPC problem can be
simplified as the following standard QP problem:

min
U

1
2

U>
(

B>qpQqpBqp + Rqp

)
U + U>

[
B>qpQqp

(
Aqpx0 − Xre f

)]
, (10)

s.t. C ≤ CqpU ≤ C, (11)

where Qqp is a block diagonal matrix composed of Q; Rqp is a block diagonal matrix
composed of R; Cqp is a block diagonal matrix composed of Cdi; C is made up of stacks of c;

C is made up of stacks of c; and Xre f =
[

x>1,re f . . . x>k,re f

]>
is the state reference trajectory of

the system in the horizon.
Considering that the output torque of the actuator at the foot joint of most biped robots

is small, we take the foot joint as a passive joint and constrain the output torque of this joint
to 0 N ·m. Under the above assumptions, the biped robot cannot achieve static stability, but
can only achieve dynamic stability, and its control difficulty increases. The output torque
of each joint except the foot joint is given by

τst = J>s
bR>u0, (12)

where J is the foot joint Jacobian.
To improve stability, we also perform first-order low-pass filtering on the centroid

velocity and rotation velocity of the body in the stance leg controller. The cutoff frequency
of the filter is lower than the operating frequency of the stance leg controller.

3. Learning Prediction Policy for Disturbances

The disturbances of the swinging leg are related to the joint position q and joint
velocities q̇, which is a complex time-varying nonlinear function. It is difficult to accurately
model it using mathematical analysis methods. Therefore, in this paper, we formulate the
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prediction of the disturbances of the swinging leg as a Markov decision process. Then we
use the PPO method to train a policy to predict the disturbances at different times.

3.1. State Space and Action Space

The state variable st only contains the current state of the biped robot and does not
contain any desired state variables:

st = {Θ, ω, ṗ, q, q̇, zs
1, zs

2} ∈ R31, (13)

where Θ is the Euler angles of the body; ω is the angular velocity of the body; ṗ is the
centroid velocity of the body; q ∈ R10 is the joint position vector of the biped robot; q̇ ∈ R10

is the joint velocity vector of the biped robot; and zs
i = −1 + zi if the ith leg is in the swing

phase, otherwise zs
i = zi, and zs

i ∈ [−1, 1].
Because the disturbances of the swinging leg are independent of p and the disturbances

are relative to the body, we choose to learn a prediction policy π for the disturbances
expressed in {B}. We take the disturbances αb(t) and βb(t) of the swinging leg as actions.
The dimension of the action space we choose is 6, which is smaller than the dimension of
the joint space. We assume that the disturbances of the swinging leg are bounded, limiting
the range of the components of αb(t) and βb(t) to be between −5 and 5. Through s

bR , we
can find the disturbances expressed in {S}, α(t) and β(t).

3.2. Reward Function

This paper combines reinforcement learning with the DSRB-MPC method, so the
design of the reward function is very simple. When designing the reward function, we
preferentially encourage the biped robot to keep the Euler angles of the body unchanged to
avoid falling due to drastic changes in posture. Therefore, the Euler angle errors of the body
have the largest weights in the reward function, followed by the height error. The reward
function secondly encourages the biped robot to track the forward velocity on a horizontal
plane, so the forward and lateral velocity errors are weighted less, and the vertical velocity
error is the least weighted. The reward function is as follows:

r = 0.22 exp(−6|Θe
x|) + 0.22 exp

(
−6
∣∣∣Θe

y

∣∣∣)+ 0.22 exp(−6|Θe
z|) + 0.15 exp(−4|pe

z|)

+0.07 exp(−2| ṗe
x|) + 0.07 exp

(
−2
∣∣∣ ṗe

y

∣∣∣)+ 0.04 exp(−| ṗe
z|),

(14)

where Θe
x, Θe

y and Θe
z are the roll, pitch, and yaw angle errors of the body, respectively; pe

z
is the height error of the center of mass of the body; ṗe

x, ṗe
y and ṗe

z are the three velocity
errors of the center of mass of the body in the x, y and z directions, respectively.

3.3. Prior Knowledge

To reduce the difficulty of training and shorten the training time, this paper only hopes
that the biped robot can track a horizontal positive reference velocity while keeping the body
posture unchanged. Furthermore, this paper introduces two prior pieces of knowledge.

1. First, we determine the parameters Kp, Kd, Q and R of the SRB-MPC method on the
model 1 in Table 1 with negligible leg mass (the mass of the two legs of the model
accounts for 6.7% of the total mass). To make the stance leg controller stable, even
when ṗe

x is large, we use three very small velocity target weights: Q ṗ
x , Q ṗ

y and Q ṗ
z in Q.

The stance leg controller will give priority to ensuring that the Euler angle errors of the
body are the smallest and maintain the body posture. The stance leg controller then
tracks the positive horizontal reference speed as closely as possible without falling.
When training the prediction policy for the disturbances of the swinging leg, we use
Model 2 in Table 1 and use the same parameters in the DSRB-MPC method as the
SRB-MPC method. The target weights of the MPC are shown in Table 2.
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2. To avoid frequent falls of the biped robot at the beginning of the simulation, we use
two small forward desired accelerations, and the forward velocity reference is shown
in Figure 6. At the same time, in order to learn the disturbance prediction policy
at different speeds, the reference trajectory contains 5 steps of one-second step-like
uniform motion, and the step speeds are 0.6 m/s, 0.7 m/s, 0.8 m/s, 0.9 m/s and
0.95 m/s respectively. The end of the reference trajectory is a uniform motion of
1 m/s. The reference trajectory includes uniform and acceleration motion at different
speeds. The learning difficulty of the policy is from easy to difficult, which satisfies
the learning rules.

Table 1. The mass parameters of two models.

Link Name Model 1 (Massless Legs) Model 2 (Mass Legs)

Body 15 kg 11.8 kg
AbAd 0.1 kg 1.2 kg
Yaw 0.1 kg 1.0 kg
Hip 0.1 kg 0.2 kg

Knee 0.1 kg 0.1 kg
Foot 0.1 kg 0.1 kg

Table 2. The target weights of the MPC.

Weight Value Weight Value Weight Value

QΘ
x 55 QΘ

y 260 QΘ
z 380

Qp
x 1 Qp

y 0.01 Qp
z 50

Qω
x 1 × 10−4 Qω

y 1 × 10−5 Qω
z 1 × 10−5

Q ṗ
x 10 Q ṗ

y 1 Q ṗ
z 1
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Figure 6. Forward velocity reference. Before the velocity reaches 0.9 m/s, the expected acceleration is
0.05 m/s2; after the velocity reaches 0.9 m/s, the expected acceleration is 0.01 m/s2.

3.4. Parameters of PPO Algorithm

We choose the PPO algorithm to train the disturbances prediction policy for the
swinging leg. In PPO, the disturbances are output by a Gaussian distribution, and then
the outputs are clipped to a valid value range. Moreover, this paper uses 10 key tricks to
improve the performance of the PPO algorithm [25]. We use the generalized advantage
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estimator [26] (GAE) method to estimate the advantage in the PPO algorithm. We build two
three-layer fully connected networks as actor and critic networks, with only 256 neurons
in each layer. The other parameters of the PPO algorithm are the empirical values of the
method. In order to speed up the training, we impose a limit on the maximum simulation
step per episode. The maximum simulation step size is 11,000, which is about 45 s. In
addition, we also add some restrictions on the errors; the maximum errors are shown
in Table 3.

Table 3. The maximum errors of the training.

Maximum Errors ΘE
x ΘE

y ΘE
z ṗE

x ṗE
y pE

z

Unit rad rad rad m/s m/s m
Value 1.4 1.4 1.4 1 3 0.3

4. Simulation and Experimental Results

In this work, we choose PyBullet as the physics simulation engine and use Gym
to build the reinforcement learning environment. We choose the Blackbird robot as the
platform for our simulation experiments. The mass parameters of the model 2 used in
the simulation are shown in in Table 1, where it can be seen that the mass of the two legs
accounts for 30.5% of the total mass. The forward reference velocity used is shown in
Figure 6. After 5 million steps of learning, we obtained the target policy π for predicting the
disturbance of the swinging leg, and the reward curve of the learning process is shown in
Figure 7. The initial reward value fluctuates greatly, and after 1 million steps of learning, the
reward value fluctuates less. After 4 million steps of learning, the reward value converges.
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Figure 7. The reward of the learning process.

We use the trained target policy π as the external disturbances input of the DSRB-MPC
method, and compare it with the SRB-MPC method. The results are shown in Figure 8. The
results showed that the swinging leg has a larger effect on the Euler angles of the robot
relative to the velocity of the center of mass. As the velocity of the center of mass increases,
the SRB-MPC method cannot suppress the fluctuation of the Euler angles, especially the
yaw angle. Due to the violent oscillation of Euler angles, the stance leg controller does
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not work properly. As a result, the center of mass velocity increases rapidly, and finally
the robot falls at 40 s. It can be seen from the training results that the fluctuation of the
Euler angles of the DSRB-MPC method is much smaller than that of the SRB-MPC method.
The centroid velocity of the DSRB-MPC method is also slightly smoother than that of
SRB-MPC method. It is further proved that the policy π learned by the PPO method
can accurately predict the disturbances of the swinging leg to the biped robot during the
forward locomotion. The disturbances consist of the centroid acceleration disturbance and
the rotational acceleration disturbance.
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Figure 8. The performance of the target policy π. (a) The command velocity and measured actual
velocities of are presented. (b) The command roll angle and measured actual roll angles are presented.
(c) The command pitch angle and measured actual pitch angles are presented. (d) The command
yaw angle and measured actual yaw angles are presented. Note that all blue lines represent given
reference signals. Red lines show the performance of SRB-MPC. Yellow lines show the performance
of DSRB-MPC. The red line stops because the error of SRB-MPC exceeds the maximum error, the
simulation stops at about 40 s. The reason for the instability of SRB-MPC is that the disturbances
of the swinging leg are not considered in the modeling, and the modeling error is too large. In this
situation, modeling errors for Θ and p are too large, and MPC cannot resist. However, DSRB-MPC
can accurately model disturbances and resist them.
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In order to verify the robustness of the DSRB-MPC under the higher acceleration, we
tested the performance of the method under the extreme acceleration 0.6 m/s2, as shown
in Figure 9. The SRB-MPC method falls at 20 s earlier than the previous experiment. From
the performance of the SRB-MPC method, it can be seen that the fluctuation of the Euler
angles is larger than that of the previous experiment, which indicates that the disturbances
of the swinging leg are related to the commanded centroid acceleration. As the command
acceleration increases, the centroid acceleration disturbance and the rotational acceleration
disturbance are also larger. However, the centroid velocity and Euler angles fluctuations of
the DSRM-MPC method are still small. The policy π still predicts the disturbances of the
swinging leg accurately.
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Figure 9. The performance of the DSRB-MPC under the extreme acceleration. (a) The command
velocity and measured actual velocities of are presented. (b) The command roll angle and measured
actual roll angles are presented. (c) The command pitch angle and measured actual pitch angles are
presented. (d) The command yaw angle and measured actual yaw angles are presented. Note that all
blue lines represent given reference signals. Red lines show the performance of SRB-MPC. Yellow
lines show the performance of DSRB-MPC. The red line stops because the error of SRB-MPC exceeds
the maximum error, the simulation stops at about 20 s. The reason for being unstable of SRB-MPC is
that the disturbances of the swinging leg are not considered in the modeling, and the modeling error
is too large. In this situation, modeling error for Θ is too large, and MPC cannot resist. However,
DSRB-MPC can accurately model disturbances and resist them.
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Through experiments, we found that the DSRB-MPC method can also control the robot
to move in the opposite direction at a smaller speed about −0.2 m/s as shown in Figure 10.
The SRB-MPC method falls at 10 s, earlier than the fall time in the forward locomotion
experiment. From the results of the SRB-MPC method, it can be seen that the opposite
locomotion is more difficult than the forward. The specific phenomenon is that during
the locomotion of the robot, the yaw angle continues to increase, resulting in self-rotation.
Although the fluctuations of the Euler angles and the centroid velocity of the DSRB-MPC
method are larger than those of the previous two experiments, this method can still control
the stable walking of the robot, and the fluctuations tend to decrease gradually.
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Figure 10. The performance of moving in the opposite direction. (a) The command velocity and
measured actual velocities of are presented. (b) The command roll angle and measured actual roll
angles are presented. (c) The command pitch angle and measured actual pitch angles are presented.
(d) The command yaw angle and measured actual yaw angles are presented. Note that all blue
lines represent given reference signals. Red lines show the performance of SRB-MPC. Yellow lines
show the performance of DSRB-MPC. The red line stops because the error of SRB-MPC exceeds the
maximum error, the simulation stops at about 10 s. The reason for the instability of SRB-MPC is that
the disturbances of the swinging leg are not considered in the modeling, and the modeling error is
too large. In this situation, modeling errors for roll and yaw are too large, and MPC cannot resist.
However, DSRB-MPC can accurately model disturbances and resist them.
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5. Discussion

In this paper, we propose the DSRB-MPC method based on an improved SRB-MPC
method and the DRL method. The new method takes into account the disturbances of
the swinging leg, which enables the MPC method to be applied to bipedal robots with
non-negligible leg mass. First, we add the external disturbances to the SRB model to further
increase the anti-disturbance capability of the SRB-MPC method. Subsequently, we consider
the effect of the swinging leg on the SRB model as the centroid acceleration disturbance and
the rotational acceleration disturbance. We use the PPO method to train a policy to predict
the disturbances of the swinging leg. Finally, we verify the effectiveness and robustness of
the DSRB-MPC method through three experiments. The above experiments show that the
SRB-MPC method has non-negligible robustness, and it does not require very high accuracy
of the SRB model. The SRB-MPC method can resist a part of the disturbances causing by
the swing leg and does not immediately make the robot fall. Therefore, it is meaningful
for us to improve and research the SRB-MPC method and expand its application range.
The above experiments also demonstrate that the policy obtained by the DRL method can
accurately predict the disturbances of the swinging leg. The disturbances include two
components, which are the disturbance of the centroid acceleration and the disturbance of
the rotational acceleration. Based on the predicted swing leg disturbances, the DSRB-MPC
method can give the truly optimal GRFs, enabling the biped robot to accurately track the
forward velocity reference while resisting the disturbances. Therefore, the DSRB-MPC
method is suitable for biped robots with non-negligible leg mass.

Our method is equally applicable to quadrupeds, as the SRB-MPC method is applicable
to quadrupeds, and our method is an improvement on it. Some quadruped robots also have
the problem that the portion of leg mass is relatively large. Our method can also alleviate
the influence of the swing leg on the overall motion of the robot, thereby improving the
stability. However, due to the structural characteristics of the quadruped robot itself, it has
the better stability than the biped robot. Therefore, the improvement of this method for
quadruped robots will not be as significant as that for biped robots.

However, this method also has some shortcomings. First, the larger the proportion
of the leg mass to total mass, the more difficult it is to predict the disturbances. When
the proportion exceeds 30%, the method cannot guarantee the stability of the biped robot.
Second, it does not eliminate the static velocity error.

In the future, we consider to continue to enhance the robustness of the DSRB-MPC
method to break through the limitation that the leg mass accounts for 30% of the total mass.
We plan to take the following approaches to predict the disturbances caused by the larger
proportion of leg mass. Improve the reward function so that it better reflects the relationship
between disturbances and the state of the swinging leg. Replacing the existing actor and
critic network with a long-short-term memory network; combining the current state of the
swinging leg with the state of the previous moment can give a more accurate prediction
of disturbances. Increasing the execution frequency of the disturbances prediction policy
can predict the change of disturbances more quickly. We also consider eliminating the
static velocity error of this method and realizing the stable walking of the biped robot in
complex environments. We plan to take the following approaches to eliminate the static
velocity error. By designing an adaptive algorithm, the weight coefficients and prediction
horizon of MPC can be dynamically adjusted according to the desired velocity and the
actual velocity. Since increasing the weight coefficient of the velocity error as much as
possible can reduce the static velocity error, by increasing the running frequency of the
MPC as much as possible, the influence of the model errors on the controlled object can be
reduced, thereby reducing the static velocity error. We would add a feedback controller
before MPC to output the compensated desired velocity according to the given desired
velocity and actual velocity, and use the compensated desired velocity as the input of MPC.
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