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Abstract: Intelligent fault diagnosis for a single wind turbine is hindered by the lack of sufficient
useful data, while multi-turbines have various faults, resulting in complex distributions. Collaborative
intelligence can better solve these problems. Therefore, a peer-to-peer network is constructed with one
node corresponding to one wind turbine in a cluster. Each node is equivalent and functional replicable
with a new federated transfer learning method, including model transfer based on multi-task learning
and model fusion based on dynamic adaptive weight adjustment. Models with convolutional neural
networks are trained locally and transmitted among the nodes. A solution for the processes of data
management, information transmission, model transfer and fusion is provided. Experiments are
conducted on a fault signal testing bed and bearing dataset of Case Western Reserve University. The
results show the excellent performance of the method for fault diagnosis of a gearbox in a wind
turbine cluster.

Keywords: collaborative intelligence; deep learning; fault diagnosis; group technology; peer-to-peer
computing; transfer learning; wind energy

1. Introduction

Fault diagnosis of rotating machinery plays a vital role in the entire life cycle of
machines, which monitors operation processes, analyzes operation data, and provides
reasonable maintenance suggestions [1–3]. For wind turbines, due to the particularity of the
working scene, the uncertainty of working conditions, and the high cost of operation and
maintenance, it is essential to monitor the different states during operations. Wind turbine
farms are located in remote areas that have abundant wind energy resources but poor
natural conditions. It is far among the turbines, and it is difficult to monitor each wind
turbine in real time. Moreover, the problem of information exchange in the cluster is promi-
nent when turbines are running, and the amount of data generated by wind turbines in
actual operation is on a large scale, resulting in significance difficulties in data management,
storage, calling, and transmission.

The key point of current research on wind turbine fault diagnosis is that it is difficult
to extract and analyze fault knowledge under complex working conditions among various
wind turbines in a wind turbine cluster [4,5]. In the actual industry, fault data from a single
turbine are limited and cannot contain all fault information of various fault states, forms,
and periods. There is still a sparsity problem of more normal data without fault but
fewer fault data. When modeling only by a single turbine, obstacles such as low accuracy,
weak generalization ability, and weak robustness caused by an insufficient amount of
fault data make the model unsuitable for application. In contrast, in a wind turbine
cluster, different turbines are in various states. Through local modeling of each turbine
in a cluster, transmitting model information, and fusing the model, the fault knowledge
of each wind turbine is stored with collaborative intelligence [6,7] so that it can be better
applied to operation state monitoring and the operation data analysis of each turbine.
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Collaborative intelligence or swarm intelligence are used to solve the problems that hinder
the model training and optimizating in the mode of single machine intelligence.

For the fault diagnosis of wind turbine clusters, there are some limitations and obsta-
cles in modeling and fault diagnosis owing to complex structures, working conditions, and
other practical factors.

First, for the problem of data sparsity, commonly used methods are mostly from
the perspective of sample expansion [8,9]. The research content is mainly the difference
between the original samples and the newly generated samples and how to reduce this
difference. However, such a difference varies in different states of turbines in a cluster and
is difficult to determine, which hinders the modeling and training process.

Second, for complex working conditions in clusters, existing solutions mainly focus
on transfer learning (TL) [10,11]. The concept of the domain in transfer learning corre-
sponds to the different working conditions in the fault diagnosis problem. It typically
uses the knowledge learned in one data domain by the fault diagnosis model to solve
the problem in another data domain. Commonly applied transfer learning is mostly used
for the data processing and mining of a single wind turbine, but it involves fewer wind
turbine individuals.

Third, for the model fusion process, most existing methods focus on more traditional
ensemble learning (EL) [12,13] and federated learning (FL) [14,15]. Voting, in which the
minority obeys the majority, is the most widely used in EL. FL is a distributed model-
training instance that sets up multiple federated participants and has a central server for
model fusion. Such methods are usually set under ideal conditions and seldom consider
external interference in the actual process of model training. The performance of the model
corresponding to the average weight did not reach its best state.

To solve such problems, a peer-to-peer network (P2PNet) [16] is constructed for the
wind turbine cluster, where each node corresponds to a wind turbine. A P2PNet is a
computer network that assigns tasks, data, and work among peers in the entire network.
The network consists of peers and the information transmission channels among peers.
Each participant is equal and has the ability to communicate with other peers.

In the P2PNet, a fault diagnosis framework for a wind turbine cluster is proposed as
shown in Figure 1, where raw data are saved locally in distributed storage. A calculating
unit for computing and storage unit for data storage are configured in each node. Each
node is equivalent and has functional replicability, including data preprocessing, model
configuration, training, transferring, fusion, and transmission. In addition, multi-task
learning (MTL) is introduced, and a dynamic adaptive outlier monitoring process and
weight adjustment method is proposed in this process. The final results of fault diagnosis
models are to configured for state monitoring and fault diagnosis of the wind turbine
cluster.
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Figure 1. Fault diagnosis framework for wind turbine cluster based on a peer-to-peer network.

The core contributions and highlights of this paper can be listed as follows.

(1) In a situation of insufficient labeled samples and complex working conditions, a fault
diagnosis framework and method with a peer-to-peer network for a wind turbine
cluster has been proposed based on multiple model transfer and dynamic adaptive
weight adjustment fusion (MMT-DAWA).

(2) Considering the different data distributions between wind turbines in a cluster
resulting from various working conditions and environments, multi-task transfer-
based elastic weighted consolidation with a fisher information matrix constricting
model parameters has been introduced to reduce the impact of domain drift.

(3) To decrease the influence of noise on the model training process at each turbine in a
cluster, a modified dynamic adaptive weight adjustment model fusion method based
on a federated average algorithm has been proposed, with model processes of outlier
monitoring, determination of evaluation criteria for outliers, and weight distribution.

The remainder of this paper is organized as follows. Section 2 presents related works
with some research and applications related to the topic. Section 3 describes the proposed
algorithm and model training process. Section 4 presents the experiment, discussing the
model performance and analysis of the proposed method. Section 5 concludes the study
and proposes the future research directions.

2. Related Works

Artificial intelligence has greatly improved the model performance and diagnostic
accuracy in condition monitoring and fault diagnosis [17]. A great number of studies on
intelligent fault diagnosis adapting to a single machine [18,19] instead of multiple machines
in a cluster have been carried out. Several methods of traditional machine learning (ML)
have been applied [20–22] to solve the problems of fault diagnosis such as the hidden
Markov model, support vector machine, gray neural network, and artificial neural network.
With the development of ML and the computing ability of modern computers in the big
data era, the idea of deep learning (DL) [23] has been applied. Common DL networks
include convolutional neural networks [24], recurrent neural networks [25], sparse auto
encoders [26], and generative adversarial networks [27]. When considering the situation
of non-independent and identically distributed (Non-IID) data under various working
conditions, TL with knowledge transfer is introduced to the process of fault diagnosis [28].

Among them, convolutional neural network (CNN) [29] is broadly used in the pattern
recognization and fault diagnosis, which contains a convolution layer, a pooling layer, and
a fully connected layer. Combined with the convolution calculation, the number of model
parameters is reduced compared with that of the fully connected layer. In the network
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training process, the cross-entropy loss is often selected for backpropagation. During model
training, the updating form of the model parameters often adopts the stochastic gradient
descent (SGD) algorithm with momentum, which introduces a momentum accumulating
historical gradient information based on traditional SGD to speed up the processing of
gradient descent. It accumulates the average moving value of the current gradient and all
previous gradient exponential attenuation and continues to move in this direction.

Traditional methods rely on single machines and simple conditions of a wind tur-
bine, whereas fusion methods are required in multi-machines corresponding to various
conditions of wind turbine clusters. A reasonable and effective approach to information
exchange is essential for a wind turbine cluster. There are two mainstream methods of
information exchange within clusters: data exchange and model exchange.

Data exchange indicates gathering all the local data of different machines as one
dataset, modeling uniformly, and updating the parameters with model training. In such
cases, TL is broadly used with excellent performance when there are different feature spaces
or distributions between the source and target data [30]. A popular explanation of TL is to
transfer the knowledge learned through the training model in one data domain to another
data domain to solve the corresponding problems. In TL, different domains are defined
according to different feature spaces or edge probability distributions. In mechanical
fault diagnosis, the data fields corresponding to different machine operating conditions,
locations, and machine individuals can be regarded as different domains. Different tasks
have different label spaces, corresponding to different fault types, states, and degrees. A
large number of TL applications for fault diagnosis have been carried out, and excellent
results have been obtained from model training and experiments [31–33]. In addition to
transfer fault diagnosis methods focusing on the adaptation of a single source domain, in an
actual industrial scene, multiple labeled source domains can be obtained in a wind turbine
cluster. Therefore, researchers have proposed methods of multi-source domain transfer
learning fault diagnosis [34], adversarial domain adaptation with classifier alignment [35],
and so on. Such a mode of data exchange makes the evaluation criteria more standardized
and unified, and model training for fault diagnosis is more convenient to manage. However,
considering multiple wind turbines in a cluster, the raw data of each turbine proportionally
increase the amount of data, resulting in a high cost of data storage, low data transmission
efficiency, and low quality and efficiency in data management.

Model exchange refers to fusing the models in different machines into a more compre-
hensive model through the relevant algorithms of model fusion, saving raw operation data
locally and conducting model training at each turbine. Ensemble learning is an effective
way to deal with voting, bagging and boosting. In addition, to improve the classification
accuracy when the training data are insufficient, researchers have proposed an ensemble
transfer learning (ETL) framework [36], which combines the methods of TL and EL. A
large number of applications of EL or ETL for machine fault diagnosis have been reported
in recent years [37–40]. However, owing to data distribution differences, data volume
differences, and fault data sample differences, there are still obstacles to the applications of
fault diagnosis in wind turbine clusters such as efficiency in data management and calling,
and the accuracy of the fused model of the ensemble. With technological progress in the era
of big data, federated learning [41], industrial Internet of Things [42,43], and cloud-edge
collaborative computing [44] have been applied to fault diagnosis research. FL is a branch
of ML with the purpose of decentralization [45], which focuses on building and optimizing
diagnosis models in the situation of distributed datasets, constructing the corresponding
federated network, and using the distributed data of each node in the network to improve
the overall model performance.

Ideally, the intelligent fault diagnosis method for large-scale wind turbine clusters does
not consider data communication problems, such as channel width and data flow. However,
in industrial and practical applications, owing to the hardware structure and other factors,
information transmission in fault diagnosis networks is limited. Therefore, researchers have
proposed effective FL frameworks and algorithms to solve the problem of obstacles [46–48].
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These methods rely on simple working conditions and operating environments, and it
is impossible to obtain excellent results in complex situations. In a wind turbine cluster,
various turbines possess various distributions of data, so TL has been introduced to the
methods in the cluster combined with FL frameworks, called federated transfer learning
(FTL), where models perform excellently in fault diagnosis in clusters [49–51].

However, the lack of constraining model parameters leads to an uncertain convergence
rate, low recognition accuracy of the model, and weak generalization ability. Therefore, to
accurately locate, identify, classify, and predict the fault development trend in the entire
life cycle of a wind turbine gearbox, it is essential to deal with the balance between the
management, calling of a huge dataset, and application of big data for gearbox fault
diagnosis under complex working conditions in a wind turbine cluster.

3. Methodology

Each node in the P2PNet is equal, so the function at one node needs to be studied and
then extended to the entire network. The process in one node can be divided into three
sub-modules: information transmission structure, model transfer with fault knowledge,
and model fusion with dynamic adjustment method.

3.1. Basic Structure and Model

In P2PNet, a method of multiple model transfer and dynamic adaptive weight ad-
justment (MMT-DAWA) model fusion used in intelligent fault diagnosis in a single node
is proposed, which comprises three steps, as shown in Figure 2. When receiving models
from other nodes, the current node abandons some of them to reduce the impact of the
uncertainty. Then, considering that data among nodes in the actual industry are Non-IID,
a model transfer-based MTL process is proposed. After obtaining several models from
the transfer step, the current node implements model fusion with a dynamic adaptive
model selection and adaptive weight adjustment. Finally, a better result corresponding to a
specific task is obtained, and each node implements the model output in iteration.

Figure 2. Information process in a single node with three main segments: model transfer, model
fusion, and model output.

CNN with a strong ability in pattern recognization and fault diagnosis is selected as
the basic diagnostic model. As shown in Figure 3, to reduce the amount of model data
while ensuring model performance, a small and shallow CNN [29] is constructed, which is
composed of two convolution layers, two max-pooling operations, and two fully connected
layers. The numbers of channels of the convolution and fully connected layers are 6, 16,
256, and 16, respectively, and the sizes of the two convolutional cores are all 5× 5 .
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Figure 3. Basic structure of a shallow and small convolutional neural network (CNN).

In addition, the leaky-ReLU function [52] is adopted as the activating function with the
coefficient of the negative axis of the function being 0.01. The Leaky-ReLU function changes
the distribution of the flow data in the neural network, and the Kaiming initialization
method [53] is selected to solve this problem.

3.2. Knowledge Transfer between Nodes Based on MTL
3.2.1. Non-IID Tasks

In actual industry, different turbines may contain a few types rather than all types
of fault data. The fault degree and depth are different owing to the varying working
conditions of different wind turbines. The fault degree and depth describe the fault severity
of machine parts from qualitative and quantitative perspectives. The degree could be
described as "Heavy", "Moderate", and "Light", while the depth needs to be described with
the specific fault diameters and depths. Therefore, data are defined as Non-IID according
to various conditions, and the data distribution of each wind turbine is different in a real
industrial scene. To reduce this difference, a TL method is used for knowledge mining from
raw data with different edge distributions to facilitate the deep fusion of fault knowledge.
TL is broadly divided into four categories: instance-based, feature-based, model-based,
and relationship-based [54]. The other three consider the transfer of fault knowledge from
the perspective of data or features, whereas only the model-based TL method considers
model parameters. In this study, for the fault diagnosis task of wind turbine clusters, the
problems of sparse samples, variable working conditions, data management, and sharing
in real industrial scenarios must be considered. Therefore, a way of model exchange rather
than data exchange is determined and model-based deep transfer learning, which is based
on the assumption that some labeled instances in the target domain should be available in
the target model training process, is considered.

The data domain responsible for model training in the TL is called the source domain,
and the transferred object is called the target domain. The distribution difference between
the source and target domain is called domain drift. Figure 4 describes the basic concepts
of TL within the framework of a cluster. If the trained model, the classifier in the source
domain, is directly taken to the target domain, some misclassifications of samples appear
owing to the existence of domain drift, which leads to the failure of the algorithm and poor
diagnosis performance in the actual working conditions. In a cluster, the data of each node
are saved locally, and the information exchanged between nodes involves only the trained
models. Multi-task learning (MTL) [55] is selected for the adaptive process of the target
domain, which realizes multiple objective tasks and improves the generalization with the
domain knowledge contained in the supervised signal of related tasks.
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Figure 4. Transfer learning in cluster networks, where multi-task learning is introduced.

3.2.2. Cross-Node Model Transfer

When a certain node in the network receives several models from other nodes, it
randomly selects some of them to reduce the impact of the uncertainty. Assuming that
there are N nodes in the cluster network except for the current node, the models of m nodes
are removed, so the remaining (N −m) models are used in the subsequent process.

The adaptive problem in the target domain is regarded as an MTL problem. Among
them, task M requires that the overall model of all transfer processes performs well, and
the task N with several sub-tasks requires that the model of each sub-task of the transfer
process performs well. An adaptive model A optimized for task N is defined, which is
initialized with the source domain model from the corresponding node. A source domain
model B for the initialization of the transfer process is also defined.

Within the MTL, the elastic weight consolidation (EWC) method is introduced to
adjust and constrain the model parameters, and the Fisher information matrix (FIM) is
selected as the constraint on the model parameters to adapt to the overlap between different
distributions. The FIM is a generalization of the Fisher information from a single parameter
to multiple parameters. Fisher information represents the average amount of information
about state parameters that can be provided by a sample of random variables in a certain
sense. Assuming that the model parameter θ is a vector, which models the distribution
p(x|θ), the learning process maximizes the likelihood of p(x|θ) and θ. To evaluate the
estimation of θ, a score function (SF) is defined as shown in Equation (1).

s(X; θ) = ∇θ log p(X|θ) =
n

∑
i=1

∂ log f (Xi; θ)

∂θ
, (1)

where p is the probability distribution of model assumptions, X is the raw data variable and
θ is the vector of model parameters. The SF is the gradient of the log-likelihood function,
and the definition of FIM is based on it. FIM is defined as the second-order moment of the
SF as shown in Equation (2), where E is the mathematical expectation.

F(θ) = E[s(X; θ)− Es(X; θ)]2 (2)

In the target domain, FIM is used to constrain the model parameters to realize the
adaptive process, and the degree of importance between tasks λ is introduced to it. More-
over, loss in source domain models should be considered so that a penalty coefficient β is
introduced to constrain the loss values in the source domain. The adaptive loss function of
the target domain is shown in Equation (3).

L(A, x) = LCE(A, x) +
λ

2 ∑
i

Fi(Ai − Bi)
2 + βLCE(B, x), (3)
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where LCE represents the cross-entropy loss, λ is the degree of importance between task
M and task N, β represents the penalty coefficient of source model loss, F represents the
Fisher Information Matrix, A is the model to be updated in the target domain, and B is the
updated model in the source domain.

3.3. Dynamic Fusion within Multiple Models
3.3.1. Framework of Model Fusion

Considering the presupposition of specific scenes, FL is determined to be the basic
framework for model fusion. It can better satisfy the requirements of wind turbine cluster
fault diagnosis in terms of data management, information transmission, and model fusion.
The core of model fusion is that each model is given a certain weight, multiplied by the
corresponding parameters, and finally summed, as shown in Equation (4).

G(x) =
N

∑
i=1

wi · gi(x), (4)

where N represents the number of models to be fused, w represents the weight of each
client model and g(x) represents the parameters of each model. The most frequently
used weights distributing mode is average weighting, as shown in Equation (5), where N
represents the number of models.

wi =
1
N

, i = 1, 2, · · · , N (5)

The average weighting mode cannot resist experimental process error but accumulates
such errors, propagateing forward and backward. This makes it unable to adapt and deal
with changes in the external environment. In addition, before model fusion, each node must
be able to judge and analyze the performance and effectiveness of the models obtained
from the previous steps. During model fusion, the weights given to different models should
also be different, which will help to realize the advantages of better models and avoid
the disadvantages of worse models. Therefore, a dynamic adaptive weight adjustment
(DAWA) model fusion method is developed as shown in Figure 5.

Figure 5. Model and network process: dynamic adaptive outlier monitoring-based model selection
and weight adjustment-based model fusion.

At each node, after the transfer stage, (N −m) models are obtained. Then, the cross-
entropy of each model output is determined as the evaluation criterion as performance
is negatively related to the entropy. Subsequently, each entropy is adapted to determine
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whether there is a higher-value outlier. If so, then the corresponding model is ignored in the
current iteration step. After k higher-value outliers are ignored, the weights corresponding
to the remaining (N −m− k) models are distributed according to the relative size of each
entropy. Finally, model fusion is conducted for corresponding tasks. Within these processes,
two main operations are included. One is dynamic adaptive outlier monitoring and model
selection, and the other is adaptive weight adjustment and model fusion.

3.3.2. Dynamic Adaptive Outlier Monitoring and Model Selection

The dynamic adaptive method mainly calculates the cross-entropy of each model
output and conducts some process. The entire method is presented in Algorithm 1.

The core calculation content of the algorithm is variance as shown in Equation (6),
where E represents the expectation and X represents the data of samples.

varX = E[(X− E(X))2] (6)

Two variances are calculated: var1 of the current entropy array and var2 of the re-
maining array after removing the maximum value on the current basis. The comparison
between the variance changing ratio and the evaluation threshold is shown in Equation (7).

| var1 − var2 |
var1

? ε, (7)

where question mark "?" represents the comparison of the two sides, and ε is the evaluation
threshold to judge whether a value is an outlier. If the variance change rate (left-hand side
of equation) is greater than the evaluation criterion ε (right-hand side of equation), the max-
imum value in the current array is a higher-value outlier. Accordingly, the corresponding
model parameters should be discarded during model fusion.

Algorithm 1 Dynamic adaptive outlier monitoring and model selection.
Input: (N −m) models, evaluation dataset, judging standard ε
Output: Number k of models to be ignored

1 Initialize: k = 0;
2 Obtain cross-entropy array of each model with evaluation dataset;
3 for each model and corresponding entropy do
4 if All entropies are outliers then
5 Adjust the value of ε and exit loop;
6 else
7 Calculate the variance of the current entropy array, var1;
8 Assume to ignore the largest entropy and then calculate var2;

9 if |var1−var2|
var1

< ε then
10 Return k and exit loop;
11 else
12 Ignore the model corresponding to the largest entropy;
13 k+ = 1;
14 end
15 end
16 end

If ε is extremely large, the variance-changing rate cannot exceed it in all possible cases.
So, the algorithm determines that there are no outliers, which may cause the overall model
accuracy to be reduced because experimental errors are accumulated. If ε is too small, the
rate of change can easily exceed it when the variance changes slightly, so the algorithm
determines there are outliers. This may result in ignoring and discarding too many models,
leading to information loss. Outliers should be selected to ensure the information reliability,
but more information should not be ignored in a large area to avoid information loss.
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Therefore, it is necessary to determine the appropriate ε. The specific value is determined
by big data analysis and polynomial fitting.

As shown in Algorithm 2, ε is determined by random big data which vary from 0 to 1
in steps of 0.001. The testing epoch of each value is 100,000 and different random numbers
are generated in every epoch to replace arrays with different entropy values.

The reason for randomly generating arrays instead of true entropies is that data are
easy to access. The actual training is complex and time-consuming, which cannot meet the
preset requirements of 100,000 test epochs for each ε. Moreover, regardless of the variation
range, data complexity, data randomness or relative size, the random number is larger than
the true entropy, which ensures the integrity of the information.

The cross-entropies of model output are usually distributed between 0 and 1 and
vary in a small range, so random numbers from 0 to 1 are generated. Meanwhile, about
10,000 sets of actual experiments are conducted, and the cross-entropies are recorded for
comparison, as shown in Table 1. The generated data meet the experimental requirements,
which ensures the information integrity and the authenticity of the generation.

Algorithm 2 Determining of ε in Algorithm 1.
Input: N models, testing epoch, range, and step of ε
Output: A reasonable ε

1 for each epoch do
2 for each ε do
3 Obtain N random number between (0, 1);
4 Return number k of the model to be ignored with Algorithm 1;
5 Calculate and save corresponding k and percent pi =

ni
epoch · 100;

6 end
7 end
8 Delete all rows with values greater than 99.73 according to the column k = 0;
9 for each row in the percentage array do

10 Calculate the minimum value of εindex = argmin(N + p0 +
N
∑

i=1
pi · i · α);

11 Obtain the index corresponding to the minimum value
12 end
13 Obtain the value of ε according to the index

Table 1. Comparison of statistical properties between real data and generated data. The comparing
items include the maximum, minimum, range, mean, median and standard deviation.

Data Max Min Range Mean Median STD

Generated 0.9999 1e-8 0.9999 0.4998 0.5005 0.2887
True 0.6679 0.0034 0.6645 0.1879 0.1393 0.1405

Algorithm 1 is used in several rounds of testing. The k corresponding to each ε and
the percentage pi of each k are recorded. In addition, pi is shown in Equation (8).

pi =
ni

epoch
· 100, (i = 1, 2, · · · , k), (8)

where k represents the number of outliers, ni represents the number of epochs correspond-
ing to k, and epoch represents the whole testing epoch. When analyzing ε, it is processed
based on the column k = 0, i.e., there are no outliers. To meet the principle of 3σ, all
lines with a percentage greater than 99.73% are removed, and the remaining data index is
redistributed. Then, for each ε, the percentage is multiplied by the corresponding k and
a coefficient α. Finally, we add them together with the percentage when k = 0 to obtain ε
corresponding to the smallest number, as shown in the following Equation (9).
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εindex = argmin(N + p0 +
N

∑
i=1

pi · i · α), (9)

where N is the number of models, pi is the percentage corresponding to k = i, (i =
0, 1, 2, · · · , k), and α is the ratio coefficient, reducing the proportion of the larger k and the
range of the ignored clients. Similar to ε, the big data method is adopted in determining
α with a value varying from 0.9 to 1 in steps of 0.001. Combined with Algorithm 2, the
best-fitted ε under different N and the average of the percentage when k = 0 are calculated.
Finally, the maximum value that satisfies the 3σ principle is obtained. α is found to be 0.954.

An appropriate ε has a one-to-one correspondence with the number of models in the
cluster. Polynomial fitting is performed, and the changing process of the fitting evaluation
indicators with the mean square error (MSE) and R2-Score are shown in Figure 6.

(a) MSE (b) R2-score (c) 7th-order polynomials

Figure 6. Evaluating indicator and result of polynomial fitting. Sub-figure (a) is the variation between
mean square error and polynomial order, sub-figure (b) is between R2-Score and polynomial order,
and sub-figure (c) is between ε and the number of participants in a cluster.

MSE has been on the order of 10−5 since the polynomial order n = 7, and R2-Score
has also exceeded 0.999. Therefore, a seventh-order polynomial is determined as shown
in Figure 6c. The final fitting result is shown in Equation (10), where y represents ε and x
represents the number of models in the cluster.

y =1.686× 10−11x7 − 4.622× 10−9x6 + 5.112× 10−7x5

− 2.896× 10−5x4 + 0.00087x3 − 0.01218x2 + 0.02125x + 1.049
(10)

3.3.3. Weight Adjustment and Model Fusion

After dynamic adaptive model selection, each model needs to be allocated a weight, as
shown in Equation (11). First, the proportion ri of each entropy in the sum of all entropies
is calculated, and then, the weight assigned to each model is determined according to ri.

ri =
ei

N
∑

k=1
ek

,

wi =
1
2

ln
1− ri

ri
,

(11)

where ri represents the ratio of the i-th model entropy from all the entropies, e represents
the entropy of model outputs, wi represents the weights corresponding to each model, and
N represents the numbers of models. The model with a larger entropy is assigned to a
smaller weight, whereas the model with a smaller entropy is assigned to a larger weight.
The weighted fusion is based on a dynamic adaptive model selection process. As shown in
Equation (12), the residual models corresponding to the models with outliers removed are
used to add different weights to the product of each model for fusion.
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G(x) =

N−m−k
∑

i=1
wi · gi(x)

N−m−k
∑

i=1
wi

, (12)

where G(x) is the fused result, g(x) represents the models to be fused, w represents the
weights distributed to each model, N represents the number of nodes in the cluster except
for the current node, m is the number of models ignored before the model transfer and k is
the number of models ignored in the dynamic model selection.

After model fusion, the final result is used for operation status monitoring and status
analysis of the wind turbine at the local node. In addition, those better performing models
are transmitted to other nodes in the P2PNet. Each node conducts model training and
testing, information transmission, transfer, and fusion in a parallel and cyclic manner.
Finally, a dynamic balance of the collaborative intelligence in the cluster is achieved.

4. Experiment and Discussion
4.1. Description of Data

The bearing dataset of Case Western Reserve University (CWRU) [56] obtained from
the equipment shown in Figure 7a is selected for the experiment. The damage to the
faulty bearing used is single-point damage by electrical discharge machining with damage
diameters of 7 mil, 14 mil, 21 mil, and 28 mil, respectively. The fault location is divided into
an inner race, rolling element, and outer race. In addition, acceleration sensors are installed
on the bearing pedestal at the fan and drive ends of the shaft. The operating conditions
under different loads are set to 1797 rpm, 1772 rpm, 1750 rpm, and 1730 rpm on speed and
0 HP, 1 HP, 2 HP, and 3 HP on load, respectively. In the experiment, the bearing-fault data
at the driven end of the shaft are selected, and the sampling frequency is 12 kHz.

(a) CWRU experimental platform (b) Fault Signal testing bed (FSTB)

Figure 7. Bearing experimental platforms. Sub-figure (a) indicates the experimental platform of Case
Western Reserve University and sub-figure (b) is the fault signal testing bed.

Additionally, a fault signal testing bed (FSTB) for a wind turbine gearbox is built
to expand working conditions, as shown in Figure 7b. Piezoelectric acceleration sensors
are configured in the X, Y, and Z directions for data acquzation. The faults adopt laser
processing located at the inner race, outer race, and rolling element with fault degrees of
light, medium, and heavy. The shaft speed varies from 2000 to 2500 rpm in steps of 50
rpm, while the magnetic voltage varies from 10 to 0 V in step of 1 V simultaneously, which
construct a working condition library with 11 options. The brake relies on electromagnetism
so that the voltage and torque are in an approximately linear relationship. Hence, the
voltage replaces the torque with a positive correlation. The sampling frequency is set to
12 kHz, and the number of single sampling points is set to 100,000.



Machines 2022, 10, 972 13 of 21

4.2. Data and Hyperparameters Setting

In the P2PNet, raw data of the turbines are saved locally at each node with a rate of
3 : 7 for evaluating and training the dataset. In the selected experimental datasets, either
the CWRU or FSTB dataset contains three fault degrees: light, moderate, and heavy (7 mil,
14 mil, and 21 mil in CWRU dataset). They also contain three fault position: inner race,
ball, and outer race, respectively. So, nine fault types can be obtained by arranging and
combining them. When summed up with the normal state without faults, a total of ten fault
types are prepared. As for working condition, various conditions for changing the shaft
speed and load are applied to different nodes. During the preprocessing of raw data from
the CWRU and FSTB datasets, Gaussian random noise is introduced to some of the nodes.
Additionally, two types of FSTB data are adopted: “FSTB Direction X” indicates the data
only in the X direction, and “FSTB Fusion” indicates the fusion result of the three directions
data. The fusion is firstly conducted with maximum and minimum normalization as shown
in Equation (13) in each direction. Then, the L2-Norm of the vector (mX, mY, mZ) which
consists of the data in three directions corresponding to each sampling instant is calculated
as shown in Equation (14). The element m refers to the data for each part.

mi =
mi0 −minmi0

maxmi0 −minmi0

, where i = X, Y, Z (13)

mFusion =
√

m2
X + m2

Y + m2
Z (14)

The data samples are from raw time-series data. When intercepted in a specific rule
from the raw time-series dataset, the samples were converted into 2D tensors, since a 2D
CNN was used for feature extraction and fault analysis. Samples corresponding to FSTB
Direction X with a working condition of 2000rpm in speed and 10V in brake voltage are
shown in Figure 8.

Figure 8. Data samples with 2000 rpm in speed and 10 V in brake voltage of FSTB Direction X. “H”
indicates “Heavy”, “L” indicates “Light”, and “M” indicates “Moderate”, which represent different
fault degrees. “Outer”, “Inner”, and “Ball” represent different fault position, respectively. “Normal”
indicates no fault.

The basic hyperparameters are shown in Table 2, where sample length is the length of
time-series data included in one sample, i.e., the number of data. The sample number is the
number of samples corresponding to one state of fault in one wind turbine.
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Table 2. Basic hyperparameters configuration.

Hyperparameter Value Hyperparameter Value

Global Epoch 30 Sample Length 1024
Transfer Epoch 100 Sample Number 300

Transfer Batchsize 16 λ 0.95
Fusion Batchsize 64 β 1

Learning Rate 0.0001 ε 0.672
Node Number 10 α 0.954

Momentum 0.99 - -

In the hyperparameter configuration, λ represents the degree of importance between
tasks in model transfer, β represents the penalty coefficient of source domain loss, ε is
the evaluating threshold of whether entropy is an outlier during model fusion and α is a
constraint coefficient when determining ε. Especially, “Node Number” corresponds to ε
one by one so that values in the table are not unique and affirmatory.

For general deep learning models such as CNNs, when Batchsize changes less than
8000, the model performance is not very sensitive, which can only cause variations in model
generalization and training speed. Therefore, the values of the two Batchsizes are adjusted
within a small range. The learning rate can affect whether the experimental results converge
or converge to an optimal solution, and it is adjusted based on the actual experience of the
project. The momentum coefficient is determined according to the value recommended in
engineering [57].

Results of various epoch settings are shown in Figure 9a. Additionally, results of the
information amout are shown in Figure 9b, which indicates the length of a single sample
and the number of samples.

(a) Global epoch and transfer epoch (b) Data sample length and number

Figure 9. Influence of the hyperparameters on the results. Sub-figure (a) indicates the global epoch
and transfer epoch, and sub-figure (b) corresponds to the data sample length and number.

λ and β are determined simultaneously. The range of λ is set as 0 to 100, and 38 values
are selected with unequal intervals. The range of β is set as 0.1 to 2.3 with an equal spacing
of 0.2. The evaluation accuracy of each group is used in the heatmap corresponding to
a task with 2000 rpm and 10 V in source while 2050 rpm and 9 V in the target domain
as shown in Figure 10. The darker the color, the higher the accuracy corresponding to
the specific hyperparameter combination. In order to enlarge the experimental effect, the
numbers in the heatmap are respectively 100x corresponding to each evaluating accuracy x.
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Figure 10. Variation of model accuracy under different combinations of λ and β.

When λ is less than 0.5, the proportion of the corresponding term in the objective
function decreases, and the constraint effect on the model parameters worsens, as does the
model performance. When λ is greater than 2, as the value increases, the constraints on the
model parameters are strengthened, the degrees of freedom of the parameters decrease,
and the performance of the model decreases. For β, to avoid introducing too much source
domain information into the process of target domain adaptation, such a value should not
be too large. Finally, λ is taken as 0.95, and β is taken as 1, which can be adjusted to a small
range if necessary. All models are trained on a PC with an Intel(R) Xeon(R) E5-2660 v2
CPU, 16 GB DDR3 RAM, and NVIDIA GeForce GTX 1080Ti GPU.

4.3. Model Performance in Experiments
4.3.1. Effectiveness Verification

In P2PNet, each of the nodes with different datasets is numbered Node 0, Node 1,
Node 2, etc. The performance of Node 0 from each group of the experiment is displayed.
As shown in Figure 11, the horizontal axis represents the different datasets, and the vertical
axis represents the evaluation accuracy of the models. Of all the three datasets, the values
of evaluating accuracy are remembered when the number of nodes in the network varies
among 5, 10, 15, 20, and 50. All the experimental results are compared with the situation of
modeling in a single wind turbine, i.e., “Sgl” in the figure. It can be seen that the model
performance of P2PNet is better than that of a single machine. As the number of nodes in
P2PNet increases, the evaluation accuracy of the model improves slightly.

Figure 11. Evaluating accuracy of the method proposed in the peer-to-peer network with different
datasets and various node numbers. Different bars represent different numbers of models in a cluster.
The last “Sgl” shows only one model in a single machine intelligence mode.



Machines 2022, 10, 972 16 of 21

To visualize the extracted features of each layer in the model of Node 0, t-distributed
stochastic neighbor embedding (t-SNE) [58] is adopted. As shown in Figure 12, each
sub-figure represents the output features of each layer in the CNN. As the network moves
forward, the fault features information becomes increasingly evident. With the deepening
of the network, the model clusters the state classifications of the original data to varying
degrees, and the space between the different classes gradually increases. The boundary
between different classes also gradually becomes clear, which shows a better performing
model. In addition, to verify the prediction ability of the model for fault labels, a confusion
matrix is introduced as shown in Figure 13, where the horizontal axis indicates the predicted
labels of every type of fault, and the vertical axis indicates the real labels.

(a) The 1-st Conv layer (b) The 2-nd Conv layer

(c) The 1-st FC layer (d) The last layer

Figure 12. T-distributed stochastic neighbor embedding visualization of the convolutional neural
network features and layers in Node 0.

Figure 13. Confusion matrix of the fault diagnosis model in node 0.
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In the preset conditions, there is data heterogeneity in the wind turbine cluster under
complex working conditions and sparse data in each wind turbine. Generally, CNN is in
good performance when a sufficient amount of training data are given. However, it often
fails when information is insufficient. A series of experiments about information contained
in a data sample has been implemented to determine the values of sample length and
sample number previously. In addition, the complex working condition and sparse data
easily result in failing. However, the methods proposed in this study aim to solve such
problems so that a high evaluating accuracy can be seen in each group of experiments.

4.3.2. Superiority Verification

For fault diagnosis problems in a cluster, other methods, such as the federated aver-
aging algorithm (FedAvg) [59] and multisource voting based on EL, are usually adopted.
Therefore, a comparison with MMT-DAWA proposed in this paper is implemented, as
shown in Figure 14.

Figure 14. Evaluating accuracy comparison among federated average (FedAvg), ensemble learning
voting (EL Method), and multi-model transfer and dynamic adaptive weight adjustment (MMT-
DAWA) with node numbers varying among 10, 15, 20, and 50.

A model transfer and fusion process in Node 0 from each group of experiments is
selected in this group of experiment. The voting strategy in EL with a hard vote and 60%
of the candidates in FedAvg are adopted. The results are listed in Table 3. It can be seen
that MMT-DAWA performs better in recognizing the fault state accuracy than the FedAvg
and EL methods as a result of monitoring outliers before model fusion, expanding the
advantages and avoiding disadvantages when fusing models. FedAvg treats each model
as equal, and the average weighting mode is limited to model fusion. The voting of EL
usually lacks unified evaluation criteria with each node in different distributions.

Table 3. Evaluating accuracy in various methods comparison. The C, FX, and FF at the former
positions represent the dataset of CWRU, FSTB Direction X, and FSTB Fusion. The FA, EL, and M at
the latter positions represent the method of FedAvg, EL Method, and MMT-DAWA.

Nodes C-FA FX-FA FF-FA C-EL FX-EL FF-EL C-M FX-M FF-M

10 93.20 93.11 93.79 94.33 92.13 93.40 96.17 96.22 97.36
15 93.32 93.65 94.01 93.98 93.71 93.93 96.35 96.17 96.36
20 93.85 92.73 93.29 93.79 93.26 94.03 95.93 96.36 97.01
50 93.72 93.95 94.01 92.37 94.09 93.65 97.02 96.81 97.19
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In addition, the basic CNN, MTL-based model transfer, DAWA model fusion, and the
entire method proposed in this paper are set up for comparasion. The experimental results
consider the evaluating accuracy of the models. The FSTB Direction-X dataset is selected,
and ten wind turbines are set in the cluster. Eight groups of experiments numbered 0
to 7 are conducted to different states from the working condition library. Experimental
results obtained from node 0 in the cluster are shown in Table 4, where MTL corresponds
to multiple model transfer process so that a group of statistical indicators are recorded. It
can be seen that the proposed method is highly effective for specific tasks.

Table 4. Experimental verification among the four types of methods.

Group No. Base
MTL

DAWA Proposed
Max Min Mean Median

0 84.02 94.62 84.44 88.52 89.14 88.53 97.74
1 79.01 93.69 85.42 89.21 88.98 90.57 96.58
2 85.28 93.98 84.96 88.32 88.58 89.85 98.56
3 78.62 94.08 83.01 87.48 87.32 90.24 97.27
4 82.20 91.87 82.28 87.12 88.51 92.36 99.13
5 81.86 93.85 83.49 89.92 90.12 91.58 98.82
6 83.35 94.60 87.28 89.61 88.57 93.56 96.35
7 84.79 91.74 82.32 88.74 86.75 89.61 97.49

5. Conclusions

In this study, a P2PNet for fault diagnosis in a large-scale wind turbine cluster and
a method belonging to the network are proposed. Each node in P2PNet is equivalent
and functional replicable, so a multiple model transfer and dynamic adaptive weight
adjustment (MMT-DAWA) model fusion method for tasks in a single node corresponding
to a wind turbine gearbox in the cluster is proposed. Each participant in P2PNet saves
raw data locally, and only the model parameters are transmitted among nodes. Within a
certain node, there are three main steps: model transfer, fusion, and transmission. When
the node receives several models from other nodes, it adopts a model transfer based on
MTL with EWC constraining model parameters. Then, based on the FL framework, several
models are fused by DAWA model fusion with two stages of dynamic adaptive outlier
monitoring-based model selection and adaptive weight adjustment-based model fusion.
Finally, a better performing model is obtained not only for operation monitoring and fault
diagnosis locally but also for transmission to other nodes for iteration and operation. After
multi-round iteration and optimization, a state of collaborative intelligence is achieved,
where the model performance is better than that of single machine intelligence.

Experiments show the effectiveness and superiority of the methods proposed in this
paper. Under any numbers of nodes, the performance of collaborative intelligence is always
better than that of single machine intelligence. In any case of the experiment setting,
the proposed method performs better than traditional federated average algorithm and
ensemble learning-based voting methods for the corresponding tasks.

Therefore, the method proposed in this study is valid in terms of its effectiveness and
superiority. This provides a specfic solution to the problems of poor performance of the
fault diagnosis model when machine data are insufficient and the data management has
obstacles in large-scale turbine clusters. Comparing with similar solutions, the proposed
method performs better in terms of the information processing abilitity to deal with data
management-based fault diagnosis in a wind turbine cluster. It is also a guidance for other
types of machine clusters to implement fault diagnosis.

The future research direction is to combine the algorithm in this study with the
comprehensive model transfer and model fusion of various kinds of multimodal signals,
striving to understand the operation status of the wind turbines in an all-around way and
providing reasonable fault diagnosis results and feasible maintenance schemes.
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