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Abstract: This paper presents a review of the recent trends and the current state of the art in the
application of fiber optic fiber Bragg gratings (FBG) sensing technology to condition the monitoring
(CM) and testing of practical electric machinery and the associated power equipment. FBG tech-
nology has received considerable interest in this field in recent years, with research demonstrating
that the flexible, multi-physical, and electromagnetic interference (EMI) immune in situ sensing
of a multitude of physical measurands of CM interest is possible and cannot be obtained through
conventional sensing means. The unique FBG sensing ability has the potential to unlock many of the
electric machine CM and design validation restrictions imposed by the limitations of conventional
sensing techniques but needs further research to attain wider adoption. This paper first presents
the fundamental principles of FBG sensing. This is followed by a description of recent FBG sensing
techniques proposed for electric machinery and associated power equipment and a discussion of their
individual benefits and limitations. Finally, an outlook for the further application of this technique is
presented. The underlying intention is for the review to provide an up-to-date overview of the state
of the art in this area and inform future developments in FBG sensing in electric machinery.

Keywords: giber Bragg grating (FBG); fiber optic sensors; electric machines; drives; high voltage
assets; condition monitoring; fault detection; in situ sensing

1. Introduction

The condition monitoring of electrical machinery is progressively gaining importance
as the utilization of electric machines is increasing at an unprecedented scale, driven con-
siderably by the proliferation of renewable power generation, transport electrification, and
the ongoing automation of industrial processes [1,2]. Conventional condition monitoring
(CM) methods for electrical machines have significant limitations in providing the levels of
diagnostic reliability required for maintaining future mission-critical machine applications
in service. This primarily concerns the delivery of a diagnosis that can allow for the pre-
vention or minimization of costly and unnecessary outages (e.g., wind turbine generators),
as well as the reduction in any related safety concerns in specific demanding applications
(e.g., electric propulsion).

It is generally desirable in practical applications for CM systems to be as non-invasive
as possible: this can often contradict the aim of reliable diagnosis, which largely depends on
sensing access to key localized physical measurands that optimally characterize a particular
failure process (e.g., heat, strain, etc.). Conventional CM is not optimally suited to this,
as it relies heavily on the analysis of diagnostic data collected through the application of
limited sensing devices that are frequently not optimally placed to capture or characterize a
localized fault process. This is particularly valid where sensing implementation in locations
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within the electric machine geometry is concerned. In situ sensing in the vicinity of known
failure points or in known stress areas, could yield a much better understanding and moni-
toring of critical diagnostic measurements. This could, in turn, enable a much-improved
characterization of the fault process inception and its propagation stages to ultimately yield
an improved reliability diagnosis [3–5]. The availability of such in situ sensing abilities
would not only enable better diagnostics but would be of use in machine design and pro-
totyping stages for the high fidelity characterization of the device operating performance
envelope and make it possible to improve the machine design process and perform a more
thorough evaluation of machine stress and performance models [6,7]. Neither of these
can be supported by the conventional sensing that is commonly employed in standard
electric machine CM schemes, where sensing limitations can prevent the better utilization
of CM for a more reliable and timely diagnosis [2,8,9]. There is, therefore, a significant
amount of interest in the development of multi-physical embedded sensing alternatives for
electric machine CMs, including the observation of a range of multi-physical parameters
(e.g., thermal, strain, flux, etc.) to permit the advanced monitoring and understanding of
essential stress measurands.

Fiber optic fiber Bragg grating (FBG) sensing technology has been emerging as a strong
alternative that could provide solutions for advanced in situ sensing within electric machine
geometries. Its inherent features of electromagnetic interference (EMI) immunity, small size,
power passivity, flexibility, and ability to multiplex sensing provide opportunities to overcome
many of the existing limitations with sensing used in electric machine CMs [10–12]. While FBG
sensors are inherently responsive to mechanical and thermal excitation, they can be adapted
to measure other physical phenomena of interest in electromagnetic rotary devices, such as
through the integration of magnetostrictive material for magnetic flux measurement [13–15].
Despite the wider adoption of FBG sensing in electric machinery still being stifled by its
relatively high cost, much effort has been reported in recent years on exploring effective
ways to implement FBGs in various electric machine types to enable advanced multi-
physical in situ sensing. This is extended to other associated power equipment where the
unique FBG sensing features invariably present attractive opportunities for the in-service
observation of high-fidelity device measurements.

This paper presents a review of the current state of the art and advances in FBG sensing
research for electric machinery by providing a summary of the current knowledge of FBG
sensors’ usage and application requirements for effective CM. This is a rapidly developing
area of great interest to users, designers, and operators of electric machinery alike, with a
potential to overcome the many barriers in how these devices are operated and utilized
by allowing higher fidelity and targeted insights into relevant multi-physical in-service
measurands hitherto unavailable through the application of conventional sensing. The
aim is to provide an up-to-date summary of the many FBG sensing techniques that are
increasingly proposed for electric machinery and deliver an evaluation of the progress,
trends, and outlook in this topic that can inform and stimulate further developments. In
addition, modern machines are invariably driven by power electronic converters where
machine operation and integrity and that of the converter are inherently linked. FBG
technology has a strong potential to facilitate improved in situ sensing for power electronic
devices as well as other machine-associated power equipment (e.g., that used in high
voltage machinery applications); hence, recent advances in applying the FBG sensing to
monitor these are also reviewed for the sake of completeness.

2. Operating Principles of FBG Sensors

FBG sensors are increasingly commercially available and are, today, one of the most
popular sensors from the fiber optic sensing family, having found use in a variety of
industrial and research applications. A conventional FBG sensor is made up of a specially
fabricated small and flexible segment imprinted into the core of a single-mode optical fiber,
as illustrated in Figure 1.
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Figure 1. Structure of an FBG sensor [16].

Figure 1 shows a typical FBG sensor structure, with a single-mode optical fiber contain-
ing a cylindrical core (glass, from 4 to 9 µm in diameter) which is surrounded by a cladding
layer (glass, 125 µm in diameter). The purpose of the cladding layer is to confine light
propagation within the glass core and limit optical losses. Furthermore, the top coating
layer, which is generally made of acrylate or polyimide, is applied to strengthen the fiber.
The sensing part of the structure is denoted as the FBG sensing head and comprises an
equidistant sequence of gratings, which are UV (ultraviolet) laser-induced modulations in
the glass core refractive index during FBG fabrication. The length of the FBG sensor (FBG
head length) is defined by the number of gratings and the distance between them (grating
period Λ) and is typically in a range from 1 to 20 mm [17]. Multiple sensing heads can be
manufactured on the same fiber in a variety of available structures to provide a multiplexed
sensor array on a single fiber strand.

When the fiber is illuminated by broadband light, the gratings reflect a specific light
spectrum (i.e., the Bragg wavelength, λB), which varies with the thermal and mechanical
conditions that the sensing head is exposed to. The light wavelength that is reflected meets
the Bragg condition as set by the grating structure, while the rest of the light spectrum is
transmitted through the FBG head. The operation principle of an FBG sensor is illustrated in
Figure 2, where λB is the calculated peak mid-point of the reflected wavelength. Assuming
other relevant application conditions are satisfied, monitoring the reflected spectrum can
enable the FBG head to principally be utilized as a thermal and/or mechanical sensing
device with the advantages of EMI immunity, a small size, and flexibility.
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In a sensing application, an FBG head reflects a specific wavelength of light from
a distinct fiber location exposed to physical excitation, such as temperature, strain, etc.
The measurement process involves the observation and measurement of the reflected
wavelength using a specialized optoelectronic interrogator device. Once acquired, the
reflected wavelength is converted to a set physical measurand, based on a pre-calibrated
wavelength for the physical excitation relationship [15,18]. In principle, an interrogator
is responsible for illuminating the fiber, and subsequently, for successfully receiving and
monitoring the reflected Bragg wavelength(s). Depending on the nature of a particular
sensing application, the interrogator needs to capture any rapid changes in the wavelength,
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and therefore, different techniques are available for the effective tracking of the relative
changes in λB. Overall, the general characteristics that are required from the integrator
used in FBG sensing are high resolution, high accuracy, usually within the range of pico
meters, multiplexing ability, and acceptable cost. In addition, the calibration process of the
wavelength shift to the physical measurement value is imperative for enabling FBG sensing
applications [11,19]. This involves the exposure of the sensor to a controlled range of the
physical measurand to be observed, and the characterization of the reflected wavelength to
the physical measurand value relationship. Where possible, calibration is performed on
free FBG fibers, however, some applications can require in situ sensor calibration, which
can be challenging due to the sensor being embedded within a device and the use of any
required sensor-to-device structure bonding media.

A typical reflected wavelength spectrum of an FBG sensor is illustrated in Figure 3.
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The bandwidth of the FBG sensor reflection is defined as its full width at half maximum
(FWHM) and is the reflected spectra width at 50% or −3 dB from the peak reflection
point. The bandwidth of an FBG sensor is dependent on a number of FBG structure
parameters, notably the grating number and spacing [20]. The peak wavelength of the
reflected narrowband is the Bragg reflection wavelength, λB, which is dependent on the
effective refractive index of the optical fiber (neff) and the Bragg grating period (Λ, i.e., the
spacing between successive gratings) and can be calculated as [17]:

λB = 2 neff Λ (1)

Any change in the observed measurand, such as strain and temperature, results in a
corresponding change in neff and Λ, and therefore, results in a consequent variation in λB,
which is calculated as [17]:

∆λB

λB
=

{
2
[

Λ
∂ne f f

∂ε
+ neff

∂Λ
∂ε

]
∆ε

}
+

{
2
[

Λ
∂ne f f

∂T
+ ne f f

∂Λ
∂T

]
∆T

}
(2)

In (2): ∆λB is the relative change in the reflected Bragg wavelength, ε is the strain,
and T is temperature. The first term in brackets in (2) is related to the Bragg wavelength
shift caused by the strain-induced elastic-optic effect, whereas thermo-optic and thermal
expansion caused by the Bragg wavelength variation are represented in the second term
in (2). For ease of interpretation, Equation (2) can be presented in the literature be in its
condensed form as:

∆λB

λB
= {kε ∆ε}+ {kT ∆T} (3)

where kε is the total strain and kT is the total temperature sensitivity factor of the FBG sensor.
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3. FBG Sensing Application in Electric Machines

FBG monitoring for in situ sensing applications in electrical machines has received
increased research attention due to the number of advantages it can inherently provide for
installation and monitoring within machine geometries, including [21–24]:

• Immunity to EMI,
• Lower signal-to-noise ratio,
• Electrical passivity, including at the measuring point,
• Flexibility, compactness, and small size,
• The potential for long in-service life,
• Resistance to harsh environments (e.g., extreme temperatures, moisture, corrosion, etc.)
• A multiplexing ability enabling distributed sensing schemes, and,
• A multi-physical sensing capability.

The key operational and health parameters of electric machines, such as vibration,
rotor speed, torque, the temperature in stator windings and on the rotor, as well as the
air-gap flux density and others, have been shown to have the potential to measure in-service
using FBG sensing systems [4]. The operating principles and installation requirements of
these applications are reviewed in this section.

3.1. Thermal Sensing

Temperature is one of the key parameters that affect the operational characteristics
and performance of an electric machine. Generally, the principal source of thermal stress
in machines is their wound components. The thermal stress resulting from high winding
temperatures can cause the degradation of the insulation and ensure damage to the circuit
components, leading to a reduction in the machine’s lifetime and eventual failure. Ap-
proximately 40% of failures in induction machines are reported to be caused by winding
insulation breakdown and the resulting thermal stress [21]. Furthermore, as the main
contributor to the overall heat produced within an electric machine, the windings can affect
the thermal status of all other components. For example, the resultant excess heat can
also negatively affect the performance of permanent magnet elements, which is present, or
in severe cases, lead to their demagnetization. An increased winding temperature from
the nominal level, even if moderate and not extreme, generally leads to an increase in the
losses and increase in lifetime consumption, and thus a reduction in machine performance,
and is hence undesirable. Effective temperature monitoring is, therefore, key to ensuring
motor reliability and optimal performance. This predominantly relates to the stator and
rotor wound components; however, it is also pertinent to the rotor bearings, as these are
machine-critical components that are degraded by the excess friction caused by heat. The
key aim of thermal monitoring is to achieve the early detection of local overheating and,
consequently, a reduction in the maintenance cost and optimization of performance. This
can be attained through the effective monitoring of temperature in hotspot locations of
interest in machine wound components and bearings [25].

The conventional temperature monitoring approach in electric machines generally
employs embedded temperature sensors, such as thermocouples (TCs) or resistance thermal
detectors (RTDs), to measure the local temperature of the monitored parts [26]. However,
the utilization of these sensors, especially for critical machine applications, can have
considerable limitations due to the safety risks posed by the electrically conductive nature
of the sensor material and the sensor installation complexity; further constraints arise from
the physical dimensions of these sensors, which can prevent or significantly complicate the
effective access to key thermal measurement locations of interest (e.g., windings slots) [27].
The conventional TC and RTD-based thermal sensing are additionally challenged where
the monitoring of machine rotary components is concerned, suffering from installation and
wiring complexity and challenges around data transmission between the rotating rotor and
a stationary external sensing platform [28,29]. The application of FBG sensing to monitor
the electric machine temperature, with its multitude of inherent advantages for sensing
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in confined and harsh environments, has been gaining attention as a viable alternative to
traditional temperature sensing systems.

The principle of measuring temperature using FBG sensors is based on the identifica-
tion of ∆λB caused by temperature variation. Heat has several effects on the optical fiber
and its gratings, including changes in the grating period, as well as the thermo-optic effect
related to the dependency of neff on temperature. The reflected wavelength shift due to
temperature change is calculated using the fiber thermal characteristics and ignoring the
mechanical excitation, which can be obtained as [30]:

∆λB = λB(α+ ξ)∆T (4)

where α is the fiber thermal expansion coefficient (≈0.55 × 10−6/K) and ξ is the fiber
thermo-optic coefficient (≈6.67 × 10−6/K)[31]. The thermal sensitivity for a standard
bare FBG with the Bragg wavelength of 1550 nm operating at ambient temperature is
≈10 − 14 pm/◦C [17]. The thermal measurement is, however, complicated by the inherent
thermo-mechanical cross-sensitivity of FBG fibers, as defined in Equation (2). In essence,
for an unpackaged bare FBG head, it can be expected that the sensor will respond to both
thermal and mechanical excitation. Thus, if an unpackaged sensor is placed in a location
where it is exposed to thermal and mechanical excitation, it will respond to both.

To ensure an exclusively thermal measuring ability, an FBG sensor needs to be insu-
lated from mechanical excitation. This is commonly achieved by packaging the sensor
in an external geometry made of a material suitable for a given sensing application: the
purpose of packaging is to contain the sensing head in a location protected from mechanical
excitation (stress and strain). Further to this, the packaging should ideally possess suitable
thermal properties to allow for the adequate observation of the thermal measurement
change and also be electrically passive/nonconductive [11,18]. Different packaging lay-
outs and materials have been researched in the literature and are aimed at facilitating the
stator temperature monitoring; small diameter and wall thickness thermoplastic polymer
(Polyether ether ketone (PEEK)) tubes [11,32] were used to package FBG sensors and embed
them in low voltage random wound windings, and tubes made of steel and copper [33]
were used to package the thermal sensors located in the stator slot openings or stator
winding radiators, respectively. In the study, [11] applied the temperature measurements
provided by the winding in situ FBG sensor to estimate the remaining lifetime of the
motor winding in operation. PEEK packaging, in particular, makes it possible to wind
the packaged thermal sensor(s) into the desired location within the coil geometry and
to monitor thermal hotspots internal to the winding structure in a minimally invasive
fashion and safely, as PEEK is an electrically passive material with adequate mechanical
properties. In [31], it was shown that the application of PEEK-packaged FBG thermal
sensors in PMSM machine windings could allow the detection of winding faults by moni-
toring the localized thermal changes produced by the fault. The integration of FBG sensors
within the microplastic winding insulation material in large power generators was also
performed and showed good immunity to mechanical excitation industrial electronics. In
general, the application of the electrically passive PEEK packaged FBG sensing for stator
winding embedded thermal monitoring is the optimal application for this technique, which
is currently reported in the literature for this application.

Thermal measurements for rotor temperature monitoring have been established [4,34,35]
by the application of fiber optic rotary joints (FORJs). This allows an optical contact to
be established between the FBG sensors installed on the moving rotor and a stationary
interrogator so that thermal readings from rotor locations can be taken. An array of thermal
sensing points can then be established by employing a single fiber carrying multiple
multiplexed FBG heads to observe the in-service conditions on PM and induction machine
rotors or, where necessary or convenient, to use multiple separate fibers. Due to the limited
space on the rotor in smaller machine geometries and the general challenges imposed
by rotor movement in all-electric machinery, the applied FBG sensors have typically been
bonded to the desired rotor locations using epoxy resin or cyanoacrylate glue; this can result in
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the inclusion of mechanical excitation related artifacts in the observed measurements [36,37].
While this is functional and able to facilitate continuous in-service thermal monitoring,
this method is reasonably costly and challenging for practical implementation in typical
power conversion applications of electric machines due to the relatively high cost of the
FORJ device and the requirements for its in-line installation on the machine shaft. These
limitations would, however, be much less severe in larger scale (cost) electric machinery
such as, e.g., large power generators. The application of a FORJ is the only known method
to extract FBG measurements from the rotary component of electrical machinery.

Thermal sensing applications in bearings have also been prototyped and shown
as feasible [33,38–40]. FBG sensors have been integrated within the bearing structure
in machined surface groves using adhesives, implemented in externally fixed polymer
structures, and used as standalone sensor devices for large power generator bearing and
coolant temperature measurements. Multiplexing was applied to establish distributed
thermal sensing arrays in the bearing geometry and monitor changes in-service, with or
without the presence of defects, achieving good results. The sensor application embedded
within the bearing structure imposes more invasive requirements for installation of this
technology in comparison with the methods based on the application of an externally fixed
and removable/reusable polymer structure containing FBG sensors. While the sensitivity
of these two methods would need to be directly compared to ascertain which is optimal
and would likely favor the direct application method, it can be shown that the external
coupling method can allow for the recognition of defects while retaining the advantage of
being removable/reusable and more straightforward for application.

Various local and distributed thermal monitoring schemes for electric machines have
been examined in the literature and are summarized in terms of their machine application
type, sensor location, and measurand features in Table 1 for clarity and completeness.

Table 1. Examples of FBG-based temperature monitoring applications on electric machines.

Reference Type of Electric Machine Sensor Location Monitored Temperature

[7] A 3.7 kW induction motor Above the slot wedges in the
slot openings

Stator temperature distribution
under healthy operation

[41] A 3.7 kW induction motor Above the slot wedges in the
slot openings

Mechanical and core losses related
to temperature rise in the stator

[4] A 2 kW permanent-magnet motor Axially across the stator slot openings Temperature distribution of
stator windings

[25] A 200 MVA air-cooled
power generator On the stator winding copper bars

Stator copper bars temperature
distribution under
normal operation

[42] A 1000 MW power generator On the stator conductor top bar surface
Quasi-distributed thermal
measurement of the stator

windings’ inner temperature

[43] A large, air-cooled power
generator On the stator winding copper bars FBG sensing system operating in

harsh environment

[44] A 175 MW synchronous generator Into small grooves between the stator
surface insulation and the rotor poles

Stator surface temperature under
transient start-up and normal

operating conditions of a
hydroelectric plant

[4] A 2 kW permanent magnet motor On the moving rotor structure The temperature of rotor magnets

[34] A 75 MVA hydro generator An FBG-distributed sensing system in
the rotor Field windings

[37] A 74.5 MVA hydro generator On the rotor winding surface

Rotor field windings based on
investigating the effects of

thermo-mechanical stresses in an
FBG sensor assembly

[45] A 5.5 kW permanent magnet
synchronous machine

On multiple thermal sensing points
distributed within the stator

end-winding section

Stator end-winding under different
healthy and faulty

operating conditions

[46] A 180 MW hydro generator In the generator bearing The generator bearing temperature
increases due to shaft misalignment

[33] A 42.5 MW hydro generator An FBGs array with five FBG heads in
the stator

The stator generator temperature
during start-up and in operation
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Table 1. Cont.

Reference Type of Electric Machine Sensor Location Monitored Temperature

[36] A 0.55 kW induction motor
Two FBG heads were attached to the

cage rotor: one on the rotor bar surface
and the other on the end-ring

Using a fiber optic rotating joint
(FORJ) rotor temperature rise level
with load increase was monitored

[34,35] A 310 MVA generator An FBG was used at the rotor’s axis The generator field
winding temperature

[38] A 0.55 kW induction motor On the outer race bearing

Temperature rises on the healthy
and faulty bearings at three

different load conditions (no load,
half load, and full load)

3.2. Mechanical Sensing

Monitoring mechanical parameters, such as the frame vibration or strain and/or vi-
bration in different machine locations, is a recognized method of electric machine condition
monitoring and is often stipulated by appropriate certification standards in various ma-
chine applications [1,2,8,47,48]. The conventional approach to mechanical sensing utilizes
accelerometer sensors mounted externally on the machine frame and, where available, in
larger machines distributed within the machine geometry in other positions of interest (e.g.,
large generator end windings). The FBG’s inherent ability to measure strain and the possi-
bility to utilize this feature to design FBG-based accelerometer sensors [49,50] combined
with other attractive FBG features presents a number of opportunities for the development
of advanced localized and/or distributed strain and acceleration monitoring schemes.

In addition, operating speed monitoring in electric machines is essential for their
effective usage and control. This is usually measured using encoder and resolver sensors;
however, these can be compromised in challenging environments [27]. There is a general
interest, therefore, in employing the inherent ability of FBG sensing for conceiving speed
sensing schemes in rotating machines which could yield gains in increased robustness,
smaller sensor packages, etc. [3].

The observation of shaft torque is also of considerable interest in the utilization and
testing of electric machinery [9,51]. This is usually achieved by the installation of a bulky in-
line transducer on the test machine shaft and has considerable limitations in practical usage.
Methods that could facilitate less demanding torque sensing are, therefore, of considerable
interest, presenting another area of mechanical sensing in electric machinery where the
FBG sensing application could be attractive.

3.2.1. Strain Sensing

FBG strain sensors have been applied for the conditional monitoring of applications
in electric machinery. FBG sensors were bonded to the machine frame in [52] to observe
the in-service surface strain. It was shown that distinct signatures in the observed surface
strain signal could be identified in the presence of stator electrical faults that could allow
a diagnosis to be made of a stator winding fault presence. FBG strain sensors were also
installed between the stator teeth (see Figure 4 for illustration) within an induction machine
geometry and were bonded by cyanoacrylate glue to observe the operating strain in the
presence of a rotor broken bar fault and rotor dynamic eccentricity [53,54]. It was found
that the observed strain spectral content contained clearly defined magnitudes at the fault
frequency caused by the specific fault-created stator deformation and the consequent
distortion in electromagnetic forces; this allows the localized strain measurement to be
used for the recognition of fault presence. Furthermore, FBG strain sensing was applied
in machine ball bearings for monitoring the in-service surface strain, demonstrating the
presence of distinct fault frequencies with rotating elements and raceway faults [38,40]. It
was shown that all the aforementioned fault spectral signatures in the strain signal were
speed-dependent and could, in principle, be trended for fault monitoring and diagnosis in
dynamic operating conditions.
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In summary, available research has demonstrated that in situ strain sensing within
electric machine geometries is feasible with FBG sensors and that the signatures of elec-
tromagnetic and mechanical forces arising with distinct fault modes can be identified
and trended through this measurement. This shows that the application of in situ FBG
strains ensigned for the observation of relative strain is adequate for general CM purposes;
however, further research is needed on the in situ monitoring of absolute in-service strain
values, which could provide valuable insights into the actual level of strain associated
with fault inception and propagation, as well as insights into in-service strain levels in
healthy machinery.

3.2.2. Torque Sensing

FBG sensors have been applied in schemes aimed at shaft torque measurements [3–5,55].
The approach relied on utilizing two FBG strain sensors mounted on the rotor in the
axial plane at +45 and −45 degrees with respect to the axis of rotation: this allowed the
differential wavelength approach to be used to extract dynamic measurements of the shaft
torque, including primarily the torque DC component, and limited, first order rotational
speed frequency components. The method still requires more extensive testing and analysis
of the measurands to warrant wider application but is, however, still unique in addressing
the torque sensing application of FBG technology in electric machines.

3.2.3. Vibration Sensing

The monitoring of vibration in electric machines is vital to facilitate the effective
detection of mechanical faults (e.g., bearing faults) but can also enable the recognition of
electrical faults and asymmetry [9,24,51,56]. Various FBG vibration sensor schemes have
been explored in the literature and can generally be classified into two groups based on
the sensing principle employed and the installation method: the contact sensors and the
non-contact sensors [26]. The study in [57] presents a non-contact FBG vibration sensor
which is based on the conversion of the observed distance between the sensor and the
machine shaft into the magnetic force. The vibration of the rotating shaft is hence obtained
through the observation of the FBG sensor wavelength shift. FBG accelerometers are classed
as contact FBG vibration sensors and measure the Bragg wavelength shift of the FBG when
related to the acceleration of a vibrating assembly [58]. The operation principle of the
FBG accelerometers is based on transferring the observed acceleration to the FBG strain
variation. This typically requires the integration of an FBG strain-sensing fiber into an
external structure that is able to perform the acceleration-to-strain conversion. A cantilever
FBG accelerometer design for the machine vibration measurement was examined in [58]
and is illustrated in Figure 5.
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standalone shaker experiments and demonstrated to have good performance potential. 

Figure 5. A 3D view of cantilever-based FBG accelerometer [58].

The cantilever converts any acceleration imposed on it into a strain [59,60], which
is then sensed by the cantilever-embedded FBG sensor. The sensor was designed from
composite materials to ensure that it was nonconductive and thus suitable for application in
electric machines. Furthermore, two polymers were used in its construction with different
elasticity characteristics to enhance sensitivity. The sensor was tested in standalone shaker
experiments and demonstrated to have good performance potential.

An FBG accelerometer using a single mode fiber containing two identical FBGs, which
are placed generally 5 mm to 20 mm apart from each other and embedded in a polyamide
diving board structure, can act as an acceleration-to-strain converter, as illustrated in
Figure 6, which was used for large generator end winding narrowband monitoring and was
shown to reliably function [24]. An adaptation of this design was explored to allow wider
band vibration monitoring for general electric machinery monitoring purposes showing
promise but also requiring further refinement for more effective use [61].
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An in-line fiber etalon (ILFE) sensor has a unique feature of the seismic mass effect
with two different ranges of operation, including the ability to work as an accelerometer
below the resonance frequency and working as a vibrometer for higher frequencies (the
sensor output is proportional to displacement) and has been used to monitor the vibration
of induction motors working at a steady-state under voltage unbalance [60]. The vibration
measurement of an induction motor running at a no-load condition using a biaxial optical
fiber accelerometer, which comprises four FBGs to measure the biaxial vibration, is pre-
sented in [56]. The biaxial vibration sensor measures the acceleration via the difference
between the Bragg wavelength shift of two gratings per direction. This study shows that
the biaxial optical accelerometer exhibits good reliability in monitoring machine vibrations
when compared with a commercial capacitive accelerometer. An alternative approach is
taken in [56], where FBG sensors were bonded to the adjacent stator core teeth to observe
core deformation and, thus, infer information on machine vibration and detect machine
static and dynamic rotor eccentricity faults [56].

In summary, multiple different approaches have been taken to FBG-enabled accelera-
tion sensing, with most manifesting relative limitations in the sensing bandwidth. Further
research is needed to extend this to more effectively cater to the frequencies of interest in
the CM of electric machinery, especially, those in higher speed machinery.

3.2.4. Rotational Speed Sensing

Refs. [4,5,63] examine an FBG sensing-based scheme that allows the simultaneous
observation of speed and position in an electrical motor. The fundamental idea is to monitor
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the stator core’s vibratory response/displacement using FBGs as a function of the air-gap
flux modulation and then analyze this measurand and infer the rotating speed and field
position information. In this application, a fiber with circumferentially mounted FBG
sensors between the stator teeth was used to measure position and speed by measuring the
strain due to the mechanical displacement of the stator teeth. The method was reported to
exhibit promising results.

3.3. Magnetic Field Sensing Application

FBG sensing methods have been developed for magnetic field sensing applications in
electrical machines. The FBGs can be used for magnetic field measurement by combining
the FBG strain sensing capability with magnetostrictive material properties [64–66]. The
FBG strain sensing utilized in this application was conceptually distinct from the strain
sensing described in Section 3.2.1, in which the strain was generated by bonding on the
surface of electrical machines (e.g., machine frame [52]). In contrast, the strain in the FBG
magnetic field sensing application was excited by the magnetostrictive material as a result
of the exposure to a magnetic field. When a magnetic field is applied to a magnetostrictive
material, the material will change its shape and become strained: if this strain can be
monitored in situ by an FBG sensor integrated with the magnetostrictive material structure,
then the strain measurand can be converted to a flux-to-yield flux sensing ability.

Terfenol-D is an iron and rare earth metal alloy that has been associated with the
largest known levels of magnetostriction at room temperature [67]. This material can be
applied as a compact piece with the FBGs directly bonded to it (see Figure 7a) [12,15,68,69]
or as a composite formed by a mix of Terfenol-D powder and a suitable adhesive, with
FBGs submerged within its structure, as shown in Figure 7b [13,14,70].
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The FBG magnetic field sensor has been used and developed for electric machine
applications, including the condition monitoring of induction motors [70], permanent
magnet synchronous machines (PMSMs) [13–15,71], and large hydro generators [68,72].
In [70], a hole was made in the stator core, and an FBG magnetic field sensor was installed
in it for the observation of air gap flux and, thus, the detection of broken rotor bars in an
induction motor (IM). The sensor was based on FBG and a magnetostrictive composite
made of Terfenol-D material submerged with the epoxy resin matrix, as illustrated in
Figure 8. A single FBG Terfenol-D sensor was embedded on a retrofitted slot wedge
installed in a stator slot mouth of a PMSM to monitor the PM rotor demagnetization
faults [14,15,71]. Figure 9 shows the sensor application for monitoring the air-gap flux



Machines 2022, 10, 1103 12 of 22

density to examine the demagnetized surface PM rotor conditions. The air-gap flux density
of a radial magnetic bearing was measured by using FBGs in [69], where two sensors were
placed in opposite magnetic fields at the stator to complement the temperature differences.
In [72], FBG technology and magnetostrictive material (Terfenol-D) were presented at
integration which offered a noninvasive sensor for online magnetic field monitoring in
large hydro generators to detect rotor winding defects caused by inter-turn short circuits.
The application of FBG flux sensing for stray flux monitoring in induction machines and,
hence, stator winding fault detection was explored in [73]. The sensor used was a nickel-
coated FBG, where nickel-coating geometric deformation with a magnetic field change
was used as a medium of flux to strain the conversion. The application of a Terfenol-D
composite-based FBG flux sensor for the external monitoring of induction motor stray flux
and winding fault signature monitoring was studied in [74] and reported fault-specific
Bragg wavelength shift changes; however, the findings and depth of analysis were limited
by the low scan rate of the optical analyzer used in this research.
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Table 2 shows examples of FBGs applications in electric machine magnetic field
condition monitoring. Most promising results have been reported through the usage of
Terfenol D, whether in solid or powder form. Further research on the temperature cross-
sensitivity of these would also be needed to demonstrate the viability of a long-term flux
measurement in service.
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Table 2. FBGs for EM magnetic field monitoring applications.

Reference Type of Electric Machine Sensor Location Monitored Magnetic Field

[70] A 0.75 kW induction motor In a hole made in the
stator core

Air-gap field to monitor
broken rotor bars

[15] A 1.1 kW PMSM On the slot wedge Air-gap field at different PM
rotor demagnetization levels

[72] A 200 MVA hydro
generator

On the ventilation
ducts of the
stator core

Air-gap field to detect
inter-turn short circuits of the

rotor windings

[14] A single-coil 1.1 kW PMSM On the slot wedge Air-gap field at different PM
rotor demagnetization levels

[73] A 1.1 kW three-phase
induction motor

Above the silicon
steel sheet

Stray-flux monitoring during
three different fault scenarios

on the end-winding

3.4. High Voltage Application

High voltage (HV) equipment is an integral part of any electrical power system, and
in addition to traditional use in large-scale energy production, HV electrical machinery,
in particular, is gaining increasing interest in a range of applications, e.g., aerospace and
marine electric transport systems. High voltage assets also include equipment, such as
cables, overhead line conductors, transformers, switch gear, and other major substation
assets. All of this electrical infrastructure, much of it past its original service life, will
experience increased stresses (electrical, thermal, and mechanical) with the increase in peak
demand and the variation of load profiles due to low carbon technologies and harsher
environmental conditions. Understanding the aging mechanisms and monitoring condi-
tions based on the temperature, vibration, and electric field provides vital asset health
information and minimizes unplanned downtime (and possible blackouts on the network)
due to failures.

FBG sensors provide a unique opportunity to measure all the above mechanisms,
with the added benefit of being able to be installed within a high-voltage environment.
The passive nature of the sensors can be exploited by installing them within high-voltage
assets, such as transformers, to monitor temperature and hot spot detection [75–77]. The
failure of such equipment is mostly brought on by insulation damage (which can be caused
due to the combination of thermal, mechanical, and electrical aging), which is typically
preceded by an increasing level of partial discharge (PD) due to insulation degradation.
PD is caused by the breakdown of insulation due to voids, defects, and high electric
fields. PD is, therefore, widely monitored in HV equipment using an array of different
methods, including electrical, acoustic, chemical, and optical methods. The study in [78]
focuses on a PD detector based on an FBG sensor and a mandrel, which, consequently,
significantly increases the sensitivity of the sensor. The FBG has a wide bandwidth response,
and depending on the diameter of the mandrel, the received signal will be amplified at
certain frequencies. In [79], a multiplexed PD sensing method for power transformers
is presented. The work also investigates the sensitivity of phase-shifted FBG sensors for
partial discharge-generated ultrasonic emissions.

Marignetti et al. [80] proposed and illustrated a method for using FBG sensors to mea-
sure the electric field in the HV generator end winding region. A conventional FBG was
used in the construction of the sensor and was operated based on the inherent electrostric-
tive properties of silica with no need for bulky electrostrictive material head packaging.
The sensor performance was validated in tests on a 1–20 kV range parallel-plate electric
field generator. Studies [81,82] introduced an intensity-modulated FBG photodetection
sensor intended for HV equipment application. The high-frequency acoustic wave that
was created as a result of the occurrence of PD could be detected by the proposed sensor
and has been validated in tests in comparison with the standard contact type PD measure-
ment. In the [83,84] study, the application of an FBG cavity sensor for PD monitoring in
HV generator windings was performed. The sensor diving board structure is mounted
onto a ceramic board to enhance the sensitivity to higher PD representative frequencies;
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the testing of the sensor was limited but showed performance potential in a simulating
sparking scenario. The fundamental principles of PD and electric field FBG sensing in high
voltage electric machinery are reasonably well understood; however, despite the sizeable
market for these applications, the FBG sensing solutions have not been standardized, nor
are they commercially mature at a scale that would support a large-scale use. Further
research is needed to improve the sensitivity of these methods and standardize the optimal
sensor architectures for these applications.

3.5. Multiphysical Sensing Application

The exploitation of the FBG sensors’ inherent multi-physical sensing ability has been
gaining interest in devising sensing devices able to observe multiple measurements si-
multaneously. The inherent thermo-mechanical sensitivity of FBGs could, in principle, be
exploited for multi-physical sensing applications involving the monitoring of temperature
and mechanical strains (or magnetic flux, electric field, etc., proportional to it) using a
single FBG head. This sensing method has recently emerged as a potentially useful option
for the multi-physical monitoring of the condition of electric machines, largely driven by
the initial study reported in [38,39] using FBGs for healthy and faulty bearing condition
monitoring in an induction machine. An FBG sensor was used to monitor the in-situ
thermal and mechanical conditions in a bearing structure by installing the sensor on the
outer race of the motor end-drive bearing (see Figure 10). It was reported that, due to the
inherent thermo-mechanical sensitivity of the FBG sensors and the different sensitivity
to these measurands, combined with an inherent difference in the nature of thermal and
mechanical excitation in the electric machine bearings, it was possible to obtain simulta-
neously thermal and mechanical measurements from a single sensing head fitted on the
bearing. One measurement here is absolute while the other is relative; however, it was
demonstrated that this could be sufficient for condition monitoring purposes in a case
study examining in-service rolling element fault detection. The study [36] investigated the
viability of deriving simultaneously localized in-service information on the induction motor
rotor temperature and strain from a single FBG sensing head bonded to the rotor surface.
A shaft in-line and installed fiber optic rotary joint (FORJ) was used to interface the rotor
installed with FBGs and an external stationary interrogator. Figure 11 shows the adapted
commercial FORJ that was used for this application. Study [40] further explored the FBG
inherent multi-physical sensing principles to establish thermal and mechanical condition
monitoring in an induction machine bearing for an inner raceway fault. In this study, an
FBG array sensor with three FBG heads was encapsulated in the carbon-fiber-reinforced
polymer for increased mechanical protection and ease of installation, demonstrating good
performance in tests on an operating machine. A simultaneous relative flux and absolute
temperature sensing scheme through the application of a single nickel-coated FBG sensing
head in the induction machine end windings was explored in [73] and reported an effective
performance in in-service tests.
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While the simultaneous capture of multiple multi-physical measurements from a
single sensing head is of interest, the advanced distributed and multi-physical measuring
ability can also be achieved by installing multiple dedicated FBG sensors at specific po-
sitions within an electrical machine. Study [3–5] used 48 FBGs installed within a PMSM:
24 FBGs placed along the stator windings for in-situ temperature profiling; 12 FBGs were
circumferentially attached to the stator core to detect the vibration, rotor speed, position,
and the air gap field frequency and rotation direction; and the final 12 FBGs were placed
in one fiber on the rotor surface and shaft for multi-parameter rotor sensing (thermal and
torque), as illustrated in Figure 12. For the rotor sensing application, a FORJ was used to
enable sensor interrogation while the rotor was spinning.
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Table 3 summarizes the leading works in the area of FBG application for multi-physical
monitoring within electrical machinery. Multi-physical sensing applications research is
still in its relative infancy; however, it has shown potential for facilitating powerful, single-
sensor measurement methods, with an imposed limitation for one measurand to be relative.
Further research is needed to explore this principle in further locations and with the
combination of physical measurements of interest.
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Table 3. FBGs for multi-physical parameter monitoring applications.

Reference Type of Electric Machine Sensor Location Monitored Parameters

[38,39] A 0.55 kW induction motor On the end-drive
bearing outer race

Thermal and mechanical
strain parameters at different

load and faulty conditions

[36] A 0.55 kW induction motor On the rotor bar and
the end-ring surfaces

Thermal and mechanical
operating conditions

[40] A 15 HP induction motor On the ball
bearing cover

Thermal and mechanical
strain for an inner race
bearing fault condition.

[3–5,85] A 2 kW PM motor

In the stator winding
and stator teeth, on

the PM rotor, and on
the rotor shaft

Thermal profiling,
mechanical vibration,

and torque.

[73] A 1.1 kW three-phase
induction motor

Above the silicon
steel sheet

Temperature measurement
and magnetic sensing during
three fault conditions on the

end-winding

3.6. Power Electronics Device Sensing Application

Modern electrical machine applications are invariably in a power electronic inverter-
driven format, where the operation of the machine is directly linked to and dependent on
that of the inverter. The monitoring of power inverter operating parameters is, thus, of
increasing importance, with the thermal monitoring of power electronic switches being
of paramount interest in this respect [86–88]. The vital thermal measurement of interest
is commonly the switch junction temperature, where conventional sensing devices, such
as TCs and RTDs, are challenged and impractical/impossible to use. FBG size and EMI
immunity can offer considerable advantages in this application and provide the ability to
monitor further physical measurements of interest [19,89–97]. This is a growing research
area with limited work currently available where studies on the direct on-chip FBG sensing
applications on standard insulated gate bipolar transistor (IGBT) devices have largely
revolved around exploring the possibility of acquiring accurate point temperatures.

Study [8] explores the application of an IGBT module base embedded packaged FBG
array for the distributed thermal monitoring of the module IGBT chips and diodes. While
reportedly flexible and functional, the scheme measures the baseplate locations’ thermal
conditions and requires the application of thermal models to infer the thermal conditions on
actual module chips. Study [1] utilized a low thermal tolerance mineral oil bond to interface
the FBG sensor to the IGBT chip surface for direct junction temperature monitoring and
reported limited results at a low current temperature only. The findings were incorporated
into the construction of a thermal model that was used to replicate the heat produced by the
device when it was conducting and switching. The model demonstrated a good agreement
between the measured and simulated findings.

A scheme utilizing an array sensor to measure the temperature distribution in the
upper silicon layer of the IGBT module was presented in [2]; the reported validation tests
are, however, performed only at the close of an ambient temperature and the observed
temperatures are not in the on-chip hotspot locations of interest. Study [89] explores an en-
hanced sensitivity FBG thermal sensor application for the IGBT temperature measurement
in a photovoltaic array inverter. An FBG sensor was bonded at each side of the sensing
head to a steel plate to utilize its higher thermal expansion coefficient to increase the Bragg
wavelength shift and, thus, the thermal sensing sensitivity. The plate–bonded FBG sensor
was installed between the IGBT and its heatsink and seemed to provide improved sensitiv-
ity and linearity. Study [3] examined the FBG sensor application for distributed thermal
monitoring in a 5-MW generator exciter bridge. FBGs were encapsulated in steel tubes
and glued on thyristor heatsinks for temperature measurements. While not providing the
on-device thermal hotspot monitoring of key interest, the method was tested in-service and
was shown to provide a good measurement performance.
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The application of FBG sensors for direct IGBT on-chip thermal sensing for loss
estimation was studied in [4]. Limited information was provided on the sensor–to–chip
interfacing, and limited test results involving a few switch cycles only were presented, while
no research was undertaken on in-service sensing features and performance. Study [92]
examined the direct IGBT temperature sensing using a thermal paste bonded FBG and
a free FBG positioned on the chip surface, as illustrated in Figure 13. Experiments and
simulations using finite elements were used to compare the performance of two different
sensor interface configurations. The scheme was tested on a commercial IGBT module
and was shown to provide good results in a dynamic operating scenario within the chip’s
nominal operating range.
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The effect of the FBG head length influence on the quality of the observed localized
temperature measurement on the IGBT surface was studied in [95] and indicated the
importance of considering the surface sensing location, the chip surface inherent thermal
gradient, and the head length for a reliable measurement to be achieved. Longer sensing
heads were found to generate errors in the measurement due to the Bragg wavelength
modulation caused by the uneven thermal excitation imposed on the sensor and arising
from the chip surface’s uneven thermal distribution.

Refs. [90,91] examined the FBG sensor application in a press pack IGBT power module
for in-service distributed temperature monitoring. Different sensor layouts, including tube
packaged and metal platelet bonded sensors were evaluated, and a good potential of FBG
sensors which bonded to the chip surface to enable temperature monitoring, was reported
for the emerging press pack chip geometry. Several possible FBG sensor integration
strategies are outlined and assessed regarding their functionality in the context of a practical
converter operation. Study [90] explores the FBG sensor application for contact pressure
monitoring in press pack modules. The FBG measurement of the contact pressure is
facilitated by converting the pressure to strain (through modifying the module’s spring
stack structure), which is then measured by the press pack module integrated FBGs. While
some thermo-compensation issues were identified, it was shown that the proposed scheme
was promising for contact pressure monitoring.

4. Outlook and Conclusions

This paper has presented a systematic overview of FBG sensing applications in electric
machines and associated power equipment. The variety of the presented sensing methods
indicates clearly that FBG sensing can play a significant role in facilitating embedded,
in-situ sensing in electric machinery that cannot be matched by conventional sensing. This
includes the provision for the observation of various multi-physical measurands, such as
temperature, strain, velocity, vibration, flux, etc., in device-embedded locations of interest
which are not accessible by other sensing means. This sensing ability has the potential
to unlock considerable diagnostic advantages, as well as those which more accurately
characterize the features and limits of a given machine or drive design. As such, in-situ
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FBG sensing can present a highly useful means of improving the reliability and performance
of electric machinery. Its acceptance and more common application in this context, however,
is largely dominated by its application cost, which currently remains higher than that of
the standard, more limited CM systems. Furthermore, while the state-of-the-art reports
many diverse methods for achieving the FBG-based sensing of various measurands within
operating machinery, further research is needed to try and standardize the best practice in
the distinct sensing areas from both the functional, but also the cost perspective. This is
equally pertinent to, e.g., standard thermal monitoring in stationary wound components,
as well as advanced in-situ multi-physical sensing.

While FBG sensors are comparable in cost to conventional alternatives and, in some
cases, cheaper (e.g., flux sensing), the interrogator box remains the key bottleneck in the
wider adoption of these sensors in electrical machines and drive sectors. With the possible
prospects of a wider market application, such as, e.g., dedicated thermal sensing systems
for electric vehicle traction motors, this cost could be driven down to see FBG sensors
become a more mainstream sensing option while providing an advanced sensing ability.
The current state, however, is such that FBG schemes are considerably more acceptable
as research and development support monitoring techniques for device prototype perfor-
mance characterization or model validation, improvement, and calibration. This excludes
high-value assets (e.g., power generators and similar) where the cost of the application
of FBG systems and the diagnostic and monitoring advantages they can deliver is far
outweighed by the application and downtime value, and thus, FBG usage can become
more acceptable.
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Abbreviations

Symbol/Abbreviation Description
FBG Fiber Bragg Grating
EMI Electromagnetic interference
CM Condition monitoring
UV Ultraviolet
FWHM Full width at half maximum
λB Bragg wavelength
neff Effective refractive index of the optical fiber
Λ The Bragg grating period
∆λB The relative change in reflected Bragg wavelength
ε Strain
kε The total strain sensitivity factor
kT The total temperature sensitivity factor
TC Thermocouple
RTD Resistance thermal detector
α the fiber thermal expansion coefficient
ξ The fiber thermo-optic coefficient
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T Temperature
PEEK Polyether ether ketone
FORJ Fiber optic rotating joint
ILFE In-line fiber etalon
PMSM Permanent magnet synchronous machine
IM Induction motor
HV High voltage
PD Partial discharge
IGBT Insulated gate bipolar transistor
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