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Abstract: Social intelligence in robotics appeared quite recently in the field of artificial intelligence
(AI) and robotics. It is becoming increasingly evident that social and interaction skills are essentially
required in any application where robots need to interact with humans. While the workspaces have
transformed into fully shared spaces for performing collaborative tasks, human–robot collaboration
(HRC) poses many challenges to the nature of interactions and social behavior among the collabo-
rators. The complex dynamic environment coupled with uncertainty, anomaly, and threats raises
questions about the safety and security of the cyber-physical production system (CPPS) in which HRC
is involved. Interactions in the social sphere include both physical and psychological safety issues.
In this work, we proposed a connective framework that can quickly respond to changing physical
and psychological safety state of a CPPS. The first layer executes the production plan and monitors
the changes through sensors. The second layer evaluates the situations in terms of their severity as
anxiety by applying a quantification method that obtains support from a knowledge base. The third
layer responds to the situations through the optimal allocation of resources. The fourth layer decides
on the actions to mitigate the anxiety through the allocated resources suggested by the optimization
layer. Experimental validation of the proposed method was performed on industrial case studies
involving HRC. The results demonstrated that the proposed method improves the decision-making
of a CPPS experiencing complex situations, ensures physical safety, and effectively enhances the
productivity of the human–robot team by leveraging psychological comfort.

Keywords: human–robot collaboration; cyber-physical production system; social safety; optimization;
artificial intelligence

1. Introduction

Conventionally, robots were used with the capabilities of nominal sensors and intelli-
gence in the industry. The tasks assigned to them were normally repetitive in nature [1].
However, recent developments in the industry have spawned a wide range of robots. The
up-gradations are common in services [2,3], exploration and rescue [4,5], and therapy
operations [6,7]. The advent of human and robot interaction in the above-mentioned fields
has given rise to the specialized field of human–robot interaction (HRI) [8]. The field of HRI
is now transforming into social HRI and is of particular importance. The interactions in
this field include cognitive, social, and emotional activities with the robots [9]. Moreover, a
new term of human–machine collaboration (HMC) arises in this context, and human–robot
collaboration (HRC) specifically for robots. Chandrasekaran et al. [10] described HRC as
a measure for improved task performance of the robot and reduced tasks for humans. A
shared space is used by humans and robots while performing collaborative tasks, and it
is expected that they attain a common objective while conforming to the rules of social
interaction. These robots perform joint actions, obey rules of social interaction (such as
proxemics) and still act efficiently and legibly [11]. Since these interactions take place
continuously during collaborative human and robot tasks, they place strong demands
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on collaborators’ personal and environmental safety. In addition to physical contact, the
control system of the human–robot collaboration system must cater to uncertainties and
ensure stability. Mead et al. [12] identified three types of requirements for HRI commonly
used by computer models of proxemics:

• Physical requirements, based on collaborators’ distance and orientation;
• Psychological requirements, based on the collaborators’ relationship;
• Psychophysiological requirements based on the sensory experience through social stimuli.

The broad categories of safety for the robotic collaborative system in the social domain
are physical and psychological safety. The earlier provides safety from physical hazards,
whereas the latter is from psychological discomforts such as close interaction with machines,
monotonous operations, or deviations from the task.

Different physical safety protocols for HRC-based CPS were presented by authors [13–16],
whose activation is dependent on the proximity between the cobot and the human operator.
Collision avoidance is a common solution to provide physical safety that includes avoiding
unwanted contact with people or environmental obstacles [17]. These techniques depend
on the measurement of the distance in-between the robot and the obstacle [16,18]. Motion
planning techniques are one of the key strategies to estimate collision-free trajectories such
as configuration × time–space method [19]; collision-free vertices [20,21]; representation
of objects as spheres; and exploring collision-free path [22], potential field method [23],
and virtual spring and damping methods [24]. Unfortunately, collision avoidance can fail
because of the sensors and robotic movement limitations, as sometimes human actions
are quicker than robotic actions. It is nevertheless feasible to sense the bodily collision
and counteract it [25–27], which allows eradicating the robot from the contact area. In
such circumstances, robots can use variable stiffness actuation [28,29] while effectively
controlled [30,31], and lightweight robots with compliant joints [32] may be used to lessen
the impact forces on the contact. Lately, a multi-layered neural network method involving
dynamics of the manipulator joints (measurement of torque through sensors and intrinsic
joint positions through kinematics) has been used [33] to discover the location of the
collision on the robot (collided link). While accidents due to sudden contact between
humans and robots may be restricted by designing lightweight/compliant mechanical
manipulators [30] and collision detection/response strategies [27], collision avoidance
in complex, unpredictable, and dynamic environments is still mainly dependent on the
employment of exteroceptive sensors.

From the perspective of HRI, psychological safety means ensuring interactions that
do not cause undue stress and discomfort in the long run. Therefore, a robot that can
sense worker fatigue with whom it works is able to take essential safeguards to avoid
accidents. An illustration of it was demonstrated in [34], a human–computer integration
where biosensors were mounted on the operator, and physiological signals (such as anxiety)
were measured and transmitted to the robot. Researchers are required to build robots
that must respond to emotional information received from the operator, also known as
“affective computing” [35]. In [36–38], measurements of cardiac activity, skin conductivity,
respiration, and eye muscle activity in conjunction with fuzzy inference tools were used to
change the robot’s trajectory for safe HRC. Recently, Chadalavada et al. [39] demonstrated
how a robot (automated forklift) could show its intentions using spatial augmented reality
(SAR) so that humans can visually understand the robot’s navigational intent and feel safe
next to it.

It seems now essential that methods ensuring both physical and psychological safety
be developed for HRC. Lasota et al. [40] introduced a distinct concept of combining both
physical and psychological safety for safe HRC. By measuring the distance between the
robot and the human in real-time, they precisely control the speed of the robot at low
separation distances for collision avoidance and stress relief. In another paper [14], the
same authors established via quantitative metrics that human-conscious motion planning
leads to more effective HRC. Lately, Dragan et al. [41] described that psychological safety is
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ensured by legibility; the operator may feel more comfortable if they can judge the robot’s
intention by its motion.

Humans, robots, and machines lately work in the ambit of cyber-physical systems
(CPS) under the umbrella of Industry 4.0. They are smart systems that contain both physical
and computational elements. The concept involves decision-making through real-time data
evaluation collected from interconnected sensors [42]. Monostori [43] proposed overall
automation of these layers for production systems interconnecting necessary physical
elements such as machines, robots, sensors, and conveyors through computer science
and termed it a cyber-physical production system (CPPS). Green et al. [44] highlighted
two important components of an active system of collaboration between humans and
robots. First, the adjustable autonomy of the robotic system is an essential part of an
effective collaboration that enhances productivity. Second, awareness of situations, or
knowing what is happening in the robot workspace, is also essential for collaboration. The
effectiveness of HRC depends on the effective monitoring of human and environmental
actions and the use of AI to predict actions and states of mind to which humans may have
contributed to the task. Lemaignan et al. [11] emphasized the architecture of the decision
layer of social robots. The paper is an attempt to characterize the challenges and present a
series of critical decision problems that must be solved for cognitive robots to successfully
share space and tasks with humans. In this context, the authors identified logical reasoning,
perception-based situational assessment, affordability analysis, representation and acquisi-
tion of knowledge-based models for involved actors (humans and robots, etc.), multimodal
dialogue, human-conscious mission planning, and HRC task planning.

As the industry is transforming from automation to intelligence, a need is felt to
extend the concept of psychological safety from humans to the CPSs. Psychological safety
is equally essential for an intelligent CPS as physical safety is perceived [45]. Although
interactions among human operators, physical and computational layers of CPS can be
quite demanding in terms of cognitive resources, the psychological aspects of safety are
not extensively taken into account by existing systems. However, there is no connective
framework that assesses and counters both physical and psychological issues of a CPPS
in a social domain. Flexible CPPS in this regard is required to counter the physical and
psychological uncertainties by defining contingencies. This indicates the requirement for
an efficient and reliable framework for next-generation CPPS:

• A framework that can quantify both the physical and psychological safety of the CPPS;
• A framework that can assess the CPPS’s current state and provide a thinking base

accordingly to make it flexible and safe;
• A framework that can decide, optimize and control based on the situational assessment.

Our research focused on addressing both physical and psychological issues faced by a
CPPS. We proposed a layered framework for knowledge-based decision-making in a CPS.
The CPS, at the core, performs the desired operations through the interactions between
its physical component (PC), computer component (CC), and human component (HC).
A situational assessment layer is proposed above the central layer to assess the anxiety
of the situations faced. Calculation of the matching score is suggested for the relevance
of each situation’s anxiety to each resource, and we named it an “anxiety factor”. The
third layer is the resource optimization layer, above the situational assessment layer. This
layer optimizes the allocation of available resources through an optimization algorithm
using the evaluated matching score, the objective function, and the defined constraints.
The last is the logic-based decision-making layer. This layer embeds predefined logic
to decide on complex situations, thereby tasking different resources using the experts’
knowledge, evaluated optimization, and calculated anxieties. The logic remains specific
to each identical case/situation embedded in a CPS scenario. The proposed framework is
validated through experimental case studies facing several situations.
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2. Methodology

The connective framework and an overview of its execution are shown in Figure 1. We
propose a knowledge-based modular software system where different modules represent
different layers of the proposed framework. However, we do not propose the number of
modules to be fixed and may vary as per the requirement of a particular case. The data of
all the layers are stored in a central database.
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The basic modules are the main module for the sensing and process control layer of the
CPS, the anxiety module for the situational assessment layer, the optimization module for
the resource optimization layer, and the decision-making module for the decision-making
layer. The general connectivity of the modules is shown in Figure 2.
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If multiple changes are faced, the matching score is ascertained for each situation
through the anxiety module. Accordingly, the situations with the higher matching score
(anxiety factor) are assigned the best possible resources through the optimization module.
The contingencies to handle the braved situations are looked after by the decision-making
module. In this context, outputs from the anxiety and the optimization modules are given
to the start of the decision-making module, which decides on the assignment of resources
to the tasks based on the defined logic. The term anxiety and the anxiety factor are defined,
and the method for their estimation is stated in this paper.

2.1. Anxiety of Cyber-Physical Systems

Anxiety is the human body’s natural response to stress. It is a feeling of fear or
apprehension about what is to come, also recognized as the unpleasant state when an
expectation is not achieved due to any stressful, dangerous, or unfamiliar situation. The
central task of the overall system in the brain is to compare, quite generally, actual with
expected stimuli. We wanted to elaborate more on the term that should not be confused
with risk. Risk is based on hazard, whereas “anxiety can be defined as an urge to perform
any job either to avoid a hazard or to do a righteous job”. When multiple situations are
confronted, all generate anxiety, but there would be limited resources to handle each.
Therefore, we defined anxiety to make it scalable for CPSs. There may be different levels of
anxiety generated by situations. The module is initialized by the results of Ishikawa, which
assigns an index to each anticipated situation. After initial indexing is performed, a novel
and intelligent technique based on medical knowledge categorizes situations into different
anxiety types. Each type relates to a particular level of severity.

2.1.1. Categorization of Anxiety

The criterion for categorizing and indexing anxiety in different situations faced by
the CPS is defined in Table 1. The categories are named concerning the characteristics
matched with the medical anxieties. Individual severity depends on the category and the
repeatability of the situation. It can be said that the “Quantification” of psychological safety
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for the CPS is being performed. Anxiety for a situation is the sum of the lowest severity
limit and the index “I” estimated by Ishikawa. The value of I ranges from 0 to 100. The
detailed procedure for calculating index I is explained in [46].

Table 1. Anxiety Categories.

Level Name Description Severity Equation Detailed Description

1 Panic Emergency >80 to 100 P = 80 + I × 20/100

Medical: situation to which affected person
is not accustomed and has a serious impact.
CPS: a severe unknown incident identified

by impact, action be taken by all
stakeholders; however, it must be handled

by HC, the most intelligent resource.

2 Post
traumatic

Trauma/
Fear >60 to 80 T = 60 + I × 20/100

Medical: serious incident of the past,
affected person remains under constant

stress that it may occur again.
CPS: assessment criterion is emergency

declaration by HC on occurrence.
Complete system must stop, and

observations be rectified by the operator.
After certain repetitions without any

damage, the same may be transferred to
specific phobia.

3 Agora-phobia/
Specific-Phobia

Known
Specific

Situation
>20 to 60 K = 20 + I × 40/100

Medical: specific situation that is critical
but known may be relieved based on

available knowledge.
CPS: known situations previously defined

and not considered in
panic/obsession/social norms. They may

be transferred to the obsession or
post-traumatic category on confirmation of

false alarm or emergency.

4 General
Anxiety

Intended
Situation 20 G = 20

Medical: day-to-day routine situation for
which refined solutions exist.

CPS: ideal/intended situation. Act as a
reference to categorize other situations.

5 Social norms Etiquettes >0 to 20 N = 0 + I × 20/100

Medical: a communal problem not liked by
humans.

CPS: warnings that may not affect the
current scenario, however, may affect the

performance at later stage.

6 Obsession False 0 O = 0

Medical: repetitive thought that leads to
ritual or a false alarm.

CPS: previously declared false alarms
through Ishikawa, and a null value is

assigned. Repetition and continuity are
indicators; however, confirmation from HC

is required.

Total severity is also calculated for a particular instance, and an alarm is raised if it
crosses a certain limit. It is the sum of all current emerging situations in a single iteration,
whose severities are estimated.

Total severity = G + P + O + T + K + N (1)



Machines 2022, 10, 1086 7 of 21

2.1.2. Anxiety Factor Calculation

The anxiety factor, i.e., the matching score, is then calculated through a mathematical
model dependent on the category and the variables related to tasks/resources. The proce-
dure is repeated at each iteration and the situations faced are analyzed. The anxiety factor
for a corresponding resource and a situation is calculated as:

ars = Qrs [Ars + (prs –trs)] (2)

Anxiety “A” is the parameter defined by the category of the particular situation, which
is G, P, O, etc., and calculated as explained in Table 1. Its value ranges from 0 to 100. “p”
is the preference variable and is the ascending order of anxiety level sorted for different
situations; it can also be referred to as priority index number. “t” is the task variable;
it defines which task can better be performed by which resource. The prior resource is
assigned a lower value and subsequently ascending value for lower priorities. The value of
t depends upon the number of resources, e.g., if there are two resources, then t = 0, 1. “Q”
is the resource suitability variable; it has the value “1” if a resource is suitable, and “0” if
not suitable. In order to simplify the mathematical notation of the model formulation, we
defined the indices for resources “r” and situations “s”.

The expression for “a” can be written as:
ars ∈ [0,100 + S] for all resources r ∈ R and situations s ∈ S;
r ∈ R: index and set of resources;
s ∈ S: index and set of situations.
S is the total no of situations. As the value of p ranges from 1 to S, hence the range of

the anxiety factor is from 0 to 100 + S.
The anxiety factor “a”, is the value of anxiety calculated through the above variables

for a particular situation tackled by a specific resource.

2.2. Layers of the Decision-Making System

The framework is explained layer by layer. The CPs layer is the main layer that
controls all physical and human elements. The physical component involves machines,
robots, conveyors, sensors, display/output devices, input devices, etc. The main role of
the layer is to execute the intended process for which the production plan is uploaded. It
also looks for changes at every cycle of the operation. For this, various sensing techniques,
such as proxemics and visual, physiological, or social cues, etc., may be used. Different
situations are expected to affect the desired output are registered.

The situational assessment layer assess confronted situations for priority index (anx-
iety) by making use of the HC’s knowledge base. First, the index of expected situations
is calculated with the aid of Ishikawa analysis, as proposed in Section 2.1. The category
of each situation is then identified. Based on the category, the matching score (anxiety
factor) for all expected situations is calculated, which defines the resource suitability to the
particular situation. On the initialization of the process, the layer first becomes aware of
the situations that are detected by the CPS layer. The layer then links the matching scores
to the related situations and re-estimates if the category of the situation changed by the HC
during the operation.

The resource optimization layer optimizes the allocation of resources through an
optimization algorithm. The module checks the number of situations; if there is a single
situation, the program directly moves to the decision-making layer, and if there are multiple
situations, the program moves to the optimization algorithm. The algorithm employs
mixed-integer programming (MIP) technique making use of the matching score, objective
function, and the defined constraints. The Gurobi Optimizer [47] is one of the state-of-the-
art solvers for mathematical optimization problems. The MIP model of the stated problem
is implemented in the Gurobi Optimizer. The overall technique addresses all the situations
sequentially in terms of priority.
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The decision-making module encompasses the logic defined by experts to handle
the braved situations and decides on the assignment of resources to tackle them. The
main consideration for the assignment of resources is the allocation recommendation by
the optimization module; however, the implementation is carried out by the decision-
making module. Commands are then given to the physical resources, which could be a
human operator, a cobot, a machine, etc., depending on the ascertained tasks. The human
component is also given cautions through social signals on observation of social norms
and obsessions.

The implementation of the proposed method includes two types of actions, one to be
taken before activating the system and others are happening in real-time during the process
cycle. Both the pre-process and in-process steps concerning each layer are shown in Table 2.

Table 2. Process for decision-making CPPS.

Ser Layer Pre-Process Formalities Process Pseudo-Code

1 CPS Prepare Manufacturing/ Production plan
2 Register expected situations
3 Start
4 Upload Execution Plan
5 Initialize
6 Check state of human component
7 Check state of physical components
8 While no uncertainty
9 Execute the process
10 If uncertainty
11 Go to situational assessment layer
12 Else go to initialize
13 End

14 Situational
Assessment

Index the defined situations’ anxieties through
Ishikawa method

15 Categorize situations into the type of anxiety

16 Assign weights to key variables for estimation of
matching score

17 Calculate the matching score (anxiety factor) with
respect to resources

18 Initialize
19 Upload the matching scores
20 Check the emerged situations
21 Check matching score of emerged situations
22 If category changed by operator
23 Re-designate the anxiety category of the situation
24 Re-estimate of matching score in case category is changed
25 Move to Resource Optimization Layer

26 Resource
Optimization

Defining the optimization criteria for allocation of
resources; the objective function and the

constraints, MIP in our case
27 Initialize
28 Case 1: Single situation
29 Move to Decision-Making Layer
30
31 Case 2: Multiple situations
32 Allocate resource to situations through MIP
33 Move to Decision-Making Layer

34 Decision Making Define and design the logic for each situation with
inputs from experts for anxiety mitigation strategy

35 Initialize
36 Upload resource allocation data
37 Check situations
38 Check resource allocation to situations

39 Assign task to available resources based on allocation
and logic

40 Execute the task through PC
41 Exhibit social signals to HC
42 Move to CPS Layer



Machines 2022, 10, 1086 9 of 21

2.3. Resource Optimization

We introduced a decision variable, “X”, for each possible assignment of resources to
the situations. In general, we can say that any decision variable Xrs equals “1” if resource
r ∈ R is assigned to the situation s ∈ S or “0” otherwise.

2.3.1. Situation Constraints

We discussed the constraints associated with situations. These constraints ensure that
each situation is handled by exactly one resource. This corresponds to the following:

r ∈ R ∑ Xrs ≤ 1 (3)

Less than <1 is included to incorporate the null when no resource is assigned to the
situation in an iteration.

2.3.2. Resource Constraints

The resource constraint ensures that, at most, one situation is assigned to each resource.
However, it is possible sometimes that not all the resources are assigned. For example, if
CPS encounters two situations and only one resource is suitable to handle both. Then the
situations are handled sequentially by the resource in order of anxiety. We can write this
constraint as follows:

s ∈ S ∑ Xrs ≤ 1 (4)

This constraint is less than <1 to allow the possibility that a resource is not assigned to
any situation.

2.3.3. Objective Function

The objective is to maximize the total matching score (anxiety factor) of the assignments
that satisfy both the situation and resource constraints. The objective function can be
concisely written as follows:

Maximize s ∈ S ∑ r ∈ R ∑ ars Xrs (5)

3. Experimental Validation

Examples of automotive parts assembly and beverage packaging were considered, as
shown in Figure 3. The scenario involves a cobot and a human operator performing tasks
dependent on information received from multiple sensors integrated with a collaborative
CPPS. Different items arrive at workstations. They are then assembled or packaged in a
sequence through a cobot. A human supervisor assists in the completion of the process by
performing several tasks. In addition to the dedicated tasks, the supervisor also monitors
operations for anomalies and erroneous activities, i.e., they are in both collaborative and
supervisory roles. As the assembly/packaging process completes, the supervisor gives a
command for the next one, and the cobot moves accordingly. The cobot performs specific
operations in collaboration with the operator to complete the task, e.g., in the case of
packaging, the robot picks bottles and cans in a sequence from specific locations and drops
them in specific slots in the crate, whereas in the case of assembly, the robot picks two types
of gears from specific locations in a sequence and place them on a case for assembly. The
operator, in the case of packaging, replaces the crate on completion of packaging, and in the
case of assembly, tightens the top plate with screws and presses a button for the conveyor
to deliver the next case. The human supervisor is also responsible for corrective actions
on wrong item arrival, wrong sequence, or absence of item from the location. We call this
whole process a standard procedure.
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There may be situations when the process may not proceed as intended, and it may face
various unwanted and unforeseen situations. In order to cater to this, different situations
were anticipated for both the cases that can emerge during a cycle; these include the
intended situation as well as unwanted situations. The considered situations are as follows:
the right item is the main task/intended situation i.e., the right items (beverages/gears)
are in place for pick and place operations/assembly; the wrong item is the item at the
work location is either not in list or wrong in sequence; no item is when no item appears
at the work location; the human interference is when operator interferes in any task at
any location, as they find that the robot may not be able to perform the task or they find
any anomaly; displaced case/crate is that the operation of packaging/assembly cannot
be completed when the crate/case is displaced from the designated location; unidentified
person is that any unknown person in the workspace is a hazard to the system and to
themselves; foreign object is any object not required in the workspace is also a hazard to the
system; obsession is any situation actually not affecting but disturbing the outcome of the
system, and it is generally established after few iterations when the operator realizes that the
situation is a false alarm, e.g., in both the case studies the object detection algorithm detects
the table on which the items are placed as a foreign object; time delay is the completion time
variance in the intended operation; threshold distance is the breach of minimum distance
that is established to be safe for collaboration between the human and the robot; cobot
power failure is when the cobot stops work due to power failure; cobot collision is when
the cobot collides with the human operator. Different situational awareness techniques
were used to detect the listed situations. The object detection technique is used to detect a
right item, a wrong item, no item, an unidentified person, and foreign objects. YOLOv3 [48]
is trained to detect gears, bottles, and cans along with day-to-day general objects. RFID
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sensor in the helmet is used to identify the authorized operator, an IR proximity sensor
to detect the displaced case/crate, impact sensors in the cobot to detect cobot collision, a
power sensor to detect cobot power failure, and the clock to gauge the time delay. The
human interventions are detected through a pose estimation algorithm which takes the
feed through a camera installed above the workspace. Open pose [49] is used to detect
different human poses. The separation distance between the cobot and the operator is used
to evaluate the threshold distance; this was performed by calculating the distance between
the center of the cobot and the operator detection bounding box. The question is how to
map these situations to calculate the anxiety index and anxiety factor and then analyze and
decide on requisite actions on them. As soon as any of the listed situations are detected
through the visual sensing/other detection techniques, an input of detection is given to the
main program. The situation’s severity, anxiety index, variables relative to resources, and
anxiety factor were already evaluated before the commencement of the operation are taken
into account. The severity I for each situation was assessed by the experts by assigning
weights to each situation against all other situations in the Ishikawa diagram, as shown in
Figure 4. “1” was assigned to the other situation, which was decided to have low priority
than the main situation and “0” if it had high priority. The weight was assigned based
on the voting of experts. The ranking of the situation (index I) was the total of weights
assigned under it. The anxiety A was then calculated for each situation by putting in values
of categories and severity as stated in Table 1. There were two resources, a human and a
cobot; the matching score (ars) was then estimated as explained in Section 2 for both the
resources vs. the situations and fed into the central database. The severity, categories, the
value of anxiety evaluated for the cases, and the anxiety factors are shown in Table 3.
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Table 3. Expected situations, their anxiety, variables, and anxiety factors.
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Right item 27 G 20 1 0 4 4 1 1 23 24

Wrong item 45 K 38 1 0 6 6 1 1 43 44

No item 36 K 34.4 0 1 5 5 1 0 39.4 0

Human interference 63 K 45.2 1 0 8 8 0 1 0 53.2

Displaced case/crate 54 K 41.6 1 0 7 7 1 1 47.6 48.6

Unidentified person 72 K 48.8 0 1 9 9 1 0 57.8 0

Foreign object 81 K 52.4 0 1 10 10 1 0 62.4 0

Obsession 0 O 0 1 1 1 1 0 0 0 0

Time delay 9 N 1.8 0 1 2 2 1 0 3.8 0

Threshold distance 18 N 3.6 0 1 3 3 1 0 6.6 0

Cobot Power Failure 100 P 100 0 1 12 12 1 0 112 0

Cobot Collision 91 P 98.2 0 1 11 11 1 0 109.2 0

The main program was divided into five modules to implement the approach on
the case studies, which are the main module, item in place module, anxiety module,
optimization module, and the decision-making module. The main module holds the
other modules. This module keeps count of the operations in the cycle and performs the
intended task. It looks for the situations during each iteration and ascertains the matching
score through the anxiety module in case multiple situations emerge. The item-in-place
module is specific to each particular case and checks whether the right or wrong item is
in place through object detection and item count. A machine vision camera was placed to
detect the objects. The module adapts the contingency plan if the right item is not in place
through the decision-making module. The optimization module assigns the resources to the
situations by identifying the highest matching score through MIP using Equations (3)–(5).
By analyzing Table 3, we can see that the first basis for the resource assignment is the
resource suitability variable Q; if it is zero, the resource cannot be assigned to the situation.
The second basis is the task variable t; in our case, 0 was assigned to the preferred resource.
Hence the resource with t = 0 was assigned if it was not already committed and if the
resource suitability variable was not “0”. The third basis is the preference variable p, the
situation with the higher value was addressed first by the two resources, and the remaining
was addressed subsequently after the disposal of the initial ones. The cumulative effect
of all these variables is the anxiety factor. The table gives a clear depiction of when any
situation appears, which out of two resources can be assigned, which the prior resource
is, and which situation is addressed first. The decision-making module then decides the
contingencies for the identified situations through actions performed by the resources. The
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actions are either performed by the cobot or the human supervisor in our scenario, which
is dependent on the specific role assigned to the resource for a particular case. The roles
assigned to the situations are: for the right item, the robot picks up and places the item at
designated location, the human can do so but the preference is given to the robot; for the
wrong item, the robot picks up the item and places it at the spot dedicated for them, the
count, however, is not increased and the human has to place the right item at the location;
in the case of no item in location, the robot moves to the next location and the human places
the item at the drop point; if the human operator interferes due to any anomaly in the
process or defected item, they may drop the item at the drop point or the wrong item spot,
the count is then incorporated by checking the human pose when performing the action;
for a displaced case/crate, the robot adjusts it by pushing it to the fixed enclosure, and if
the robot is not available, then the human performs it; if an unidentified person enters the
workspace, the human has to remove them from the area, and a caution is displayed on
the screen for the human to perform this action; similarly, if a foreign object appears in the
workspace, a caution is raised to the human to remove the object from the workspace, and
in both the last two cases, the robot stops action until the human presses the button for
resume operation; in the case of obsession, none of the resources perform any action and
perform the task as intended; if the time delay and threshold distance is breached, a caution
is given to the human operator to analyze and adjust accordingly; in case of cobot power
failure, the human checks the reason, rectifies it, and resumes the operation, however, the
whole system is to remain at stand still; similarly in case of cobot collision, the whole system
comes to stop and the human checks, resolve the issue, and then resumes the operation.
When analyzing, we see that all the actions are interlinked with the variable assigned
in Table 3. The experts actually decide the values of the variables based on experience
and consultation.

3.1. Survey

We carried out a survey that consisted of participants pooled from university students
and faculty. The ages of the participants range from 19 to 40 years (M = 28.7, SD = 7.73).

The participants were informed before the experiment to monitor the screen for
instructions during the operation continuously. We devised our own metrics similar to the
work in [43]. The subjects had nominal knowledge of the specifics of the system and were
briefed on the assigned task only. A total of 20 subjects participated, the repeated-measure
design was considered for the experiment, and subjects were divided into two groups
randomly. Two types of conditions were assigned, the first group included those who first
worked with the decision-making design (n = 11), and the second group included those
who worked with the standard design without a decision-making system (n = 9). The
subjects were not informed before the experiment what condition was assigned and what
metrics were being measured. We measured both quantitative and subjective measures.
The quantitative measures include the decision time taken to decide on each situation and
the accuracy of the process. The subjective measures include perceived safety, comfort, and
legibility based on the questionnaire responses.

First, both groups executed a training round, during which the participants performed
the complete experiment by themselves, without an assistant and the robot, to familiarize
themselves with the task. Next, all participants were provided with a human assistant
to perform the task collaboratively as would be required to perform with a robot in the
subsequent phase, i.e., the 3rd phase. Finally, two task executions were conducted firstly
in one condition and later in a switched mode; however, the sequence was different for
both groups. A questionnaire was given to participants after each task execution. Each
participant performed two training sessions with the robot before each task execution to
build mental compatibility. In order to prevent any involuntary bias from the participants,
the first task execution was conducted in a way that the participant was unaware of which
out of two conditions each participant had been assigned to. Before the conduct of the
alternate mode, participants were educated that the system would behave differently during



Machines 2022, 10, 1086 14 of 21

the second phase. The participants were briefed; the robot could take some automated
measures, and they were required to monitor instructions on the screen.

The questions, shown in Table 4, were intended to determine each participant’s satis-
faction with the robot as a teammate as well as their perceived safety, comfort, and legibility.
A 5-point Likert scale was used for the two questionnaires on which the participants had to
respond, strongly disagree to strongly agree for the first questionnaire and much less to
much more for the second questionnaire. Based on the dependent measures, the two main
hypotheses in this experiment were as follows:

Table 4. Questionnaires.

Fluency with the Collaborative Robot

1 I trusted the robot to do the right thing at the right time.

2 The robot did not understand how I desired the task to be executed.

3 The robot kept disturbing me during the task.

4 The robot and I worked together for better task performance.

Perceived safety, comfort, and legibility

5 I felt safe while working with the robot.

6 I trusted the robot would not harm me.

7 The robot moved too drastically for my comfort.

8 The robot endangered the safety of unknown persons in the workspace.

9 I understand what the robot will be doing ahead.

Hypothesis 1. Using a decision-making framework for anxiety will lead to more fluent human–
robot collaboration based on timely automated decisions and the accuracy of the approach.

Hypothesis 2. Participants will be more satisfied with the decision-making framework performance
while collaborating with the robot and will feel more comfortable, safe, and legible compared with a
CPPS that uses standard task planning.

The automated decision time cannot be calculated for both conditions as the standard
approach does not cater to unprecedented situations; the operator has to stop the system
and apply countermeasures. The accuracy of the approach is defined as the number of
errors (situations that could not be handled automatically) observed during one cycle
divided by the total number of iterations. At least 2 situations were intentionally generated
in each trial to check the system response.

3.2. Results

The detection of the objects through the object detection technique is shown in Figure 5.
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Similarly, human detection was also carried out through the object detection technique.
The results for the detection of an authorized operator and an unidentified person are
shown in Figure 6. The identification of the authorized operator within the workspace
through object detection was complemented by the RFID sensor in the helmet.
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Detection of specific poses of the operator is shown in Figure 7, the initial is the
detection of the pose of the operator when interfering in assembly, and the latter two are
the poses of the operator while placing objects himself. It is pertinent to mention here that
the contingencies were adopted only when a particular pose detected is complemented by
the position of the robot at the same location. This is because, while performing parallel
operations, the same pose could be detected while the cobot may be operating at some
other place.
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in assembly; (b) pose while interference in picking of gears; (c) pose while interference in picking
of beverages.

Our approach is capable of detecting multiple situations and their disposal at once.
As an example, two individual situations were considered at a time, which are a displaced
case/crate and an unidentified person. An inspector entered the workspace and displaced
the outer case in the first scenario, and the crate entered the workspace in the second during
inspection (see Figure 8).

The time taken for decision for handling situations for two of the cycles in one test run
is shown in Figure 9. Anxieties, total anxiety, and the maximum anxiety situation for each
iteration are shown. The maximum time taken to decide on a single situation was noted as
0.03 s.
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The quantitative analysis from the survey was carried out; the overall mean automated
decision-time (MADT) for the proposed method and accuracy of both approaches were
calculated with a minimum of two situations in each cycle. It was revealed that the
mean automated decision time for a contingency is 0.21 s, as can be seen in Table 5. The
decision-making system (accuracy of 89.98%) was found to be 16.85% more accurate than
the standard system (accuracy of 73.125%). The t-test for the significance of the results was
conducted with a confidence level set to p < 0.05 (95% confidence level), and the p-value
for the test was found to be p < 0.01. The standard error mean (SEM) for the MADT was
found to be 9.36 × 10−5, the upper limit was found to be 0.0211 s, and the lower limit was
0.0208 s.

Table 5. Accuracy of two methods: mean automated decision-time and the SEM.

Subject
Standard Method Decision-Making Method

Remarks
Iterations Errors Accuracy Iterations Errors Accuracy MADT

1 8 2 75 16 1 93.75 0.0206

Average Accuracy
(Standard) =

73.12%
SEM = 1.02

Average Accuracy
(Decision-Making
Method) = 89.98%

SEM = 0.94
MADT=0.021 s

SEM = 9.36 × 10−5

p = 1.83 × 10−10

2 8 2 75 15 1 93.33 0.0206

3 8 2 75 14 1 92.85 0.0207

4 8 2 75 17 2 88.23 0.0211

5 8 2 75 16 1 93.75 0.0206

6 8 2 75 13 2 84.61 0.0215

7 8 2 75 12 1 91.66 0.0208

8 8 3 62.5 14 2 85.71 0.0214

9 8 2 75 10 2 80 0.022

10 8 3 62.5 11 1 90.90 0.0209

11 8 2 75 12 1 91.66 0.0208

12 8 2 75 10 1 90 0.021

13 8 2 75 15 3 80 0.022

14 8 3 62.5 14 1 92.85 0.0207

15 8 2 75 11 1 90.90 0.0209

16 8 2 75 12 1 91.66 0.0208

17 8 2 75 12 1 91.66 0.0208

18 8 2 75 11 1 90.90 0.0209

19 8 2 75 13 1 92.30 0.0207

20 8 2 75 14 1 92.85 0.0207

Significant differences (at p < 0.05) were found for the questions of fluency with
the collaborative robot; the participants exposed to the decision-making system agreed
more strongly with “I trusted the robot to do the right thing at right time” (p < 0.01) and
“The robot and I worked together for better task performance” (p < 0.01), and disagreed
more strongly with “The robot did not understand how I desired the task to be executed”
(p < 0.01) and “The robot kept disturbing during the task” (p < 0.01).

Similarly (at confidence level p < 0.05), significant differences were found for the
questions of perceived safety, comfort, and legibility; the participants exposed to the
decision-making system agreed much more with “I felt safe while working with the robot”
(p < 0.01), “I trusted the robot would not harm me” (p < 0.01), and “I understand what
robot will be doing ahead” (p < 0.01), and agreed much less with “The robot moved too
drastic for my comfort” (p < 0.01) and “The robot endangered safety of unknown persons
in workspace” (p < 0.01).
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The results support both the hypothesis in favor of the decision-making system; they
indicate that the proposed approach leads to more fluent HRC (Hypothesis 1) and also
highlight that the method extends safety, comfort, and legibility (Hypothesis 2).

3.3. Discussion

The research shows that the previous works address limited situations and solely
focus on a single aspect, e.g., collision avoidance, motion planning, or psychological safety.
The proposed method is seen to collectively address all the issues earmarked by the experts
that a CPPS may face. Here, we also wanted to compare the current method with the
previous work [46]. Only the most prior situation with maximum anxiety can be handled at
once using the previous method, whereas the current approach is optimized to employ all
available resources to relieve the current state of anxiety. The method is feasible to include
any number of resources by modifying the equations in the optimization algorithm. At
times when limited resources are available, situations with higher anxiety were addressed
first, followed by lower ones. The current method combines human knowledge and
intelligence with AI techniques to minimize the decision time; the maximum time recorded
to decide on a scenario is 0.03 s, which shows that the method is not time-intensive. The
indexing of anxiety was carried out through a more generic approach in the previous
method that lacked rationale for scaling different levels. The current method partially uses
the previous technique; however, a logical approach with a biomimetic connection was
presented, which makes it easy to differentiate and prioritize situations.

The contribution of the works is that the CPPS was made more intelligent, safe,
resilient, and smart. The decision-making of the production system was improved, which
provides it the flexibility to tackle multiple situations at once in an optimal manner and can
fit in any industrial scenario; manufacturing, assembly, packaging, etc. The amalgamation
of four layers highlights the contribution of AI in the industry that increases the overall
productivity of the system. The work is a real manifestation of the integration of the
computers in Industry 4.0, which is implemented in every layer of the proposed work,
i.e., the functioning of the CPS, situational assessment, optimization, and decision-making
through software, algorithms, AI, and interface.

The technique in the future can be reinforced by machine learning techniques to
make it more intelligent. The CPPS may learn in real-time from the environment and
will improve the knowledge base continuously. As the existing system is dependent on
predefined solutions, it is proposed that the system may learn through repetitive patterns
and solutions provided to the previously confronted situations and may automatically
resort to the same solutions. Cloud base and semantic systems are emerging trends that
may be incorporated further to enhance the capability and customization of these systems.
In this way, multiple situations can be updated and omitted automatically in the system,
though supervision by the human component is still recommended. We used machine-
learning-based image processing techniques as a tool, which are known for uncertainties
due to the statistical methods and probability distributions used in them. The probabilistic
nature of these models is prone to errors that cannot be ignored. In the future, the con-
fidence level of detection may be included in the calculation of the anxiety factor. The
accuracy of the method may either be increased by selecting a threshold level of detection
or adding a variable incorporating the detection level that will affect the anxiety factor of
the confronted situation.

4. Conclusions

A framework for social safety was proposed that caters to the physical and cogni-
tive issues of a collaborative robotic system. The framework intelligently safeguards the
interest of both human and machine teams with the introduction of the unique concept
of the “anxiety factor of CPS”. A connective framework was laid out that incorporates
anxiety generated by dynamic situations and decides, keeping in consideration previous
knowledge, human intelligence, and AI. The method also employs optimization supported
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by visual and IR sensing techniques that accommodates any number of resources. A flex-
ible system for a collaborative system was thereby produced in which the cooperating
elements can respond well to untoward situations. Experimental validation of the method
on real-world problems proved its efficacy and applicability. Thus the decision-making of
the Collaborative robotic CPPS is improved, which is flexible to cater to multiple situations
optimally and can fit in any industrial scenario such as manufacturing, assembly, packaging,
etc., ultimately enhancing task efficiency, productivity, and safety.
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