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Abstract: Existing machine vision-based roughness measurement methods cannot accurately measure
the roughness of free-form surfaces (with large curvature variations). To overcome this problem, this
paper proposes a roughness measurement method based on a generative adversarial network (GAN)
and a BP neural network. Firstly, this method takes images and curvature of free-form surfaces as
training samples. Then, GAN is trained for roughness measurement through each game between
generator and discriminant network by using real samples and pseudosamples (from generator).
Finally, the BP neural network maps the image discriminant value of GAN and radius of curvature
into roughness value (Ra). Our proposed method automatically learns the features in the image by
GAN, omitting the independent feature extraction step, and improves the measurement accuracy by
BP neural network. The experiments show that the accuracy of the proposed roughness measurement
method can measure free-form surfaces with a minimum roughness of 0.2 µm, and measurement
results have a margin of 10%.

Keywords: robotic belt grinding; surface roughness measurement; generative adversarial network

1. Introduction

Grinding is a widespread but essential process in manufacturing products. It is
widely used in aerospace, automobile manufacturing, rail transit and other industries [1].
Traditionally, grinding is done by manual operation or multi-axis CNC machine tools. The
former is time-consuming and labor-intensive, while the latter is limited by operating space.
Recently, robotic belt grinding has become an alternative due to its low cost, efficiency and
large operating space [2]. For small workpiece, the robot generally uses appropriate contact
force to ensure the stability of the workpiece [3]. The robot holds the workpiece to complete
the grinding operation and uses its dexterity to move to the best inspection position on
the surface of the workpiece [4]. Multiple sampling points are planned according to the
curvature of the workpiece surface, and the robot moves to each sampling point in turn to
complete the surface image sampling.

As an important indicator of the quality of machined surfaces, surface roughness
has a significant impact on product life and reliability [5]. The traditional probe-based
measurement method [6–9] uses a probe that slides over the surface of the workpiece for
measurement. This method has been proven to be highly reliable and highly accurate.
However, it has several limitations, such as long measurement times, high environmental
requirements and complex steps.

With the development of optical technology, a variety of noncontact measurement
methods has been developed to address the limitations of the contact measurement method.
For example, optical microscopy, confocal laser scanning microscopy and white light
interferometry are used to measure surface roughness, but these methods are mainly used
in laboratories, because their high cost and complicated operation are not suitable for
real industrial production. Currently, the most popular noncontact measurement method
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is based on machine vision for roughness measurements of the machined workpiece
surface [10–15]; this is widely used because of its advantages, which include unrestricted
size of the measured object, low cost, high speed, and easy factory automation deployment.

Usually, vision-based measurement methods can be divided into four stages: image
acquisition, image processing, feature extraction and prediction strategy [16]. Most vision-
based methods for surface roughness assessments rely on feature extraction. Suganandha
et al. [17] used a single-point laser to irradiate the surface of an object and analyzed the
gray-level covariance matrix (GLCM) features of the scatter pattern, such as contrast,
correlation, energy, entropy homogeneity and maximum probability, in order to investigate
the correlation between 3D surface roughness and scatter images. Shanta et al. [18] obtained
roughness measures by using a singular value decomposition method to analyze contrast,
as well as light and dark pixels of binarized scatter patterns. Samie et al. [19] proposed a
method to transform the image of a surface into an unweighted and undirected network
graph. The graph-theoretic invariants and Fiedler number were estimated for use as
discriminative factors for the surface roughness of the workpiece, avoiding the filtering
and segmentation of complex images. Liu et al. [20] proposed an improved method
based on microscopic vision to detect the surface roughness of R surfaces in valves. The
method analyzed the surface morphology images of R surfaces by the gray-level covariance
matrix (GLCM) method and used a support vector machine (SVM) model to describe the
relationship between GLCM features and the actual surface roughness. Huaian et al. [21]
used a specific of color light source to illuminate the surface and measured the surface
roughness of the object based on the color distribution statistical matrix for features such as
texture in the image.

Vision-based surface roughness assessment methods have been proven to be reliable
and accurate, but there are still some limitations, especially in the feature extraction process.
Visual assessment methods that rely on feature extraction are difficult to reapply to different
datasets. Feature extraction is a highly intensive process that requires a high degree of
computation and expert decision making in selecting the appropriate surface features. As a
result, the process can lead to long processing times, which are not conducive to the rapid
diffusion of the technique.

Some researchers had accomplished roughness measurement by using intelligent
algorithms for the self-learning of image features. For example, Du-Ming [22] used the
two-dimensional Fourier transform to extract quantitative measures of surface roughness
in the spatial frequency domain. The roughness features were used as input to build an
artificial neural network to determine the surface roughness. Gürcan [23] converted the
surface image into a binary image as input data. The log-sigmoid function was chosen as
the transfer function and the neural network model was trained using the scaled conjugate
gradient algorithm. Kaixuan et al. [24] proposed a roughness classification method. The
method expanded and preprocessed the images, and then trained an AlexNet-based surface
roughness classification model for milled samples.

Jamal et al. [25] proposed that a convolutional neural network (CNN) is used as a
regressor in order to obtain steel surface roughness, and that a CNN based on spatial
pooling pyramid is applied for roughness classification. Achmad et al. [26] proposed a
deep learning model containing convolutional layer, ReLU, pooling layer and two FC
layers to automatically learn image features using a gradient descent method to optimize
hyperparameters in the model.

GAN is an emerging self-supervised learning technique that provides a method to
learn deep representations without the use of extensively labeled training data [27,28].

In this paper, we design a surface roughness prediction model based on GAN +
BP neural network. Firstly, we consider the difference in surface images with different
curvatures and use the images and curvatures as training samples. Then, the GAN network
performs model training in such a way that the generative network and the discriminative
network play with each other to automatically learn the features in the images, omitting the
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feature extraction step. Finally, the BP neural network represents the correlation between
the GAN discriminant value and the roughness (Ra).

2. Generative Adversarial Network

A GAN consists of two parts: the generative and discriminative networks, which use
an adversarial game between generators and discriminators to achieve self-supervised
learning. The main difference from the traditional network model is that the data training
process contains both consistent and adversarial data. The generators and discriminators
each optimize in different directions and form a competitive relationship with each other,
but they also depend on each other to form a unified whole. In the adversarial training
mode, the generator no longer learns directly from the training dataset, but learns itera-
tively in an indirect way through the optimization directions output by the discriminator,
generating pseudosamples to mix the spurious with the genuine. A GAN computes faster
and has greater expansion flexibility than a traditional network. In this paper, we propose
using a GAN to discriminate the roughness of the surface of workpieces using the structure
shown in Figure 1.
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pz(z) represented a prior on input noise variables, G(z) was generator of GAN, and
D(x) represented the probability that x comes from real images. GAN’s goal is training D(x)
to maximize the probability of assigning the correct label to both training real samples and
pseudosamples from G(z), at the same time training G(z) to minimize log(1− D(G(z))).
In other words, the loss function of GAN is as follows:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))] (1)

The disadvantages of GAN:
(1) GAN training is unstable, and the training degree of generator and discriminator

should be carefully balanced.
(2) When the generator learns that some features of the real data successfully deceive

the discriminator, it will not update. As a result, the generated samples lack diversity, and
a collapse mode occurs in GAN.

(3) When the overlap between the real and generated distributions is negligible, the JS
divergence between the real and generated distributions is minimized to a constant log2.
When the discriminator is optimal, the loss of the minimized generator is also closer to
log2, and G is no longer updated, resulting in the disappearance of the generator gradient.

In order to overcome the above shortcomings, the generator and discriminator network
structures of the original GAN network are redesigned. In this paper, a deep convolutional
neural network is used as the network structure of the generator and discriminator:

The structure of the generative network is shown in Figure 2, and the corresponding
discriminator network structure is shown in Figure 3.
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From Equation (1), it can be seen that the objective of the discriminator is to obtain the
maximum value of V(G, D). Then, it is necessary to maximize D(x), which means maxi-
mizing the probability that real samples and generated samples will be assigned the correct
label. At the same time, the generator G is trained to minimize log(1− D(G(z))), which
means minimizing the difference between the generated samples and the true samples.

Therefore, the value function of GAN can be decomposed into two optimization problems:
(1) Fix the generator G, train the discriminator D, so that it can maximize the correct

determination of whether the sample is from the real sample or from the sample generated
by G. The objective function of D is,

max
D

V(D, G) = Ex∼pdata [log D(x)] + Ex∼pg [log(1− D(x))] (2)

Finding the derivative of Equation (2) with respect to D(x), such that its derivative 0 gives,

Pdata(x)
D(x)

−
Pg(x)

1− D(x)
= 0 (3)

Rewriting Equation (3), the optimal discriminator is obtained as follows:

D∗(x) =
Pdata(x)

Pdata(x) + Pg(x)
(4)

(2) Fix the discriminator D and train the generator G, such that L = max
D

V(D, G)

minimizes the difference between the generated samples and the real samples. The objective
function of G is given by,

min
G

L = Ex∼pdata [log D∗(x)] + Ex∼pg [log(1− D∗(x))] (5)

Substituting Equation (4) into Equations (2) and (5), we obtain,

min
G

L = Ex∼pdata

[
log

Pdata(x)
Pdata(x) + Pg(x)

]
+ Ex∼pg

[
log
(

Pg(x)
Pdata(x) + Pg(x)

)]
(6)
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Introducing two important similarity metrics KL divergence (Kullback–Leibler diver-
gence) and JS divergence (Jensen–Shannon divergence), Equation (6) is rewritten as,

min
G

L = KL
(

Pdata ‖
Pdata+Pg

2

)
+ KL

(
Pz ‖

Pdata+Pg
2

)
− 2· log 2

= 2·JSD
(

Pdata ‖ Pg
)
− 2· log 2

(7)

From Equation (7), it can be seen that fixing the discriminator, the goal of training the
generator is to have a JS dispersion of 0 between Pg and Pdata, i.e., Pg = Pdata. At this point,
the discriminator D∗(G) = 1

2 . Thus, the equilibrium between generator and discriminator
is realized by reciprocally training the GAN.

3. Measurement of Surface Roughness of Workpieces

In this method, a neural network is used to discriminate the surface roughness of a
grinded workpiece. A small number of data images are used to train a generative adversar-
ial network (GAN) to generate the required large dataset for training the discriminative
network, which outputs the surface roughness measurements of the workpiece.

3.1. Image Acquisition and Data Preprocessing Methods Subsection

The radius of the curvature and roughness of the workpiece surface directly determine
the refractive index of light, a factor which affects the imaging effect of the workpiece
surface.

Therefore, 72 images of workpieces with different curvature radii and roughness were
collected in this study. The 12 images with the roughest and smoothest surfaces were
selected as the original training dataset for the GAN generator, with 6 smooth and 6 rough
images, as shown in Figure 4. However, the amount of data in the original dataset of
12 images was too small to be used directly for training the GAN discriminator, which
would lead to severe overfitting of the discriminator. Therefore, the original images were
first rotated and panned to generate a sufficient number of derived images (32,000 images
were generated in the experiment).
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3.2. GAN-Based Surface Roughness Discrimination Method

The generative network attempts to create images that the discriminant network
cannot distinguish from real images during the training process, while the discriminant
network is equivalent to a binary classification network to distinguish between the real
training images and the images created by the generator. In this way, the model parameters
are continuously optimized by the adversarial training between the two networks. Over
multiple iterations, the images created by the generative network become closer to the
real images, and the discriminant network increasingly understands the meaning of the
roughness represented by the images, and finally gives the roughness value.

The process of training the GAN is shown in Figure 5.
Step 1: The original datasets (surface roughness images) are classified in a binary

fashion and labeled as “smooth” and “rough” according to a certain threshold.
Step 2: Real surface roughness images marked by the classification in step 1 are rotated

and panned to expand datasets.
Step 3: The GAN is trained using the “rough” category data in the dataset in Step 2.
Step 4: The GAN is trained using the “smooth” category data in the dataset in Step 2.
Step 5: The image data is generated from the generation network trained in steps 3

and 4 to complete the data set expansion.
Step 6: The discriminative network is retrained for the expanded smooth and rough

datasets generated by the generative network in step 5 to obtain the final roughness
recognition network model.
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3.3. Training Results

To teach the GAN the meaning of “rough,” real smooth images are added as fake data
to train the discriminator along with the output of the generator, as shown in Figure 6a.
Figure 6b shows examples of the surface roughness of workpieces generated by the GAN.
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(b) Data generated by the GAN.

The GAN is trained using the expanded datasets, and then the GAN is able to generate
a series of smooth and rough images as the training set. The problem is treated as a binary
classification problem using the sigmoid function as the output activation function and the
binary cross-entropy as the loss function for training, with the rough images labeled ‘1’ and
the smooth images labeled ‘0’. In this method, the same network structure of the classifier
with the discriminator of the GAN is used, as shown in Table 1.
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Table 1. The network structure of the generator and the discriminator.

Generator Discriminator

Input (32) Input (80, 80, 1)
Dense (102400) Conv2D (40, 40, 64)

BatchNormalization (102400) LeakyReLU (40, 40, 64)
Activation-ReLU (102400) Dropout (40, 40, 64)

Reshape (20, 20, 256) Conv2D (20, 20, 128)
Dropout (20, 20, 256) LeakyReLU (20, 20, 128)

UpSampling2D (40, 40, 256) Dropout (20, 20, 128)
Conv2DTranspose (40, 40, 128) Conv2D (10, 10, 256)

BatchNormalization (40, 40, 128) LeakyReLU (10, 10, 256)
Activation-ReLU (40, 40, 128) Dropout (10, 10, 256)
UpSampling2D (80, 80, 128) Conv2D (10, 10, 512)

Conv2DTranspose (80, 80, 64) LeakyReLU (10, 10, 512)
BatchNormalization (80, 80, 64) Dropout (10, 10, 512)

Activation-ReLU (80, 80, 64) Flatten (51200)
Conv2DTranspose (80, 80, 32) Dense (1)

BatchNormalization (80, 80, 32) Activation-Sigmoid (1)
Activation-ReLU (80, 80, 32)

Conv2DTranspose (80, 80, 1)
Activation-Sigmoid (80, 80, 1)

In the method described above, a dataset with only roughness Ra of 0.2, 0.4, 3.2, 6.3
and radius of curvature R of 50, 1000, and infinity are used as the training set. However,
the dataset in the actual test contains more cases of roughness and radius of curvatures.
A qualified classifier should be able to accurately distinguish the cases which are not
encountered in the training set. Some of the actual test results are shown in Table 2, which
visually reflects the classifier’s scoring of images with different roughness levels. The
smaller score means the smoother surface. The test results show that the method can
accurately determine the untrained intermediate roughness (0.8 and 1.6 are the untrained
cases), which indicates that the network can understand the concept of “roughness.”

Table 2. Surface roughness prediction based on GAN.

Radius of Curvature (mm) Roughness Ra (µm) Predictive Value

150

0.2 −22.61
0.4 −8.75
0.8 9.86
1.6 12.40
3.2 28.27
6.3 30.37

700

0.2 −27.65
0.4 −14.10
0.8 9.75
1.6 19.65
3.2 39.47
6.3 41.16

∞

0.2 −48.25
0.4 −31.05
0.8 37.82
1.6 45.70
3.2 54.27
6.3 62.00

4. Discriminating Method of Workpiece Surface Roughness

Roughness (Ra) is a small-distance (usually less than 1 mm) peak–valley that forms
from a microgeometric shape error of the surface of the part. As shown above, the real
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surface image can obtain a discriminant value, nonlinearly related to roughness Ra through
the trained GAN. In order to establish a mapping relationship between the discrimination
value of GAN and surface roughness Ra, this paper proposes a surface roughness Ra
discrimination method based on the BP neural network, which is shown in Figure 7.

Machines 2022, 10, x FOR PEER REVIEW 9 of 17 
 

 

1.6 19.65 

3.2 39.47 

6.3 41.16 

  

0.2 −48.25 

0.4 −31.05 

0.8 37.82 

1.6 45.70 

3.2 54.27 

6.3 62.00 

4. Discriminating Method of Workpiece Surface Roughness 

Roughness (Ra) is a small-distance (usually less than 1 mm) peak–valley  that forms 

from a microgeometric shape error of the surface of the part. As shown above, the real 

surface image can obtain a discriminant value, nonlinearly related to roughness Ra 

through the trained GAN. In order to establish a mapping relationship between the dis-

crimination value of GAN and surface roughness Ra, this paper proposes a surface rough-

ness Ra discrimination method based on the BP neural network, which is shown in Figure 

7. 

Discriminant value 

Radius of curvature

Roughness  

(Ra)

Input layer Hidden layer Output layer

D
is

cr
im

in
at

o
r

Real 

image

 

Figure 7. Back-propagation neural network structure to evaluate grinding roughness, according to 

discriminant value. 

The input layer of the BP neural network for image discriminant value and radius of 

curvature is denoted as ( )1,2ix i = , and the output surface roughness is denoted as z . 

The number of neurons in the hidden layer is s, denoted as ( )1,2, ,iy s . The bias value 

of the hidden layer is  , and the bias of the output layer is  . w  denotes the connec-

tion weights from the input layer to the hidden layer, v  denotes the connection weights 

from the hidden layer to the output layer, while yf  and zf  are the activation functions 

of the hidden and output layers, respectively. The forward propagation process of the BP 

neural network is expressed as: 

2

1

1

i y i

i

s

z j

j

y f wx

z f vy





=

=

 
= − 

 

 
= − 

 





 (8) 

Equation (8) completes the mapping from ( )1,2ix i =  to z .   denotes the target 

value of the output, and the error of the BP neural network is: 

Figure 7. Back-propagation neural network structure to evaluate grinding roughness, according to
discriminant value.

The input layer of the BP neural network for image discriminant value and radius of
curvature is denoted as xi(i = 1, 2), and the output surface roughness is denoted as z. The
number of neurons in the hidden layer is s, denoted as yi(1, 2, · · · , s). The bias value of the
hidden layer is γ, and the bias of the output layer is θ. w denotes the connection weights
from the input layer to the hidden layer, v denotes the connection weights from the hidden
layer to the output layer, while fy and fz are the activation functions of the hidden and
output layers, respectively. The forward propagation process of the BP neural network is
expressed as:

yi = fy

(
2
∑

i=1
wxi − γ

)
z = fz

(
s
∑

j=1
vyj − θ

) (8)

Equation (8) completes the mapping from xi(i = 1, 2) to z. α denotes the target value
of the output, and the error of the BP neural network is:

minδ = z− α (9)

The error back-propagation process of the BP neural network is implemented by
minimizing the objective function by Equation (9). The weights and biases of each layer are
adjusted for each propagation as follows:

v̂ = v− η
∂δ(v,θ)

∂v
θ̂ = θ − η

∂δ(v,θ)
∂θ

,
ŵ = w− η

∂δ(w,γ)
∂w

γ′ = γ− η
∂δ(w,γ)

∂γ

(10)

From Equation (8), it can be seen that the data transfer process between the layers
is transformed and connected by the activation function. Meanwhile, in the error back-
propagation process in the BP neural network in Equation (10), the derivatives of the
activation function adjust the connection weights of each layer to reduce the error to the
desired range. Considering the requirement that the activation function be continuously
differentiable, the sigmoid function is chosen as the output layer activation function, and
the tanh function is chosen as the output layer activation function.

fy =
1

1 + e−x , fz =
ex−e−x

ex+e−x (11)
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To ensure accuracy of roughness estimation, this study determines the number of
neurons in the hidden layer according to the Hecht–Nelson method [29] because the hidden
layer affects the stability of the network. The number of input layer neurons is n, while the
number of hidden layer neurons is 2n + 1. That is, the number of hidden layer neurons in
the network is 5. Networks with different numbers of neurons have also been tested, as
shown in Table 3.

Table 3. BP neural network errors for different network structures.

Structure of the BP Neural
Network

Average Error (%)

Roughness

2-3-1 12.42
2-5-1 6.24
2-7-1 8.79
2-9-1 14.63

After determining that there should be one hidden layer for the BP neural network
model, the number of neurons in the hidden layer must be determined. For each neural
network model in Table 3, the average error between the actual and predicted values were
recorded in 10 training sessions. It is clear from Table 3 that as the number of neurons in
the hidden layer increases, the accuracy does not necessarily follow. When the number
of hidden layer neurons increases from 3 to 5, the average error decreases from 12.42% to
6.24%. However, as the number of hidden layer neurons continues to increase to 7, the
average error increases from 6.24% to 14.63%. The 2-5-1 neural network structure has the
smallest error, and so this network structure is used in the real-time surface roughness
model in this study.

5. Experiments

In this study, a robot is used to hold the workpiece while grinding a complex, curved
item. The robotic grinding platform is built as shown in Figure 8, consisting of a belt
grinder, a lightweight robot with seven degrees of freedom and a camera.
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Surface roughness is a key feature of the surface texture of a workpiece because it has
a significant impact on the service life and reliability of a mechanical product. This paper
proposes a vision-based roughness measurement method for comprehensively considering
the cost, usability, and efficiency. This method consists of three stages: image acquisition,
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self-supervised learning and result discrimination. A narrow-angle industrial camera is
used to build a vision-based surface roughness measurement system, as shown in Figure 9.
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Figure 9. Surface roughness measurement system based on vision.

The narrow-angle Balser ace 2 industrial camera meets the needs of this method for
surface roughness measurement of curved workpieces. Its detailed parameters are shown
in Table 4.

Table 4. Parameters of Balser ace 2 narrow angle camera.

Parameters

Resolution ratio 2.3 MP
Chip IMX392

Frame rate 51.0 fps
Port GigE

Noise 2.6e−

Dynamic range 71.7 dB
Signal-to-noise ratio 40.2 dB

Photosensitive chip type CMOS
Photosensitive chip size 6.6 mm × 4.1 mm

Balser ACE 2 samples images of standard grinding surface roughness contrasts as
shown in Figure 10a, and images of standard milled surface roughness contrasts as shown
in Figure 10b. There is no significant difference between images Ra 0.2 and Ra 0.1. The
camera can distinguish surfaces with surface roughness Ra greater than 0.2. The image
samples in Figure 10 are added to the training set of the proposed GAN to enrich the
samples and increase the measurement accuracy of the model.
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Figure 10. Images of the roughness standard samples were obtained by Balser ace 2. (a) Images of
the roughness standard grinding surface roughness contrasts; (b) Images of the roughness standard
milled surface roughness contrasts.

The blade-grinding process is divided into three processing stages according to the
requirements of the grinding process: rough grinding, semi-finishing grinding and finishing
grinding. The rough grinding stage removes a large amount of the material using the
grinding parameters belt line speed 5 m/s, feed speed 3 mm/s, belt mesh 120 and contact
force 15 N. The semi-finishing stage removes a small amount of material with the grinding
parameters of belt line speed 5 m/s, feed speed 3 mm/s, belt mesh 320 and contact force
10 N. The finishing stage is mainly for finishing the surface of the workpiece with the
grinding parameters belt line speed 5 m/s, feed speed 3 mm/s, belt mesh 320, and contact
force 5 N. After each grinding stage, the surface roughness is measured and analyzed.

In this study, an industrial camera was used to take pictures of the workpiece surface
under a specific light environment to measure the surface roughness conditions, as shown in
Figure 11. In order to compare the measurement accuracy of different learning algorithms,
ANN and CNN are added to train the surface roughness measurement model in this
paper. The GAN-BPNN, ANN, CNN were used to judge the smoothness of the polished
processing surface in Figure 11, as shown in Table 5. The proposed GAN-BPNN has a
margin of error of 10%. However, the prediction error of ANN and CNN were more
than 10%.

Table 5. Identify workpiece surface roughness with GAN-BPNN, ANN, CNN.

Real Ra
(µm)

GAN-BPNN
(µm) Error (%) ANN

(µm) Error (%) CNN
(µm) Error (%)

Before grinding 1.75 1.65 6.1 1.61 8.0 1.9 8.6
Rough grinding stage 1.29 1.36 5.1 1.49 15.5 1.45 12.4
Semi-finishing stage 0.93 0.87 6.9 0.84 9.7 1.03 10.8

Finishing stage 0.59 0.64 7.8 0.5 15.2 0.66 11.9
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Figure 11. Roughness measurement based on machine vision.

In order to measure blade surface roughness more accurately, this paper designs a
sampling point distribution method based on constant chord height. The method realizes a
dense distribution of sampling points in the region with a large curvature variation and a
sparse distribution in the region with a small curvature variation, as shown in Figure 12.
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(1) Set a chord height ε.
(2) The baseline AE was obtained by connecting the end points of the curve.

(3) Determine whether there exists a point on the curve
_

AE whose distance to the

datum line is greater than ε. If there is a point on
_

AE, whose distance from the datum line
AE is the farthest point is n0, then delete the original datum line AE.

(4) Set n0 to B and connect the AB and BE as the new datum line.



Machines 2022, 10, 1026 14 of 17

(5) Determine whether there exists a point on the curve
_

AB whose distance to the

datum line is greater than ε, and if there is a point on
_

AB whose distance from the datum

line AB is the farthest point is n1. Similarly, point n2 on curve
_

AB is obtained. Rewrite A,
n1, B, n2, E as A, B, C, D, E.

Repeat the above process until all points on the curve to the datum line position are
less than the threshold ε. In this paper, five sampling points (A, . . . , E) marked in the
figure were taken as examples to compare the roughness changes of blades before and
after grinding, as shown in Figure 13. The robot planed the motion trajectory according to
the position and curvature of the sampling points (20 mm × 20 mm area centered on this
point), collecting images of the five sampling points in turn at the best angle, as shown in
Figure 14.
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The image data of the sampling points before and after polishing can obtain the
corresponding predicted value by the roughness discrimination model of the GAN + BP
neural network, as shown in Table 6. It can be seen that the relative error between the
predicted roughness and the real roughness (measured by SJ-210) has a margin of error of
10%, which meets the needs of industrial detection.

Table 6. The relative error between the roughness value predicted by GAN + BP and the
real roughness.

Compressor Blade Roughness Ra (µm)

Before
Real Ra 1.64 1.59 1.65 1.68 1.62
GAN Ra 1.75 1.69 1.79 1.74 1.72
Error (%) 6.7 6.2 8.5 3.5 6.2

After
Real Ra 0.67 0.64 0.65 0.68 0.61
GAN Ra 0.72 0.67 0.71 0.74 0.66
Error (%) 7.4 4.6 9.2 8.8 8.2
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6. Conclusions

In this paper, we propose a roughness evaluation method combining generative an
adversarial network (GAN) and a BP neural network, which avoids the influence of surface
image differences with different curvatures on the accuracy of roughness measurements.
The method automatically learns features in the image by generators playing with discrimi-
nators, eliminating the independent feature extraction step. This does not merely shorten
the prediction time but reduces the complexity of model training as well. Experiments show
that the proposed method can measure a free-form surface with a minimum roughness
of 0.2 µm, and measurement results have a margin of error of 10%. Since the proposed
method does not require the operator to have the field knowledge of feature recognition,
the method is easier to apply in a factory. However, the proposed roughness evaluation
method using GAN takes a long time for model training due to its convolution process
and depth structure characteristics. To overcome this problem, the adaptive model can be
considered in future research to automatically adjust the hyperparameters.
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23. Samtaş, G. Measurement and evaluation of surface roughness based on optic system using image processing and artificial neural
network. Int. J. Adv. Manuf. Technol. 2014, 73, 353–364. [CrossRef]

http://doi.org/10.1016/j.rcim.2019.101908
http://doi.org/10.1142/S021984362250013X
http://doi.org/10.1007/s00170-016-9331-8
http://doi.org/10.1016/j.measurement.2017.02.036
http://doi.org/10.1016/j.polymertesting.2016.05.022
http://doi.org/10.1016/0043-1648(95)06697-7
http://doi.org/10.1016/S0141-6359(97)00090-1
http://doi.org/10.1016/S0890-6955(97)00118-1
http://doi.org/10.1016/j.matpr.2020.10.709
http://doi.org/10.1016/j.promfg.2019.06.099
http://doi.org/10.1016/j.procs.2020.03.242
http://doi.org/10.1016/j.measurement.2020.108055
http://doi.org/10.1016/j.matpr.2020.05.122
http://doi.org/10.1016/j.measurement.2020.107860
http://doi.org/10.3390/s22166003
http://doi.org/10.1016/j.optlaseng.2021.106847
http://doi.org/10.1016/j.jmsy.2016.09.007
http://doi.org/10.1007/s00170-013-5048-0
http://doi.org/10.1088/0957-0233/27/2/025404
http://doi.org/10.1007/BF01304620
http://doi.org/10.1007/s00170-014-5828-1


Machines 2022, 10, 1026 17 of 17

24. Tang, K.; Chen, F.; Chang, F. Roughness Classification of End Milling Based on Machine Vision. In Proceedings of the 3rd World
Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Shanghai, China, 4–16 December 2020; p. 292.

25. Saeedi, J.; Dotta, M.; Galli, A.; Nasciuti, A.; Maradia, U.; Boccadoro, M.; Giusti, A. Measurement and inspection of electrical
discharge machined steel surfaces using deep neural networks. Mach. Vis. Appl. 2021, 32, 1–15. [CrossRef]

26. Rifai, A.P.; Fukuda, R.; Aoyama, H. Surface roughness estimation and chatter vibration identification using vision-based deep
learning. J. Jpn. Soc. Precis. Eng. 2019, 85, 658–666. [CrossRef]

27. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Nets, Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014.

28. Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An
overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [CrossRef]

29. Hecht-Nielsen, R. Kolmogorov’s Mapping Neural Network Existence Theorem; IEEE Press: Piscataway, NJ, USA, 1987.

http://doi.org/10.1007/s00138-020-01142-w
http://doi.org/10.2493/jjspe.85.658
http://doi.org/10.1109/MSP.2017.2765202

	Introduction 
	Generative Adversarial Network 
	Measurement of Surface Roughness of Workpieces 
	Image Acquisition and Data Preprocessing Methods Subsection 
	GAN-Based Surface Roughness Discrimination Method 
	Training Results 

	Discriminating Method of Workpiece Surface Roughness 
	Experiments 
	Conclusions 
	References

