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Abstract: Car–trailer combinations can experience unstable motion modes such as trailer-sway,
jackknifing and rollover that can lead to fatal accidents. These unstable motions can be mitigated
with the use of an active trailer steering (ATS) system. Prior studies in ATS have leveraged the linear
quadratic regulator (LQR) as an ATS controller but for many of these designs it was assumed that the
vehicle and operating parameters were constant. In reality, vehicle and operating parameters may
vary and have an impact on the stability of a car–trailer combination. In this paper, the weighting
matrices of the LQR controller are determined using the GDE3 evolutionary optimization algorithm
with the objective of addressing the design trade off between minimizing the car–trailer’s path-
following performance for low vehicle speeds and minimizing the rearward amplification for high
vehicle speeds. The effectiveness of the approach is demonstrated using a numerical simulation
car–trailer model developed in the CarSim simulator. Our results show that the multi-objective tuned
gain scheduling controller outperforms a non-tuned gain scheduling controller in terms of improving
the lateral stability and the path following performance of car–trailer combinations in driver in the
loop single lane-change maneuvers at a constant vehicle forward speed.

Keywords: active trailer steering; LQR gain scheduling controller; evolutionary algorithm

1. Introduction

A typical car–trailer system consists of a leading vehicle unit, supplying the power
to the combination, and a trailing unit, connected with a mechanical hitch. The hitch
connection between the vehicle units generates several mechanical constraints, making the
dynamics and kinematics of this combination more complex to investigate compared to
a single-unit vehicle, e.g., car or truck. Due to the unique dynamics of the combination
and the mechanical constraints, the car–trailer system usually experiences unstable motion
modes that could lead to fatal accidents. Typical unstable motion modes that lead to crash
of car–trailer combinations are trailer-sway, jackknifing and rollover [1]. Several factors
can lead to each of the aforementioned unstable motion modes, e.g., high-speed evasive
maneuvers, crosswinds, road conditions and payload variation of the trailer [2].

The detrimental effect of the three aforementioned unstable motion modes is reduced
by using various vehicle safety design strategies. These strategies can be passive and active.
Passive strategies require no additional energy or complicated implementation whereas ac-
tive strategies do require additional energy to provide active safety actuations. The strategy
considered in this research is an active trailer steering (ATS) system. This system requires a
steering actuator to steer the wheels of the trailer of a car–trailer combination.

Command trailer steering systems allows car–trailer combinations to operate on a fix
steer ratio between the tractor steering angle in relation to the trailer axle steering angle [3].

Machines 2022, 10, 1019. https://doi.org/10.3390/machines10111019 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10111019
https://doi.org/10.3390/machines10111019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-1448-200X
https://doi.org/10.3390/machines10111019
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10111019?type=check_update&version=1


Machines 2022, 10, 1019 2 of 21

Using an ATS, one can work with conflicting objectives using an actively optimized con-
troller. This improves Rearward Amplification (RWA) at high speeds and Path-Following
Off-Tracking (PFOT) at low speeds, without having to use multiple modes of operation
and worrying about switching between them. ATS technology is just a name for many
ways to control the trailer steering system. Generally, ATS systems can be tuned to enhance
stability at high speeds but these speeds can vary across different highways. ATS requires
optimization for independent operation and one of the control algorithms used in ATS is
the Linear Quadratic Regulator (LQR) [4]. LQR though is a linear controller and for many
of these designs it was assumed that the vehicle and operating parameters were constant.
In reality, vehicle and operating parameters may vary and have an impact on the stability of
a car–trailer combination. For example, varied vehicle forward speeds and trailer payloads
may impose negative impacts on the directional performance of the car–trailer combination
such that the LQR-based ATS controller operates beyond the limits that it was optimized
for and may result in an unstable car–trailer behavior.

To address this problem, an LQR-based ATS controller with a look-up table gain-
scheduler is proposed which is used to stabilize a car–trailer combination at different
vehicle speeds. The goal of the gain scheduler is to choose the appropriate LQR gains for the
ATS controller depending on the design trade off between PFOT and RWA. The weighting
matrices of the LQR controller in the scheduler are determined using an evolutionary
optimization algorithm, namely GDE3 [5]. The dual optimization approach, using GDE3
and LQR, is proposed because one cannot easily specify the continuous objective function
for the global optimization problem. Our approach is a two layer optimization problem
where LQR is used to stabilize the car–trailer combination at specific speeds and GDE3 is
used to optimize the car–trailer combination for different speeds.

The effectiveness of the proposed two layer optimization method for ATS controller
design is demonstrated using numerical simulation based on a car–trailer model developed
in the CarSim simulator. To the best of our knowledge, Generalized Differential Evolution
(GDE) has not been previously used to tune an LQR controller for any control system let
alone for ATS control.

In Section 2, we present some prior work in the use of evolutionary algorithms for the
optimization of controllers as well as a brief review on the optimization of controllers for
ATS in car–trailer and truck–trailer combinations. Section 3 presents a background into
car–trailer stability metrics as well the GDE algorithm. Section 4 introduces the proposed
two-layer optimization method for determining the control gain matrix under a given
driver reaction time and a vehicle forward speed. Section 5 presents the design of a gain
Scheduler for an ATS-enabled car–trailer combination. Section 6 presents several simulation
results for PFOT and RWA of an ATS-enabled car–trailer combination using the optimized
GDE controller gains for different vehicle speeds and driver reaction times. Finally we
conclude and present some limitations to our approach in Section 7.

2. Literature Review

Evolutionary algorithms (EAs) and multi-objective evolutionary algorithms (MOEAs)
are proven to be effective in offline tuning of control systems for various applications [6].
The authors in [7] studied the effectiveness genetic algorithm (GA) in tuning of PI and LQR
controllers for boiler-turbine plant.

The authors in [8] used a non-dominated sorting genetic algorithm (NSGA-II) as a
MOEA to optimize an Heating, Ventilating and Air-Conditioning (HVAC) control systems.
NSGA- II achieves an improvement, within the design constraints, while considering
multiple objectives.

EAs were employed to optimize an LQR controller [9,10]. The authors of [10] con-
cluded that differential evolution, along with other continuous optimizers, outperforms
genetic algorithms, which reinforces the selection of Differential Evolution as the core
optimization method.
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An ATS control system, using the LQR-based controller, for articulated vehicles was
designed and optimized by GA in [4] and shows that it is superior to other prior work.
A GA optimized active trailer differential braking system is outlined in [11] for a car–trailer
combination. The aforementioned studies along with engineering applications show that
evolutionary search algorithms are ideal for tuning control systems in a wide array of
applications [6].

Research in our paper combines two areas: utilizing the LQR technique for ATS con-
troller design and using evolutionary algorithms to optimize the LQR control parameters.
The LQR technique has been utilized to design the ATS controller for an articulated heavy
vehicle (AHV) [12]. The study used a genetic algorithm to optimize the LQR controller for
the ATS of AHVs, and demonstrated the strength of the LQR controller, and also elaborated
on the importance of optimization. The work in [13] uses an LQR controller to control an
anti-roll bar, which prevents vehicle rollover and they demonstrate how the LQR controller
can provide stability to vehicular systems.

All the above studies, collectively, show that the LQR control method is used for
various systems and that evolutionary algorithms achieve a better solution than other
conventional methods or even fuzzy logic controllers. The difference in our approach over
other approaches is the use of MOEA and GDE3 for tuning and creating a gain scheduler
for an ATS-enabled car–trailer combination. GDE3 has also been proven to be better than
the counterpart genetic algorithms [14,15].

3. Background
3.1. Car-Trailer Stability Criteria

For all Articulated Vehicles (AV) there are two major modes of operations: (1) high-
speed evasive maneuvering and (2) low-speed path-following. When the AV is traveling at
high speeds, it requires to be laterally stable. Without lateral stability roll-over can occur.
The lateral stability of an AV is measured using the RWA [16] criterion. At low-speeds the
trailer must follow the same trajectory as the car. If the trailer is unable to follow the same
path as the car, this will result in a swept path, and a wider road is required for the safe
operation of the car–trailer combination. The measure to check the trailer’s ability to track
the path of the car is called PFOT [4,17] criteria.

An AV’s RWA is evaluated using a single-lane change maneuver at high speeds.
During this maneuver the ratio of the lateral acceleration observed at the center of gravity
(CG) of the trailer and the car [18] is measured. An ideal RWA is 1, which is extremely
difficult to achieve in real-world operating conditions. Physically, when the RWA takes the
value of 1.0, the trailing vehicle unit will have similar dynamic behaviors as the leading
vehicle unit. In other words, with the RWA measure of 1.0, the AV will have better path-
following capability, and the driver may well control the vehicle to achieve high lateral
stability [18]. Controlling lateral acceleration amplification and achieving the RWA measure
of 1.0 is the primary objective and Equation (1) is used to calculate the RWA ratio:

RWA =
|Peak lateral acceleration o f the trailer at CG|
|Peak lateral acceleration o f the car at CG| (1)

PFOT is defined as the maximum radial offset between the path of the center of the car
front axle and that of the center of the trailer rear axle over an evasive maneuver. Accurate
measurement of PFOT can be performed by comparing the difference between the trajectory
of the center of the car front axle and that of the center of the trailer rear axle during a
circular motion of a car–trailer combination.

If an ATS controller is optimized for high-speed RWA, PFOT performance at low
speeds will be hampered and vice versa [19]. This then results in an ATS controller
that is optimized either for high-speed lateral stability or low-speed maneuverability. To
conduct the RWA analysis, an open-loop testing procedure with a single lane change (SLC)
maneuver is simulated. A single-cycle sine-wave steering input with adjustable frequency
and amplitude represents the input for the SLC testing maneuver [20].
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3.2. GDE3 Algorithm

In this work, we leverage the GDE3 evolutionary algorithm to compute the optimal
weights of an LQR controller that controls the steering angle of the trailer.

GDE3 is a type of Differential Evolution (DE) [21] algorithm. Like all DE algorithms,
GDE3 is a population-based metaheuristic (P-metaheuristic) evolutionary algorithm which
has been inspired by Genetic Algorithms (GA). DE consists of mutation, crossover and se-
lection, which performs best for continuous-valued problems.

The working principle of DE is similar to that used in for GAs. It starts with population
initialization. During initialization all members are assigned fitness values according to
fitness functions, these values correspond to how good these population members are for
solving the problem.

Following initialization, the selection is made at random from the population space,
anywhere between two and four members are chosen, depending on the utilized mutation
scheme. There are more than ten mutation variants in DE [22] and we use the DE5 mutation
scheme shown in Equation (2), where V is the mutant vector, F is the scaling factor with a
value between 0 and 1, and Xi are randomly selected individuals from the population.

V = Xbest + F ∗ (X1 − X2) (2)

The fitness of the population member, once chosen, is evaluated after it undergoes
mutation and recombination. After applying the crossover and calculating the resulted
offspring’s fitness value, the best parent and offspring is selected to the next generation (in
GDE3 the selection follows a greedy strategy.).

The crossover or recombination method is as follows, regardless of the mutation method.

U(j) =
V(j), i f rand(0, 1) < Cr
Xi(j), otherwise

(3)

where U(j) is the population member created after recombination for a random value of j.
The DE parameters that are used in this paper are listed in Table 1. These parameters

are obtained from [22], in which the authors performed rigorous testing to show that these
values produce optimal performance results.

Table 1. Control parameters of optimization.

Parameter Value

Population Size (P) 60

Crossover Probability (Cr) 0.95

Scaling Factor (F) 0.3 < F < 0.9

Number of Objectives 2

4. Proposed 2-Layer Design Optimization Method

This research proposes a 2-layer optimization method for determining the LQR-based
gain scheduling controllers (GSCs) for car–trailer combinations with active trailer steering.
Figure 1 shows the framework of the 2-layer optimization method. At the upper layer is an
optimizer, e.g., GDE3, while at the lower layer are the dynamically coupled vehicle system,
including a virtual car–trailer plant; e.g., CarSim car–trailer model; virtual driver, such as
CarSim built-in driver model; and an LQR-based controller.
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Figure 1. Proposed design optimization method for determining LQR-based gain scheduling con-
trollers for car–trailer combinations with active trailer steering.

With the given constraints and optimization variables XD from the upper layer, the ve-
hicle and operating parameters of the vehicle system at the lower layer are updated.
The operating parameters (or operating uncertainties) may include vehicle forward speed
(U), trailer payload, road conditions, etc. Considering different drivers with various driving
skills and habits, the parameters characterizing human drivers’ driving behaviors, such as,
reaction time (t) and preview time, may be treated as a subset of the overall parameter set
of the vehicle system [23,24]. Under varied operating conditions and considering different
drivers with various driving skills and habits, the LQR controller’s gain matrix may be
adaptively adjusted [25]. It is well known that with a given linear system, the control gain
matrix of the LQR controller is directly determined by two weighting matrixes, i.e., Q (state
variables associated) and R (control variables associated), and the performance index can
be cast as,

J =
∫ ∞

0
(xTQx + uT Ru)dt (4)

where x denotes state variable vector, and u control input vector. In the case concerned, Q
and R are diagonal matrices. For the purpose of simplicity, it is assumed that Q and R are the
corresponding vectors consisting the respective diagonal elements of each matrix. It should
be mentioned that the LQR algorithm itself is an optimization technique for determining an
optimal control gain matrix for the linear dynamic system. Thus, the optimization problem
shown in Figure 1 is a 2-layer optimization problem. Thus, in this study, we set the design
variable set as XD = [UtQT RT ]T .

Given a design variable set XD, under a specified vehicle operating maneuver (e.g.,
single lane-change maneuver), the LQR algorithm will update its Q and R weighting
matrices and derive the resulting control gain matrix K. At the lower layer of the 2-layer
optimization problem shown in Figure 1, under the given operating maneuver, the virtual
driver adaptively controls the front wheel steering angle (δ) of the leading vehicle unit
considering the vehicle state variable vector x; the LQR controller controls the trailer wheel
steering angle (δATS) in response to the driver steering angle (δ) and the current vehicle
state variable vector x; under the control of the virtual driver and the LQR controller,
the virtual car–trailer plant executes the operating maneuver following the predefined path
(e.g., single lane-change path) and forward speed scheme. Upon the completion of the
operating maneuver, the directional performance measures, i.e., RWA(XD) and PFOT(XD),
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can be derived using the dynamic responses of the car–trailer plant over the operating
maneuver. Then, the derived performance measures and associated dynamic responses
over the operating maneuver will be sent back to the upper layer to evaluate the satisfaction
of the constraints, i.e., h(Xd) ≤ 0 and g(XD) = 0, and to formulate and assess the fitness
function formulated by

min
XD

F(XD) = w1 · |(1− RWA(XD))|+ w2 · |PFOT(XD)| (5)

where w1 and w2 are weighting factors. It should be noted that both of the performance
measures of RWA and PFOT are functions of design variable vector XD. Within the defined
design space, the optimizer, i.e., GDE3, at the upper layer of the optimization problem (as
shown in Figure 1 will find the global optimal solution X(Do ptimal), which provides an
optimal compromised solution between the performance measures of RWA(X(DO ptimal) )
and PFOT(X(DO ptimal)).

For multi-objective optimization, with conflicting objectives, there is no single solution
rather a set of solutions. Each solution consists of costs equal to the number of objectives.
One solution is said to strongly dominate another solution if and only if all the costs of
one solution are better than the other or if and only if all costs are no worse, and at least
one is better. If a solution is not strongly dominated by any other solution then it is a
Pareto solution [26]. An optimal Pareto-front is the set of all such solutions, which are not
dominated by other solutions [27].

5. Design of a Gain Scheduling Controller for an ATS-Enabled Car-Trailer Combination

The method used to develop this gain scheduler is to generate a two-dimensional
lookup table, using the driver model reaction time and vehicle forward speed to schedule
an optimum set of gains for the LQR controller of the ATS-enabled car–trailer combination.
CarSim [28] is a mechanical simulation tool and is used to simulate multi-body vehicle
systems and analyze their dynamic behaviors. It is a useful tool for the analysis and design
of active vehicle safety systems. In this section, CarSim acts as Software-in-Loop (SIL) and
provides vehicle dynamic responses required to tune the controller.

5.1. 3-DOF Linear Yaw-Plane Car-Trailer Model

The LQR controller tuned for this optimization is designed using a 3-DOF yaw-plane
car–trailer combination model. The mathematical model has been derived and validated
against other published models [29,30].

In this model, each axle is represented by a single wheel, assuming that both tires on
each axle have the same dynamic characteristic, i.e., the relationship between the tire slip
angle and the cornering force. Figure 2 shows the schematic representation of the car–trailer
combination using the 3 DOF yaw-plane model.

For the yaw-plane model, the lateral and yaw motions of the car, as well as, the yaw
motion of the trailer are considered. The governing equations of motion of the car are
expressed as:

m1(U̇ −Vr) = −X1cosδ− X2 + X (6)

m1(V̇ + Ur) = f1(α1) + f2(α2) + X1sinδ−Y (7)

I1ṙ = a f1(α1)− b f2(α2) + αX1sinδ + dY (8)

where Equations (6)–(8) govern the longitudinal, lateral and yaw motions of the car, respec-
tively, m1 is the mass of the car, U forward speed of the car, V lateral speed of the car and r
yaw rate of the car, δ is the front wheel steering angle, Xi are the longitudinal tire forces, αi
are the slip angles of the tires, fi are the cornering stiffness of the tires, X is the longitudinal
hitch force, Y is the lateral hitch force, I1 is the moment of inertia of car and a, b, c and d are
described in Table 2.



Machines 2022, 10, 1019 7 of 21

Figure 2. Schematic representation of the 3-DOF yaw-plane car–trailer model.

Similarly, the governing equations of motion for the trailer are shown as follows:

m2(U̇
′ −V

′
r
′
) = −X3 −Ysinψ− Xcosψ (9)

m2(V̇
′
+ U

′
r
′
) = f3(α3) + Ycosψ− Xsinψ (10)

I2ṙ
′
= −h f3(α3)− e(−Ycosψ + Xsinψ) (11)

where Equations (9)–(11) govern the longitudinal, lateral and yaw motions of the trailer,
respectively, m2 is the mass of the trailer, U

′
forward speed of the trailer, V

′
lateral speed of

the trailer, r
′

is the yaw angle of the trailer, I2 is the moment of inertia of the trailer and h
and e are described in Table 2.

Once a mechanical hitch is introduced, the kinematic constraint is active. To simplify
the model, the forward speed of the car is assumed constant. In addition, the articulation
angle, ψ assumed to be small, which leads to Equations (12)–(14). Detail is available in [31].

cos(ψ) ≈ 1 (12)

sin(ψ) ≈ ψ (13)

Furthermore, the following equation is determined at zero initial conditions.

ψ
′
= r− r

′
(14)

where ψ is the articulation angle, r is the yaw rate of car and r
′

is the yaw rate of the trailer.
The notation is shown in Figure 2.

Once the model is derived, a multibody dynamic software package, known as Equation
of Motion (EOM) is used to validate the model by comparing the responses of both models
under the same single lane-change maneuver [32]. Both models generate the identical
dynamic response, which proves that the EOM model matches the derived equations. Thus,
the EOM software package is selected to design the ATS controller. However, in order to
further enhance the model, more essential components are added to the system, e.g., an
actuator is installed on the trailers axle, and an accelerometer is installed at the Centers of
Gravity (CG) of the leading and trailing units, respectively. The actuator is used to produce
torque to steer the wheels on the trailer axle. In addition, the trailer forward speed should
be the same as the car forward speed as the assumption made previously.
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Table 2. Car–trailer combination parameters for ATS controller design.

Description Symbol

Car Mass m1

Car yaw inertia I1

Trailer mass m2

Trailer yaw inertia I2

Distance between car CG and its front axle a

Distance between car CG and its rear axle b

Distance between car CG and hitch point d

Distance between trailer CG and hitch point e

Distance between trailer CG and its axle h

Height of car CG H1CG

Height of trailer CG H2CG

Combined car front tires cornering stiffness coefficient c1

Combined car rear tires cornering stiffness coefficient c2

Combined trailer tires cornering stiffness coefficient c3

5.2. The CarSim Car–Trailer Model

In this research, a car–trailer combination with a full-size car and a single axle trailer
is modeled using CarSim software. The parameters of the model are close with those of the
car–trailer model reported in [30], which has been validated using numerical simulations.

The car–trailer model for the co-simulation is directly developed and tested in CarSim
software. Figures 3 and 4 show the details of the car and trailer sub-models used in the
co-simulation and Figure 5 is an image of the car–trailer model from CarSim created using
these parameters.

In order to complete the CarSim vehicle model one requires the car and trailer mass
and moments of inertia as listed in Table 3.

The co-simulation with CarSim model only requires the LQR control gain matrix, K
that is generated directly using the GDE3 multi-objective evolutionary algorithm.

Figure 3. Car sub-model developed in CarSim.
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Figure 4. Trailer sub-model developed in CarSim.

Figure 5. Car-trailer model with the built-in driver model.

Table 3. Vehicle parameter values.

Parameters Value

mass of car 1653 kg

roll inertia of car 2765 kgm2

mass of trailer 466 kg

roll inertia of trailer 1810 kgm2

5.3. Built-in Driver Model in CarSim

A predefined path is used to simulate the SLC maneuver and is shown in Figure 6.
The maneuver is shown in 2D trajectory rather than in the more customary time and
steering angle view. In real life driving, regardless of the speed or driver reaction time,
a defined single lane-change requires a car to move a fixed distance on the same road.
Over the testing maneuver, the driver model will actively adjust its steering input in order
to ‘drive’ the vehicle to follow the predefined trajectory, as opposed to the open-loop
driving scenario.

The built-in driver model is an optimal preview driver model [32], which has been
incorporated in the commercial software package, CarSim, for closed-loop simulations of
road vehicles. The driver model was derived by minimizing a cost function defined as
a mean squared error between a predicted and a target lateral position. Experiment and
simulation results demonstrated that driver steering in path-following maneuvers can be
accurately modeled as a time-delay optimal preview control.
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Two parameters, i.e., vehicle forward speed (U) and reaction time (t)of the driver
model, are used to generate the look-up table for the gain scheduling controller consisting
of the driver’s reaction time and vehicle forward speed.

Figure 6. Predefined trajectory for the closed-loop single lane-change testing maneuver.

5.4. The Gain Scheduling Controller

A gain scheduling controller (GSC) is used when a non-linear system can be broken
down into various linear operating ranges [33]. The control gain values, K, are determined
for each of these operating ranges to create a look-up table. Based on environmental
factors or internal operating conditions, the GSC chooses a set of values from the look-up
table. This allows for a more robust non-linear control using linear techniques and gain
scheduling. There are many variations of GSC based on how the parameters are varied [34],
this research focused on the vehicle forward speed and driver reaction time to generate a
two-dimensional look-up table.

There are four steps to design and implement a GSC [34].
Step 1: Breakdown the existing system into a number of linearized models, as needed.

According to [34], a popular method to do this is the Jacobian linearization. However,
the approach used in this research does not require mathematical linearization. By varying
the speed and reaction time parameters in the CarSim model, the model is automatically
updated, which is utilized to generate the optimal control gain matrix K for that particu-
lar scenario.

Step 2: Design a linear controller. The evolutionary optimized ATS controller is
the linear control technique. This controller follows design constraints, natural selection,
and biological evolution to generate the control gain matrix K.

Step 3: Develop a look-up table and a look-up scheme. This is the actual creation of
the GSC. Each gain is scheduled based on vehicle forward speed and reaction time of the
driver model. After the GDE3 optimizer terminates, an optimal Pareto-front is achieved.
For each combination of vehicle forward speed and driver reaction time, there exists an
optimal Pareto-front. To simplify the design, the best trade-off solution of each optimal
Pareto-front is used to test the GSC.
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Step 4: Evaluate the system’s performance and ensure that the GSC is working within
the design variable ranges. The GDE3 optimized controller and a gain scheduling controller
are compared to confirm correct functionality and to analyze the advantages.

The GSC works based on a two-dimensional look-up table. The first independent
variable is the variation of vehicle forward speed, and the second independent variable is
the reaction time of the driver model. Table 4 shows all possible combinations of the vehicle
forward speed and driver reaction time that are taken into consideration in the GSC.

Table 4. GSC look-up table.

Number of Setting Point Forward Speed (km/h) Reaction Time (s)

1 80 0

2 90 0

3 100 0

4 110 0

5 120 0

6 80 0.1

7 90 0.1

8 100 0.1

9 110 0.1

10 120 0.1

The GSC is a two-dimensional discrete decision algorithm so an important issue is
the scheme to switch between different modes of operation. In this work, two switching
schemes are tested. Firstly, controller gains are changed when the speed increases beyond
the next discrete step, e.g., controller gains shifts from those associated with 80 km/h
to 90 km/h if the speed goes to or beyond 90 km/h. The second scheme changes gains
when the speed of the vehicle is rounded to the nearest speed value, e.g., mode shifts from
80 km/h to 90 km/h when the speed crosses 85 km/h. The performance in both cases is
seen to be similar but when using the first scheme the overall number of times the gains
change is less than the second.

5.5. GSC Modular Design Methodology

In this research work a co-simulation environment is built that combines CarSim
with MATLAB/Simulink. CarSim software offers an integrated S-Function interface for
the Simulink software package. The S-function data are sent and received by CarSim.
The simulation results are directly captured from the CarSim model. This eliminates the
chance of modeling errors and ensures the soundness of the results.

The system model shown in Figure 7 is highly modular. An important principle of this
research is to ensure that the GSC design method is not system-specific. The system model
is based on 5 main blocks. The CarSim block holds the car–trailer model, driver-model
and all built-in testing maneuvers. It also provides the simulation results, which are fed into
the control module. The evaluation block receives the simulation results from CarSim and
assigns fitness values based on performance measures. If the fitness values exceed or violate
the constraints, they are excluded from the simulation. The optimization module receives
the fitness costs and uses them to assign fitness to population members for carrying out
the evolutionary algorithm and generating new population members. The control module
uses the optimal solutions from the optimization module to generate control gain matrix K
which is then fed as the ATS system’s steering angle to CarSim. Each of these blocks can
be changed depending on applications. The evaluation method, constraints, optimization
techniques, control strategies, and car–trailer model can all be tailored to any system.
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Figure 7. System model using modular blocks. State Information from top to bottom: yaw-rate of car,
yaw-rate of trailer, lateral speed of car and lateral speed of trailer.

The CarSim model receives adjustable control input values every time a new speed
or driver model reaction time is introduced. This validates the modularity of the CarSim
block. The constraint module ensures that, above all, the control gain value must be able
to stabilize the system during the complete maneuver. The car–trailer combination must
follow the predefined path, without violating road boundaries. The maximum allowed
RWA of the car–trailer combination is 2.0. The optimization module in our case is the GDE3
algorithm and the control module is an LQR ATS controller.

6. Simulation Results and Discussions

In this section, we present the results of an optimized LQR controller for the car–trailer
combination with ATS presented in Section 5 based on the vehicle’s performance in terms
of PFOT and RWA values for different speeds and driver reaction times. The first set of
results are the Pareto front graphs showing the optimal values for K with respect to the
PFOT and RWA ideal values. The second set of results demonstrate the vehicle’s PFOT and
RWA values for three different optimized K values (minimum PFOT, ideal RWA and the
trade-off PFOT and RWA) and compares these results to the ideal and the vehicle without
ATS. The third set of results show the performance of the vehicle when the gain scheduler
is applied for different vehicle speeds as compared to the ideal and trade-off PFOT and
RWA trajectory results.

6.1. GDE3 Optimal Pareto Fronts

For the vehicle forward speeds and reaction delay times shown in Table 4 it is possible
to determine 10 Pareto-front graphs showing the optimal values for K with respect to the
PFOT and RWA ideal values. These Pareto-front graphs are shown in Figures 8 and 9. It
should be noted that the reaction time of 0.1 s is selected following the Best Path Tracking
area recommended in [23], while the reaction time of 0 s is chosen assuming that the driver
model is used as an automated steering controller with negligible reaction time.

Figures 8 and 9 illustrate the Pareto-front graphs when vehicle forward speeds are 80,
90, 100, 110, and 120 km/h, while the driver’s reaction time is 0.0 and 0.1 s, respectively.
Although there are minor differences among the shapes of these Pareto-front graphs, all
these graphs share a common feature that the overall trade-off relationship between the
design criterion of PFOT and (1-RWA) is clearly indicated. This trace-off relationship will
facilitate the analysis and selection of potential compromised solutions.

For all of these Pareto-front graphs there are three main points of interest: the two
utopia points (extreme points that represent optimal PFOT and RWA) and the trade-off
solution. The trade-off is a decision to be made by the system designer, but in our examples
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we chose the the point which has the best compromise between the minimal PFOT and
ideal RWA objectives.

For all 10 vehicle speed and reaction time combinations listed in Table 4, we performed
the SLC maneuver shown in Figure 6 for gains corresponding to an optimized PFOT
(a utopia point), optimized RWA (the other utopia point), the trade off point,and the
passive system without ATS. These results are shown in Figures 10 and 11. For these
graphs the ideal SLC path is also included for reference. In Figure 10, car and trailer
tracking results are shown commencing at a vehicle speed of 100 km/h as the results
at the lower speeds are fairly stable. For Figure 11 results are shown commencing at a
vehicle speed of 90 km/h as the tracking performance degrades significantly for the passive
case at this speed and higher. It should be noted that in Figures 10 and 11, with respect
to the case of passive (without active trailer steering), the differences among the curves
corresponding to the cases of PFOT, RWA and Trade off appear not evident. This implies
that compared with the passive design without ATS, the three ATS design solutions show
much better performance although there exist evident differences among the three ATS
designs. A close observation of Figure 10e indicates that among the three ATS designs,
the PFOT shows the best overall trajectory-tracking performance, and the RWA exhibits
the worst trajectory-tracking performance.

We summarize our observations as follows. As vehicle speed increases, the benefit
of the optimized ATS controller becomes more apparent. Above the vehicle speed of
100 km/h, the passive system completely fails to complete the maneuver when the driver
model reaction time is 0 s, and fails at 90 km/h when the driver model reaction time is
set to 0.1 seconds. The GDE3 optimized ATS controller is able to stabilize the system
and to complete the SLC maneuver for all ten scenarios. At this point one could wrongly
assume that any optimized K value could be chosen for the controller but at vehicle speeds
of 120 km/h the car–trailer combination optimized RWA value is about 0.45 for a driver
reaction time of 0.01 s. In all other cases the optimal RWA values are close to the ideal value
of 1.0.

A limitation of the use of the CarSim model is that at most it can only support up to
1500 generations by the optimizer. This greatly reduces the time and opportunity for the
algorithm to search the solution space.

6.2. Performance of the Gain Scheduling Controller

In this last section we demonstrate, using the aforementioned results, how the gain
scheduling controller (GSC) further improves the ATS system. The GSC is compared to a
GDE3 optimized ATS tuned at 100 km/h with a 0 s driver model reaction time (referred to
as “W/O GS” in the graphs.) For brevity only the results are presented for vehicle speeds
from 90 to 120 km/h for a driver model reaction time of 0.1(s) as these scenarios are the
worst conditions. The control gains K is chosen such that the trajectory is optimized for the
lowest PFOT and a RWA value closest to one. The results of these experiments is shown in
Figure 12 and summarized in Table 5.

Overall the use of the GSC has a great advantage over using the LQR controller tuned
for only a specific speed. For lower speeds, the improvement is not as apparent by looking
at just the trajectory, but looking at Table 5 the improvement is more apparent as the values
for RWA are significant lower than those when the GS is not utilized.

The GSC is a two-dimensional discrete scheme so it is important to know when to
switch between different modes of operation. In this work, we tried to find methods of
switching, in the first the controller gains are changed when the speed increases beyond the
next discrete tens decimal step (controller gains shifts from those associated with 80 km/h
to 90 km/h if the speed goes to or beyond 90 km/h) and in the second scheme gains are
changed when the speed crosses the mid point between 2 tens decimals (mode shifts from
80 km/h to 90 km/h when the speed crosses 85 km/h.) The performance in both cases is
seen to be similar but when using the first scheme the overall number of times the gains
change is less than the second.
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(a) (b)

(c) (d)

(e)

Figure 8. Optimal Pareto-fronts for vehicle speeds from 80 to 120 km/h and 0(s) driver model
reaction time. (a) Optimal Pareto-front for 80 km/h and 0(s) driver model reaction time. (b) Optimal
Pareto-front for 90 km/h and 0(s) driver model reaction time. (c) Optimal Pareto-front for 100 km/h
and 0(s) driver model reaction time. (d) Optimal Pareto-front for 110 km/h and 0(s) driver model
reaction time. (e) Optimal Pareto-front for 120 km/h and 0(s) driver model reaction time.
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(a) (b)

(c) (d)

(e)

Figure 9. Optimal Pareto-fronts for vehicle speeds from 80 to 120 km/h and 0.1(s) driver model
reaction time. (a) Optimal Pareto-front for 80 km/h and 0.1(s) driver model reaction time. (b) Optimal
Pareto-front for 90 km/h and 0.1(s) driver model reaction time. (c) Optimal Pareto-front for 100 km/h
and 0.1(s) driver model reaction time. (d) Optimal Pareto-front for 110 km/h and 0.1(s) driver model
reaction time. (e) Optimal Pareto-front for 120 km/h and 0.1(s) driver model reaction time.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Trailer and car trajectories for speeds of 100 to 120 km/h and 0(s) driver model reaction time.
(a) Trajectory of the car at 100 km/h and 0(s) driver model reaction time. (b) Trajectory of the trailer
at 100 km/h and 0(s) driver model reaction time. (c) Trajectory of the car at 110 km/h and 0(s) driver
model reaction time. (d) Trajectory of the trailer at 110 km/h and 0(s) driver model reaction time.
(e) Trajectory of the car at 120 km/h and 0(s) driver model reaction time. (f) Trajectory of the trailer at
120 km/h and 0(s) driver model reaction time.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Trailer and car trajectories for speeds of 90 to 120 km/h and 0.1(s) driver model reac-
tion time. (a) Trajectory of the car at 90 km/h and 0.1(s) driver model reaction time. (b) Trajectory of
the trailer at 90 km/h and 0.1(s) driver model reaction time. (c) Trajectory of the car at 110 km/h and
0.1(s) driver model reaction time. (d) Trajectory of the trailer at 110 km/h and 0.1(s) driver model
reaction time. (e) Trajectory of the car at 120 km/h and 0.1(s) driver model reaction time. (f) Trajectory
of the trailer at 120 km/h and 0.1(s) driver model reaction time.
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Trailer and car trajectories for speeds of 90 to 120 km/h and 0.1(s) driver model reaction
time when the GSC scheduling scheme is applied. (a) GSC Trajectory of the car at 90 km/h and 0.1(s)
driver model reaction time. (b) GSC Trajectory of the trailer at 90 km/h and 0.1(s) driver model
reaction time. (c) GSC Trajectory of the car at 110 km/h and 0.1(s) driver model reaction time. (d) GSC
Trajectory of the trailer at 110 km/h and 0.1(s) driver model reaction time. (e) GSC Trajectory of the
car at 120 km/h and 0.1(s) driver model reaction time. (f) GSC Trajectory of the trailer at 120 km/h
and 0.1(s) driver model reaction time.
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Table 5. RWA comparison GS vs. W/O GS.

Speed (km/h) Reaction Time (s) GS W/O GS Improvement (%)

80 0.0 1.0751 1.1749 8.49

90 0.0 1.0929 1.2662 13.69

110 0.0 1.2072 1.3120 7.99

120 0.0 1.3626 3.3314 59.03

80 0.1 1.2503 1.2770 2.09

90 0.1 1.3853 1.9563 29.19

100 0.1 1.4168 3.2507 56.42

110 0.1 1.5600 3.2304 51.71

120 0.1 1.8018 3.3320 45.92

7. Conclusions

In this research we leveraged the GDE3 evolutionary algorithm to optimize the gains
of an LQR controller for a car–trailer combination with active trailer steering. The car–trailer
combination incorporated a driver in the loop model with a reaction time delay of 0.1 s.
The scenario focused on a multi-objective design optimization process that demonstrated
the trade off between optimizing the LQR controller path following objective for low speeds
and rear-ward amplification objective for high speeds.

A multi-objective tuned gain scheduling controller (GSC) was designed for car–trailer
combinations. The GSC was designed using the LQR control technique considering the
variation of vehicle forward speed. A set of control gain matrices were used as the look-up
tables for the GSC. The GSC outperforms passive system without ATS and managed to
keep the vehicle within the ideal RWA value of 1.0 up to a vehicle speed of 120 km/h. We
observed similar positive tracking results that are close to the ideal scenario for the PFOT
objective for varying vehicle speeds and driver reaction times.

Although the proposed LQR-based gain scheduling controller (GSC) was designed
for active trailer steering control for car–trailer combinations, the design method is also
applicable for articulated heavy vehicles with tractor/semitrailer combinations. In the
LQR-based GSC design, other uncertainties, e.g., trailer payload, may also be considered
as vehicle forward speed discussed in this study. Due to the trailer tire cornering force
saturation at high lateral accelerations, the proposed active trailer steering system is only
effective in low lateral acceleration range, e.g., less than 0.40 g. The proposed LQR-based
ATS scheme is suited for both cases of autonomous driving and human driver driving.

The maneuvers simulated in this paper are for a closed-loop single lane-change at
a constant vehicle forward speed. A new testing maneuver may be designed, which
incorporates variable vehicle forward speeds. This maneuver, with a greater speed sensi-
tivity, may be used to further improve and test the GSC. The research into the maneuver,
which may accurately depict and test a GSC, is a great step towards creating a robust ATS
control system.
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