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Abstract: Positioning accuracy in robotics is a key issue for the manufacturing process. One of the 
possible ways to achieve high accuracy is the implementation of machine learning (ML), which al-
lows robots to learn from their own practical experience and find the best way to perform the pre-
scribed operation. Usually, accuracy improvement methods cover the generation of a positioning 
error map for the whole robot workspace, providing corresponding correction models. However, 
most practical cases require extremely high positioning accuracy only at a few essential points on 
the trajectory. This paper provides a methodology for the online deep Q-learning-based approach 
intended to increase positioning accuracy at key points by analyzing experimentally predetermined 
robot properties and their impact on overall accuracy. Using the KUKA-YouBot robot as a test sys-
tem, we perform accuracy measurement experiments in the following three axes: (i) after a long 
operational break, (ii) using different loads, and (iii) at different speeds. To use this data for ML, the 
relationships between the robot’s operating time from switching on, load, and positioning accuracy 
are defined. In addition, the gripper vibrations are evaluated when the robot arm moves at various 
speeds in vertical and horizontal planes. It is found that the robot’s degrees of freedom (DOFs) 
clearances are significantly influenced by operational heat, which affects its static and dynamic ac-
curacy. Implementation of the proposed ML-based compensation method resulted in a positioning 
error decrease at the trajectory key points by more than 30%. 

Keywords: online machine learning; deep-q learning; positioning accuracy; industrial robot; vibra-
tions 
 

1. Introduction 
Robots are used in various processes, including manufacturing, entertainment, ser-

vices, and scientific research. To maintain a technical edge and thereby remain competi-
tive, more and more businesses are applying advanced technology and programming so-
lutions to their operational processes [1]. Such a wide application encourages the devel-
opment of universal robotic systems and requires research of their capabilities and per-
formance characteristics. 

In general, industrial robots provide high-level static and dynamic positioning accu-
racy. Nevertheless, they must be maintained to ensure that they continue to meet the con-
ditions for which they have been programmed and in which they operate [2]. Therefore, 
for each specific task, it is important to determine the following: (i) positioning accuracy 
(positioning error between stated and the real position of arm end effector); (ii) repeata-
bility (positioning error between real positions of arm end effector performing repeating 
movements); (iii) other parameters, which are considered to be unique characteristics of 
the particular machine [3]. Positioning accuracy depends on a number of actions includ-
ing, but not restricted to the following: (i) the parameters of the drives guiding the robot’s 
movements; (ii) tolerances in manufacturing parts of the machinery; (iii) tolerances due 
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to the articulation of the robot’s chains [4]; (iv) control algorithms [5,6]; (v) dynamic prop-
erties of the mobile platform [7,8], and (vi) robot arm properties [9,10]. Each of the factors 
may become important for the accuracy of the robot, depending on its type, lifting capac-
ity, and operational conditions [4]. Due to the complex nature of robots, the increasing 
positioning accuracy of robotic installations develops challenging tasks. The positioning 
errors in offline mode can be determined using special algorithms [11] and mathematical 
models [12–15]. Common positioning accuracy problems in path and trajectory planning 
can be resolved by improving offline programming software when the code for a robot is 
generated automatically or by implementing online feedback [16–20]. However, typical 
compensation methods are limited by the chaotic nature of the positioning errors. There-
fore, more adaptive methods, such as machine learning (ML), can increase positioning 
accuracy by compensating for positioning errors in particular cases [21,22]. Advances in 
ML with respect to simple error compensation are in the accountancy of feature-chaotic 
robot error distribution about positioning points. ML ensures respect for robot fluctuation 
and fits into the prescribed tolerance field. There are a few cases [23–26] of ML approaches 
compensating for the positioning errors. Chen and Zhang developed an ML kinematics-
based positioning error compensation method for high-precision mechanical machining 
operations [26]. This positioning error compensation method provided good results, but 
it contains sophisticated procedures due to its complexity and use of excessive data. More 
to say, it combines the following: analytical modeling; extended Kalman filtering; spatial 
interpolation algorithm; an adaptive mesh division algorithm, and an inverse distance 
weighted interpolation algorithm. To use it at a few trajectory points, this method be-
comes too costly. 

Moreover, ML could be implemented to improve the trajectory-planning process [27–
29] or reduce vibrations [30,31]. 

The main aim of our research is to create a methodology to increase industrial robot 
positioning accuracy and minimize robot end-of-arm vibrations by applying ML in online 
mode. This methodology will be used to compensate for positioning errors by shifting the 
destination point or altering the moving velocity of the end-of-arm reference point before 
defining the forward kinematic task. The method is focused on destination point approach 
accuracy in defined arbitrary robot positions. Moreover, our proposed approach suits well 
for industrial robots with typically closed controllers since position correction is per-
formed externally with respect to the robot controller; thus, modified motion commands 
to target coordinates are processed in a standard way. 

2. Concept of Research 
This paper focused on creating a universal methodology for most types of industrial 

robots, which can increase positioning accuracy at the robot trajectory endpoints. One of 
the pillars of ML is mathematical optimization, which involves the numerical computa-
tion of parameters for a system designed to make decisions based on unseen data [32–34]. 
While the ML procedure is based on existing data collection, such a method all the time 
remains retrospective and reflects errors in previous applications with corresponding load 
cases. The use of the robot for precise machining or assembly operations requires data 
about the vibration level and settling time. This will be critically important in addition to 
static positioning error values and directions. The ML procedure enables a decrease in 
positioning error values, and end-of-arm vibration influences the resulting accuracy. Nev-
ertheless, the robot workspace mapping procedure, which provides error values and di-
rection at any point of the workspace, all the time remains inaccurate for each particular 
case. 

It is possible to calculate optimal parameters for a given learning problem using cur-
rently available data [35]. The collection of data required for ML is a complex process, 
defined by the robot design, its characteristics, and the aim of ML implementation. 
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The procedure of implementing our proposed ML method is divided into the follow-
ing three phases: (i) initial preparation, (ii) positioning task formulation, and (iii) optimi-
zation (Figure 1). 

 
Figure 1. Simplified block diagram of positioning accuracy increase procedure by implementing ML 
method. RF—reference point. 

The success of the ML procedure depends on the quantity and quality of data gener-
ated during initial preparation. This phase includes experiments for the definition of the 
main robot’s characteristics, such as positioning accuracy, reference point vibration level, 
statistical evaluation, and analysis of obtained data. The initial preparation procedure 
should be performed for all robot trajectory points of interest. This procedure must be 
repeated in cases of mechanical wear, change of tool configuration, or essential variation 
of environmental conditions. 

The obtained data shows the technical conditions of the robot since these data consist 
of a set of dependencies between positioning errors, vibration level, reference point posi-
tion, operating time, robot speed, and load. In the general case, these dependencies can be 
expressed as follows: 

�
∆𝑥𝑥,𝑦𝑦,𝑧𝑧 = 𝐹𝐹�𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑉𝑉,𝑀𝑀, 𝑡𝑡𝑜𝑜𝑜𝑜�
𝜀𝜀𝑥𝑥,𝑦𝑦,𝑧𝑧 = 𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑉𝑉,𝑀𝑀)  (1) 

where: Δx,y,z is the overall positioning error, εx,y,z is the overall level of reference point vi-
brations, x y z are coordinates of robot reference point, V is the speed of reference point, 
M is load, top is the time from the moment when a robot was switched on. 
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The second phase of our proposed ML method is the Formulation of the positioning 
task. In this phase, it is necessary to define the required position and speed of the reference 
point (x y z, V) and load (M). Moreover, it is necessary to specify the following limitations: 
acceptable overall positioning error Δmin, and overall vibration level of reference point εmin. 
In general, case limitations can be identified as follows: 

�
∆𝑥𝑥,𝑦𝑦,𝑧𝑧≤ ∆𝑚𝑚𝑚𝑚𝑚𝑚
𝜀𝜀𝑥𝑥,𝑦𝑦,𝑧𝑧 ≤ 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

Moreover, to ensure stable operation of the ML algorithm and avoid looping in the 
algorithm (when the desired accuracy cannot be achieved), it is necessary to include a 
parameter specifying the maximum number of iterations kmax. 

The third phase is the Optimization procedure, which contains the cycle during 
which the optimization algorithm is used to obtain the most suitable compensation pa-
rameters in order to achieve the required positioning accuracy and an acceptable level of 
reference point vibrations. 

The ML algorithm runs with each new positioning task; ML selects compensation 
parameters and predicts the expected positioning error Δx,y,z, and reference point vibration 
level. This prediction is based on experimentally defined data obtained during the Initial 
preparation phase. After defining the expected positioning error Δx,y,z and reference point 
vibration level εx,y,z, their values are compared with the limitations. If positioning error 
and reference point vibration level correspond to the limitations of Equation (2), then 
modified coordinates of the required reference point position and speed are transferred 
to the robot controller. In case if results do not correspond to the limitations, the data is 
saved and checked if the maximum number of iterations kmax are reached. The optimiza-
tion of compensation parameters is performed many times until the limit of iterations is 
reached. In case if the maximum number of iterations is not achieved, the program selects 
the best result from all previous iterations. 

Deep q-Learning Algorithm 
The deep Q-learning algorithm was implemented to realize the mentioned ML pro-

cedure. The advantage of this algorithm in comparison to others is emphasized due to its 
efficiency in similar problems and its relatively simple implementation [36–38]. The deep 
Q-learning algorithm combines the Q-learning algorithm and a deep artificial neural net-
work. The idea of Q-learning is based on the perception of the environment and state to 
take respective actions in order to achieve the maximum reward. A neural network ena-
bles the algorithm to operate in a much larger environment and optimize calculations pro-
cedure by enabling approximation features. It allows the algorithm to observe the pattern 
in the environment and discover the optimal sequences of actions instead of calculating 
and evaluating each state and the value of each action at each point in the environment. 
The same principle was used to optimize the definition of the algorithm loss function. We 
used the stochastic gradient descent method (SGD) [35] to define the function by the the-
oretical gradient calculated from randomly selected data points instead of calculating the 
actual gradient from the entire dataset. Such an approach diminishes the dependency of 
obtained data from strong dataset influence on functional distribution. Other parameters 
of the implemented algorithm were selected experimentally by evaluating their impact on 
positioning accuracy after many trials in a separate study. The configuration of the algo-
rithm used in this study is provided in Table 1. 
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Table 1. Parameters of the implemented algorithm. 

Parameter Activation Function Optimizer Hidden Neurons Hidden Layers Replay Memory Temperature 
Value Softsign SGD 37 1 100,000 70 

The parameters within Table 1 were defined through the experimental running of the 
algorithm. Process activation through the Softsign procedure corresponds to the robot 
learning mode, while there are possibilities for other functions. The activation margin 
(sensitivity to the activation condition) needs redefinition; the ML process converges cor-
rectly and, within 1000 iterations, achieves learning process influence saturation. The im-
plemented optimizer—SGD—corresponds to our purposes and achieves the prescribed 
result. A number of neurons is chosen according to the desired process parameter resolu-
tion, and the number of hidden layers is naturally chosen as one according to the dimen-
sionality of the ML process. The amount of replay memory is defined by the experimental 
test, and it occurs outside our paper scope as well as the temperature parameter. 

Furthermore, this paper provides a detailed methodology for experimental research 
and data collection for ML. 

3. Experimental Research 
3.1. Experimental Setup 

The experiments were performed using the KUKA-YouBot robot (KUKA, Augsburg, 
Germany) as an industrial robot testbench; it was fixed to a special stable base. The robot’s 
geometric parameters and main characteristics are provided in Table 2 [39]. Positions of 
the robot’s gripper were detected using two USB cameras with a resolution of 1920 × 1080, 
a checkerboard matrix of 4 × 8 mm size, and a user-defined function, implementing the 
detect Checkerboard Points procedure in MatLab (Figure 2). According to [40], the use of 
such a measurement method can ensure an average measurement deviation better than 
0.0004 mm. 

 
Figure 2. Experimental setup for measurements of positioning accuracy: (a) general view; (b) posi-
tion of the cameras; (c) accelerometers mounted on robot gripper. 1—base; 2—robot; 3—USB cam-
eras; 4—based on which are mounted cameras; 5—personal computer; 6—optical checkerboard ma-
trix; 7—holder for cameras; 8—accelerometers. 
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Table 2. General characteristics KUKA-YoubBot arm [39]. 

General Information Axes Motion Range, Speed 
Serial kinematics 5 axes Axis 0 (A0) +/−169°, 90°/s 

Height 655 mm Axis 1 (A1) +90°/−65°, 90°/s 
Work envelope 0.513 m3 Axis 2 (A2) +146°/−151°, 90°/s 

Weight 6.3 kg Axis 3 (A3) +/−102°, 90°/s 
Payload 0.5 kg Axis 4 (A4) +/−167°, 90°/s 

The cameras were fixed by a special holder positioned at a 90° angle relative to each 
other to resolve spatial coordinates of the end-of-arm reference point (Figure 2b). The 
holder with attached cameras was screwed to the same base as the robot. Two special 
checkerboard patterns (identification marks for cameras) were attached to the gripper 
(Figure 2b,c). 

Absolute vibration accelerations of the end-of-arm reference point were measured 
using industrial accelerometers Ini 603C01 (PCB Piezotronics, Depew, NY, USA) with a 
measurement range of 0.5~10,000 Hz and an acceleration limit of 51 g. Accelerometers 
were attached to the gripper in three perpendicular directions, as shown in Figure 2c. Sig-
nals from accelerometers were collected using the data acquisition system USB-4432 (Na-
tional Instruments, Austin, TX, USA). 

Ambient temperature was measured using a digital thermometer MWF-DT-616CT 
(CEM Corporation, Matthews, NC, USA), with a resolution of 0.1 C. Loads were weighted 
using Silver crest HG01025 (Silvercrest, Corona, CA, USA) scales, with a resolution of 
0.001 kg. For the determination of the required warm-up time, the unloaded robot moves 
at 50% of the max joint speed (which is 90°/s for all axes) to the trajectory endpoint (Figure 
3), rotating joints by the following angles: φ0—90°, φ1—15.2°, φ2—45.7°, φ3—44.2°, φ4—
20°, and backward. Then the robot returns to the start position, waits for 3 s, and the image 
of the checkerboard matrix is captured. The experiment trials took place after long opera-
tion breaks of 12, 2, and 1 h. In the case of a 2- and 1-h operation break, the warming 
procedure was applied before the experiment. Firstly, the robot was warmed up using a 
30 min warming program and 2- and 1-h operation breaks afterward, correspondingly. 

 
Figure 3. Position of the end-of-arm reference point: (a) start (measuring) position; (b) endpoint of 
the trajectory. 

The positioning accuracy measurements were performed in the same conditions, but 
in this case, experiments were carried out with 10%, 50%, and 100% of the maximum joint 
speed, without load, and loaded by 0.250 kg and 0.500 kg weights. Each measurement was 
repeated 20 times. 
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The proposed methodology for the online ML procedure was tested for 2 different 
robot configurations, imitating the pick-and-place task. In each individual case, using our 
online ML method, the procedure can be performed at any chosen position in the robot 
workspace. 

3.2. Evaluation of the End-of-Arm Reference Point Vibrations 
The dynamic parameters of the robot—the end-of-arm reference point vibration level 

and settling time when the robot stops at the desired positions—were evaluated using 
accelerometers (Figure 2c). There are the following three parameters for measuring vibra-
tions: displacement, velocity, and acceleration. The evaluation of vibration acceleration 
provides the best sensitivity in higher frequencies and suits well for evaluating impacts 
caused by bearing damage, abnormal gears, and noise. Moreover, this method is recom-
mended when it is necessary to evaluate forces and stresses acting on or rotating parts. 
Moreover, measurements of acceleration do not require reference points. Therefore, it is 
more convenient for industrial robots. 

The measurements were carried out at the following three different speeds of the 
joints of the robot: at 10%, 50%, and 100% of the maximum (90°/s) speed of the joint, using 
the same robot movement trajectory as shown in Figure 3. The measurement was repeated 
three times. 

The separate DOF effect on the robot end-of-arm vibrations was evaluated by rotat-
ing each robot joint separately. For this purpose, joints I-V at coordinates φ0–φ4 were ro-
tated clockwise by a 60° angle at maximum (90°/s) speed from the start position Figure 4. 
The end-of-arm reference point vibrations were measured after the movement of each 
joint by 60° at a maximum (90°/s) speed. After 10 s, the joints were rotated back to the start 
position. Measurements were performed when the robot moved in forward and backward 
directions, and the procedure was repeated three times. 

 
Figure 4. The start position of the robot for the measurements of separate joint impact to robot vi-
brations. 

To define the impact of joint I (coordinate φ0, Figure 5) on robot end-of-arm vibra-
tions, joint I was rotated at 60° from the start position, and the vibrations were measured. 
The vibrations at the following two start positions were evaluated: (i) fully extended po-
sition (Figure 5a); (ii) compacted position (Figure 5b). 
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Figure 5. Start positions of the robot used for the measurements of gripper vibrations: (a) maximum 
peripheral reach on extended position, (b) compacted position. In both cases, the reference point 
was distanced from the z-axis origin by 200 mm. 

In a fully extended position robot’s own weight fully loads joint I. Other joints remain 
unloaded and stay in a singularity position. The compacted robot position is represented 
by the situation when joint I is loaded by half of the own weight of other links. 

All vibration measurements were performed according to the flowchart provided in 
Figure 6. 

 
Figure 6. Flowchart of the vibration measurement process. 

Signals from three accelerometers were recorded continuously during robot move-
ment between the endpoints of the trajectory. Later acquired data were processed offline 
(Figure 7), defining transient processes due to robot stops at the trajectory endpoints. 
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Figure 7. Definition of vibration parameters from experimental data. 

Main parameters (end-of-arm reference point maximum peak-to-peak vibration am-
plitude, settling time) were extracted from raw data, processed statistically, grouped ac-
cording to testing conditions, and represented in graphical form. 

3.3. Calculations 
Overall positioning accuracy from measurements in separate axes was evaluated ac-

cording to the methodology provided by ISO 9283:1998 [41]. It defines positioning accu-
racy APp as the deviation between a reference position and the mean of attained positions 
while approaching reference positions from the same direction as follows: 

𝐴𝐴𝑃𝑃𝑜𝑜 = �(�̅�𝑥 − 𝑥𝑥𝑐𝑐)2 + (𝑦𝑦� − 𝑦𝑦𝑐𝑐)2 + (𝑧𝑧̅ − 𝑧𝑧𝑐𝑐)2, (3) 

where 𝑥𝑥𝑐𝑐  𝑦𝑦𝑐𝑐  𝑧𝑧𝑐𝑐  are coordinates of the prescribed end-of-arm reference point position, 
and �̅�𝑥, 𝑦𝑦�, 𝑧𝑧̅ are mean values of the resulting position. 

General robot positioning error consists of accumulated values from all errors, and it 
is an object of ML-obtained compensation. General error from three-axis measurements 
for the experiments in 1, 2, and 12 h evaluated using the simplified equation, since target 
position defined as 𝑥𝑥𝑐𝑐 = 0, 𝑦𝑦𝑐𝑐 = 0 and 𝑧𝑧𝑐𝑐 = 0 as follows: 

𝐴𝐴𝑃𝑃𝑜𝑜 = �(�̅�𝑥)2 + (𝑦𝑦�)2 + (𝑧𝑧̅)2. (4) 

where �̅�𝑥 𝑦𝑦� 𝑧𝑧̅ are calculated from experimental data as follows: 

�̅�𝑥 = 1
𝑚𝑚
∑ 𝑥𝑥𝑗𝑗𝑚𝑚
𝑗𝑗−1  , 𝑦𝑦� = 1

𝑚𝑚
∑ 𝑦𝑦𝑗𝑗𝑚𝑚
𝑗𝑗−1  , 𝑧𝑧̅ = 1

𝑚𝑚
∑ 𝑧𝑧𝑗𝑗𝑚𝑚
𝑗𝑗−1 , (5) 

where: 𝑥𝑥𝑗𝑗 𝑦𝑦𝑗𝑗 𝑧𝑧𝑗𝑗 are coordinates of the resulting position, and n is the measurement cycle 
number. 

Robot positioning repeatability RPl, also was evaluated using the methodology pro-
posed in ISO 9283:1998. According to it, RPl value is the radius of the sphere that defines 
the closeness of an attained position after n attempts to achieve the same position from 
the same direction as follows: 

𝑅𝑅𝑃𝑃𝑙𝑙 = 𝑙𝑙 ̅+ 3𝑆𝑆𝑙𝑙, (6) 

here: 

𝑙𝑙 ̅ = 1
𝑚𝑚
∑ 𝑙𝑙𝑗𝑗𝑚𝑚
𝑗𝑗=1 ;   𝑙𝑙𝑗𝑗 = �(�̅�𝑥 − 𝑥𝑥𝑗𝑗)2 + (𝑦𝑦� − 𝑦𝑦𝑗𝑗)2 + (𝑧𝑧̅ − 𝑧𝑧𝑗𝑗)2; 𝑆𝑆𝑙𝑙 = �∑ (𝑙𝑙𝑗𝑗−𝑙𝑙)̅2𝑛𝑛

𝑗𝑗−1

𝑚𝑚−1
. (7) 

Robot positioning repeatability was evaluated using the same experimental data as 
used for the positioning accuracy measurement; values obtained after the 14th minute of 
the experiment were used. 
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3.4. Statistical Evaluation of Research Data 
The confidence of results for robot gripper vibration level and settling time measure-

ments were evaluated by statistical parameters. Measurement data was assessed by cor-
relation-regression analysis. Arithmetic averages, their standard deviations, and confi-
dence intervals at a 0.95 probability level were calculated according to [42]. 

In correlation-regression analysis, the difference between the measured result 𝑚𝑚𝑣𝑣 
and real measured parameter value rv is defined as absolute measurement error as follows 
[42]: 

∆𝑚𝑚𝑣𝑣 = 𝑚𝑚𝑣𝑣 − 𝑟𝑟𝑣𝑣 . (8) 

The measured parameter 𝑚𝑚𝑣𝑣  have a prescribed probability, representing the real 
value of positioning error if the exact measurements are repeated n times. From several 
measurements, we calculated the arithmetic mean 𝑚𝑚𝑣𝑣���� as follows: 

𝑚𝑚𝑣𝑣���� =  
1
𝑛𝑛

 �𝑚𝑚𝑣𝑣𝑚𝑚

𝑚𝑚

𝑚𝑚=1

 =  
𝑚𝑚𝑣𝑣1 + 𝑚𝑚𝑣𝑣2 + ⋯𝑚𝑚𝑣𝑣𝑚𝑚

𝑛𝑛
 (9) 

Absolute measurement error consists of systematic, random, and random errors of 
deduction. Using correlation-regression analysis, only random errors were estimated in 
statistical data evaluations. In our case, we evaluated only random errors, as if the meth-
odology and measurement devices are far more accurate than expected error, systematic 
and accidental deduction errors are not significant and therefore cannot be considered 
[42]. To evaluate random error, it is necessary to calculate the experimental standard de-
viation σ of each individual measurement as follows: 

𝜎𝜎 = �∑ (𝑚𝑚𝑣𝑣−𝑚𝑚𝑣𝑣�����)2𝑛𝑛
𝑖𝑖=1

𝑚𝑚−1
. (10) 

The experimental standard mean deviation Smd is calculated by the following: 

𝑆𝑆𝑚𝑚𝑚𝑚 = 𝜎𝜎
√𝑚𝑚

 . (11) 

The random error of the measured parameter is calculated by the following: 

∆𝑚𝑚𝑣𝑣,𝑚𝑚,𝑃𝑃 =  𝑆𝑆𝑐𝑐 ∙ 𝑆𝑆𝑚𝑚𝑚𝑚,. (12) 

where: Sc—the value of the Student Criterion selected according to the number of experi-
ment variables (n − 1) and the probability level (α = 0.95). 

The final result of the measured (n times) value 𝑚𝑚𝒗𝒗 is expressed as the sum of the 
arithmetic mean 𝑚𝑚𝒗𝒗���� and the random error ∆mv,n,P as follows: 

𝑚𝑚𝑣𝑣���� ± ∆𝑚𝑚𝑣𝑣,𝑚𝑚,𝑃𝑃 . (13) 

4. Results 
4.1. Robot’s Accuracy after a Long Operation Break 

The robot’s accuracy after a long operation break degenerates because of the temper-
ature regime change and lubricant film disappearance from joint clearances. Thus, the 
measurement of the positioning error of the robot after a long operation break is important 
for determining the accuracy of restoring to operating time. To determine the robot’s po-
sitioning accuracy in time, the positioning error measurement was performed in the x, y, 
and z-axes when the robot starts to operate after a 12-h break (Figure 8a). In all axes, po-
sitioning error increases in the first 14 min of operation time. Positioning errors in the x 
and y-axes are almost identical as follows: after 14 min, errors are 0.09 mm in both the x 
and y-axis, while in the z-axis, the error is 0.12 mm. 
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Figure 8. Positioning error dependency on time after: (a) 12 h operation break; (b) 1-h operation 
break; (c) 2-h operation break; (d) general positioning errors APp, calculated by Equation (4) after 1, 
2, and 12 h breaks. Trend lines—regression approximation. 

Regression approximation parameters are provided in Table 3. 

Table 3. Coefficients for the regression estimated robot positioning error. 

Operation Break Axis a0 a1 a2 a3 
1-h x 2.8464 × 10−4 5.5500 × 10−3 −1.9554 × 10−4 2.1655 × 10−6 

 y 1.6700 × 10−3 7.7700 × 10−3 −3.3957 × 10−4 4.9016 × 10−6 
 z −4.6000 × 10−3 1.3590 × 10−2 −6.3174 × 10−4 9.5758 × 10−6 
 APp 8.5400 × 10−3 2.2560 × 10−2 −1.0000 × 10−3 1.4723 × 10−5 

2-h x −7.3200 × 10−3 1.2260 × 10−2 −6.1872 × 10−4 9.9370 × 10−6 
 y −5.8300 × 10−3 1.1690 × 10−2 −5.0854 × 10−4 7.0670 × 10−6 
 z −9.7000 × 10−3 1.8300 × 10−2 −8.2850 × 10−4 1.2126 × 10−6 

 APp −1.1120 × 10−2 2.4470 × 10−2 −1.1200 × 10−3 1.6540 × 10−5 
12-h x 8.0000 × 10−3 1.2340 × 10−2 −6.1009 × 10−4 9.8658 × 10−6 

 y 7.5200 × 10−3 1.1750 × 10−2 −5.5304 × 10−4 8.5685 × 10−6 
 z −2.7500 × 10−3 1.5180 × 10−2 −6.0424 × 10−4 7.8195 × 10−6 
 APp 4.5125 × 10−4 1.5930 × 10−2 −6.9624 × 10−4 9.9989 × 10−6 

Results of experiments performed after a 1-h and 12-h operation break showed that 
the required warm-up period is 14 min (Figure 8b). However, with a 1-h break, position-
ing errors decreased compared to a 12-h break, causing the following errors: 0.05 mm in 
the x-axis, 0.06 mm in the y-axis, and 0.09 mm in the z-axis. This phenomenon can be 
explained by the fact that 1 h is not enough for all joints to cool down to the initial tem-
perature and to sediment the lubricant layer. The uneven distribution of positioning errors 

(a) (b) 

(c) (d) 
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in the x and y axes requires an increase in the operational break. To check this assumption, 
the same experiments were performed after a 2 h break (Figure 8c). 

It was observed that the time until positioning errors become stable is 12.5 min for 
the y and z-axes and 11.2 min for the x-axis. The stable positioning error in the x-axis is 
0.07 mm, 0.08 mm in the y-axis, and 0.12 mm in the z-axis. This situation is quite similar 
to the case when the robot starts operating after a 12-h break. Small differences can be 
explained by assuming that after a 2-h break, the robot almost cools down, but some ele-
ments in separate joints may still have higher temperatures. 

From the dependencies between positioning error fluctuations over time, we can de-
fine the minimum required warm-up period for the robot or predict the positioning accu-
racy in respect of operating time. Moreover, the obtained data allow us to define the ro-
bot’s overall positioning accuracy and repeatability. 

Results presented in Figure 8d correspond to results presented in Figure 8a–c where 
it is seen that after a lengthy break (12 h), overall positioning precision depends upon 
time. In the first 13 min of operation after the 1-h break, positioning error slightly increases 
up to 0.12 mm. After a 2-h break, the error reaches 0.16 mm, and finally 0.17 mm after a 
12-h break. This allows us to state that the minimum warm-up time required for the robot 
to reach stable positioning accuracy values is more than 14 min. 

The repeatability error of the robot was specified using experimental data provided 
in Figure 8d. The overall evaluation of repeatability error after data processing is 0.0146 ± 
0.00526 mm (Equations (6) and (7)). 

The collected data suggest that, if the robot stays idle for an hour or more, in order to 
achieve a higher level of accuracy and repeatability, it is recommended that within the 
first 14 min after the break, do not perform any operational action, but rather use some 
warm-up programs. In other cases, we can provide coordinates of the prescribed position, 
which should be adjusted according to the dependencies obtained during this research. 
The value and direction of defined positioning error become important parameters for 
compensation used in ML-based robot trajectory correction. The ML process will use the 
value and direction of the defined positioning error as parameters and use them as the 
target line for further process of ML. The orientation of the error vector also has meaning 
for error compensation. In the case of a simulation procedure rather than an experimental 
ML approach, there is a chance to significantly decrease learning time. Obtained data will 
have a value not only as an absolute achieved point but also as a beacon for further learn-
ing, especially when another loading configuration or load occurs. 

We observed the positioning error dependencies over time and after a long operation 
break. These dependencies can be included in ML algorithms to compensate for position-
ing errors at different periods of the warming process operating times. 

4.2. Definition of Robot Positioning Accuracy 
The accuracy of robot positioning was examined when the robot was moved at vari-

ous speeds with different loads. Positioning errors were measured in the following three 
perpendicular directions: x, y, and z (Figure 9). The average distribution of positioning 
errors was calculated using Equation (12) when the robot moves at the speed values of 
10%, 50%, and 100% of maximum speed for every joint being unloaded or with 0.25 kg 
and 0.50 kg loads. 



Machines 2022, 10, 940 13 of 21 
 

 

 
Figure 9. Positioning errors of the robot when it operates at various speeds and loads. 

It was defined that in all researched cases, the highest positioning error value appears 
along the z-axis operating at maximum speed (90°/s). When the robot moves in unloaded 
mode, the average positioning error in the z-axis is 0.0014 mm. When the robot moves 
with a 0.50 kg load, this error increases up to 0.02 mm. A similar tendency is noticed when 
analyzing the accuracy of the x and y-axis, but in those cases, when the values of position-
ing errors are lower compared with values of the z-axis as follows: 0.001 mm when the 
robot moves unloaded and 0.005 mm when the robot moves with a 0.50 kg load. 

The results of the measurements allow us to state that if the robot is warmed up, 
positioning accuracy of ±0.03 mm can be achieved with a maximum (0.50 kg) weight at 
the highest speed (90°/s). At lower loads or at lower speeds, it is possible to achieve a 
positioning accuracy of up to ±0.01 mm (Figure 9). 

Results obtained from accuracy and repeatability measurements show that at desired 
conditions, the robot achieves better parameters compared to the ones declared by the 
manufacturer [39]. The achieved values of positioning error with prescribed load and 
speed let us compensate key-point coordinates through ML procedure and achieve actual 
positioning accuracy higher than guaranteed by the robot producer. 

Moreover, ML can compensate for the dynamic error of the robot, but for this pur-
pose, it is necessary to analyze the actual vibrations during the robot’s movement. Meas-
urements of robot vibrations allow us to fulfill information about positioning accuracy by 
evaluating such parameters as maximum vibration level and settling time when the robot 
stops at the desired position. The results of these researches are presented in the next sub-
chapter. The error values are derived from experimental research as error ranges, and the 
direction of error known as well; therefore, the compensation is performed in advance for 
defined load and robot configuration. 

4.3. Measurement of the Robot Vibrations 
Data obtained from robot vibration measurements allowed us to define the average 

vibration level of the end-of-arm reference point and settling time. These characteristics 
describe the robot’s dynamics and have a great influence on its accuracy and operating 
speed. In addition, these characteristics allow indirect evaluation of position overshoots 
and show the minimum required time to reach a stable position after movement. This is 
extremely important in robotics for the assembly of precise objects and the cooperation of 
several robots. 

Statistically evaluated results show the average level of the reference point absolute 
vibration acceleration values (Figure 10). 
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Figure 10. Peak-to-peak vibrations amplitudes: (a) at the start (measuring) position (Figure 3a), (b) 
at the endpoint of the trajectory (Figure 3b). Statistical evaluation was performed according to Equa-
tions (8)–(13). 

From Figure 10a, it is seen that the average amplitude of the vibrations increases 
when the speed of the robot increases practically on all measured axes. The highest values 
of vibration levels were recorded at the highest speed. Comparing vibration levels in sep-
arate axes, we noticed that the highest values (0.75 g at speed 10% and 1.6 g at speed 100%) 
were defined on the y-axis. 

Results presented in Figure 10b show the following inverse tendency: here, the high-
est values of vibration level occur when the robot moves at 10% speed. By analyzing the 
vibration level in the z-axis direction, it was 0.87 g at 10% speed, 0.6 g at 50% speed, and 
0.75 g at 100% speed. A similar tendency was also defined by analyzing the x and y-axes. 

Controversial results regarding Figure 10a,b can be explained by the fact that when 
the robot moves up from the start position, the gravitational force acts as an additional 
load; when the robot moves down from the endpoint of the trajectory, gravity acts in the 
same direction as robot displacement (Figure 2). This analysis was useful to evaluate the 
settling time of vibrations (Figure 11). 

  

Figure 11. Settling time: (a) at the start (measuring) position (Figure 3a) and (b)—at the endpoint of 
the trajectory (Figure 3b). Statistical evaluation processed according to Equations (8)–(13). 

Settling time for all axes increases with movement speed; however, the resulting set-
tling time of the x-axis at 50% speed does not follow this tendency (Figure 11a). At the 
ends of the trajectory (Figure 3), the lowest defined settling time is 0.1 s, whilst the highest 
value is equal to 0.5 s. Comparing the results presented in Figure 11a,b, the impact of the 
direction of gravity on the direction of the robot’s movement is demonstrated. Settling 
time in the case when the robot moves from its starting point is about 0.07 s. If the robot 
moves from its trajectory endpoint, it does not exceed 0.2 s. Results presented in Figures 
10 and 11 allow us to state that the vibration level when the robot stops depends not only 

(a) (b) 

(b) (a) 
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on the movement speed but also on the movement direction. The results of all experi-
mental research revealed the settling time did not exceed 0.5 s. 

4.4. Separate Joint Vibrations Evaluation 
To evaluate the behavior of each joint, we performed a separate experiment, which 

allows defining the influence of each joint on the general vibrations of the entire robot 
(Figure 12). 

  

Figure 12. Peak-to-peak vibrations amplitudes evaluated after rotation of separate joints in (a) clock-
wise direction; (b) anti-clockwise direction. Statistical evaluation processed according to Equations 
(8)–(13). Robot start position marked in Figure 3a. 

Peak-to-peak vibration amplitudes were evaluated after the rotation of separate 
joints (Figure 4). The largest measured vibration amplitude was recorded at the x and y 
axes. The largest amplitude of all measurements was recorded when rotating joint II in a 
clockwise direction (0.6 g), and the smallest amplitude was recorded when rotating joint 
V (in a counterclockwise direction, 0.05 g). Probably some variations in clockwise and 
counterclockwise directions were produced by gravity, which was affecting the robot’s 
movement. Results of measured settling time when separate joints were moved are pre-
sented in Figure 13. 

  

Figure 13. Settling time evaluated after rotation of separate joints in: (a) clockwise direction; (b) 
counterclockwise direction. Statistical evaluation was performed by Equations (8)–(13). Robots start 
position is shown in Figure 3a. 

From Figure 13a, it is seen that settling time had the greatest value in the x and y 
directions when joint II was rotated. When the robot joints move clockwise (Figure 13b), 
the longest settling time was recorded when rotating the second and third joints. The 
shortest settling time was detected while moving joint I and joint V in both cases. Results 
obtained from this experiment show that dynamic robot characteristics are mostly affected 

(b) 

(b) 

(a) 

(a) 
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by the characteristics of the second and third joints, and the settling time at various posi-
tions can be more than 0.5 s. 

4.5. Extended Position Vibration Measurement 
The impact of the first joint characteristics on the robot vibrations when this joint is 

loaded by maximum force due to an extended robot arm was evaluated (Figure 5). Under 
such conditions, the maximum vibration level is expected to be influenced by the gravity 
force direction. 

From Figure 14, the highest level of vibration, 0.46 g, was detected in the x-axis when 
the robot is at an extended position; in the compact position case, this value was 0.27 g. 
The lower levels of vibrations were detected in the y and z-axes. The moderately high level 
of vibrations in the z-axis allows us to state that during the movement of the first joint, the 
whole structure of the robot is kinematically excited. In the extended position, the longest 
settling time of 0.56 s was defined in the z-axis, while in the compact position, the longest 
settling time of 0.44 s was detected in the y-axis. This can be explained by the fact that in 
various configurations, due to the distribution of mass centers, the variable loads and in-
ertia forces in all joints can be detected. Thus, it could be concluded that in most uncom-
fortable configurations, settling time will not exceed 0.6 s. 

  

Figure 14. Influence of the robot positions (extended position and compact position) in to (a) peak-
to-peak vibrations amplitudes; (b) settling times. Statistical evaluation was performed by Equations 
(8)–(13). 

4.6. Experiment with Implemented Correction 
The correction was applied to the real (Kuka YouBot) robot using processed experi-

mental data. The flowchart of the performed procedure is presented in Figure 15. During 
the first run, algorithms take experimentally defined data representing robot characteris-
tics and previous compensation values as input parameters and provide an output as a 
natural number that is later transformed into a new compensation value. 

The compensation parameters were applied by shifting the stated start and endpoint 
positions of the trajectory provided in Figure 3. The efficiency of the proposed methodol-
ogy was evaluated by measuring positioning accuracy at the start and endpoint of the 
robot trajectory (Figure 16). During the experiment, the robot was loaded with a 0.5 kg 
payload and moved at maximum velocity. 

(b) (a) 
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Figure 15. Flowchart of machine learning based positioning errors compensation procedure. 

  
(a) (b) 

Figure 16. Comparison of robot positioning accuracy before applying correction procedure and af-
ter. (a) Experiment at the start point (Figure 3a); (b) experiment at the endpoint (Figure 3b). 

The machine learning process was terminated after 780 iterations by the program 
because the general positioning error stops to decrease. The ML process has different pro-
gress for overall positioning error in the start (Figure 3a) and endpoints (Figure 3b) of the 
trajectory. The learning process at the start point of the trajectory progresses at the 180th 
iteration, while the process at the endpoint of the trajectory starts approaching the learn-
ing target at the 180th iteration and ends at the 240th iteration. Differences in the learning 
process are influenced by the gravity force depending on the robot links’ configuration. 

From the obtained results, we defined the following: the overall positioning error at 
the start point decreases by 40%: from 0.021 mm to 0.0125 mm; the overall positioning 
error at the endpoint decreases by 34%: from 0.028 mm to 0.0185 mm. 

The proposed method deals with the complex improvement of robot accuracy in 
comparison with classic methods. Comparison of the proposed method to the existing 
classic ML methodologies has some scale problems. The online ML process, as proposed 
in the paper, can minimize robot positioning errors at the interesting point by compensat-
ing them in the operation online. Available offline learning procedures are focused on 
preparatory modes of robot’s implementation. Offline methods, as well as statistical ones 
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(workspace mapping), are not sensitive to the fluctuations of the robot operating process. 
In such a case, robot installation in the production enterprise begs for readjusting for the 
time being, while the proposed procedure is valid for active robot operation. The com-
plexity of the evaluated and compensated errors is hidden behind the process—we 
achieve a goal as a diminishing of robot error regardless of the actual coordinate position 
and configuration of the robot in the target point position. The distribution of the task 
components along the axes as it is performed for some methods here is not applicable. The 
disadvantage of the proposed method is some operational time for the ML procedure to 
set up compensation values, so actual disturbances of the robotic system can cause some 
periods of increased error values. The good point of the proposed method—initial data 
collection is possible to optimize. There are available synthetic (simulated) data imple-
mentations into the learning process and the use of advanced technical equipment for 
automated data collection. 

5. Conclusions 
The dynamic behavior of a robot is to a large extent affected by the robot’s warming-

up time, the load, the speed of movement, and the trajectory in the working space. The 
experimental research on warming-up time showed that the highest positioning error was 
0.12 mm if the robot operated without warm-up. The optimal time for warming up is 14–
15 min. The completed research allowed a conclusion that when the manipulator stays 
idle for 1 h or more, it is recommended to allow the manipulator to operate initially with-
out performing any work. Where the use of a warm-up program is inconvenient, higher 
positioning accuracy can be achieved by adjusting the prescribed positions according to 
experimentally defined dependencies between positioning errors and operating time. Im-
plementing ML here could compensate for positioning errors during the robot warming 
period if the learning procedure can be taken for many operation breaks. Robot repeata-
bility measured after the warming-up process was 0.0146 ± 0.00526 mm. 

Research performed when the robot moves at various speeds with various loads 
showed that the highest 0.019 mm positioning error appeared in the z-axis when the robot 
moves at its highest speed with a 0.50 kg load. The obtained results significantly exceed 
the tolerance of ±1.0 mm declared by the manufacturer. This allows us to state that ML 
can improve the accuracy of industrial robots with known operating and environmental 
conditions. ML is suitable for positioning static and dynamic error compensation for 
steady-state trajectory and fast accuracy improvement during initial or test operation. The 
obtained accuracy error value is better than that declared by the manufacturer, and it can 
even be improved for precision operations; the manufacturer could also implement this 
option using ML procedures. 

Results obtained from vibration measurements show that gripper vibration ampli-
tude mostly depends on the movement trajectory, speed, and direction; the highest meas-
ured peak-to-peak vibration amplitude, 1.6 g, was observed at maximum (90°/s) speed. 
Additional research performed with separate joints showed that the highest impact on the 
overall vibration level is on joint II and joint III if the robot operates in common configu-
rations. When the robot operates in the closed position, overall vibration levels are mostly 
affected by joint I. 

The results of the settling time measurements, in most cases, correspond to the results 
of vibration measurements. It was noticed that settling time in most of the tests depends 
on movement speed, while vibration amplitude is additionally affected by movement di-
rection. The longest settling time was defined as 0.55 s at maximum speed. Therefore, this 
allows us to state that when operating at maximum speed, the settling time for the robot 
can last up to 0.6 s. 

The set of results obtained from our research allows us to predict the behavior of the 
analyzed robot and to define its characteristics under various conditions. These results 
can be used to improve robot parameters for precise operations. Moreover, this result and 
methodology can be used as a basic database for creating and implementing in practice 
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various ML algorithms. To compensate for positioning errors, the data about the current 
robot operation must be collected and processed in a way suitable to further use in ML. 
First, positioning accuracy and vibrations under various conditions in positions that are 
important for the performing task and in which the accuracy is diminished (for example, 
near the singularity) should be determined experimentally. Second, the measurements of 
vibrations on the end-of-arm reference point, including measurements of separate joint 
impact to general vibration level, should be performed. Then the collected data can be 
processed using ML algorithms. 
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Nomenclature 

g Gravitational acceleration equivalent to ~9.81 m/s2 
φ Actual joint rotation angle, deg 
APp Overall positioning accuracy 
RPi Robot positioning repeatability 
mv Measured result 
rv The real measured parameter value 
△mv Absolute measurement error 
σ Experimental standard deviation 
Smd Experimental standard mean deviation 
∆mv,n,P The random error of the measured parameter 
Δ x,y,z Overall positioning error 
V Speed of reference point 
M Load 
top Time from the moment when the robot was switched on 
kmax Maximum number of iterations 
εx,y,z The overall level of reference point vibrations 
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