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Abstract: Due to the excellent image recognition characteristics of convolutional neural networks
(CNN), they have gained significant attention among researchers for image-processing-based defect
diagnosis tasks. The use of deep CNN models for rolling element bearings’ (REBs’) defect diagnosis
may be computationally expensive, and therefore may not be suitable for some applications where
hardware and resources limitations exist. However, instead of using CNN models as end-to-end
image classifiers, they can also be used to extract the deep features from images and those features can
further be used as input to machine learning (ML) models for defect diagnosis tasks. In addition to
extracting deep features using CNN models, there are also other methods for feature extraction from
vibration characteristic images, such as the extraction of handcrafted features using the histogram
of oriented gradients (HOG) and local binary pattern (LBP) descriptors. These features can also be
used as input to classical ML models for image classification tasks. In this study, a performance
comparison between all these image-processing-based defect diagnosis techniques was carried out in
terms of fault detection accuracy and computational expense. Moreover, based upon the detailed
comparison, a hybrid-ensemble method involving decision-level fusion is proposed, which is far less
computationally expensive compared to CNN models while using them as end-to-end classifiers.
The performance of all these models is also compared in the case of minimal training data availability
and for diagnosis under slightly different operating conditions to ascertain their generalizability and
ability to correctly diagnose despite the minimal availability of training data. The performance of the
proposed hybrid-ensemble method remained outstanding for the REBs’ defect diagnosis despite the
minimal of availability training data as well as the slight variation under operating conditions.

Keywords: rolling element bearings; image processing; intelligent defect diagnosis; artificial neural
network (ANN); convolutional neural network (CNN); K-nearest neighbor (KNN); support vector
machine (SVM); histogram of oriented gradients (HOG); local binary patterns (LBPs)

1. Introduction

Rolling element bearings (REBs) are an important part of rotating machines and their
damage may result in the unavailability of machines. Therefore, the accurate and timely
fault diagnosis of REBs is crucial for the operational availability of machines. Bearing fault
diagnosis using vibration data is a well-known method. Vibration analysis is conducted
in the time domain, frequency domain and time–frequency domain [1,2]. However, it is
an expert-exclusive task. Humans may not be very efficient in the timely management of
huge data. Intelligent fault diagnosis techniques based on artificial intelligence (AI) were
introduced by the researchers in order to reduce human intervention in this important
job and to relieve the experts from this daunting task. During the past two decades,
researchers have established many techniques for the defect diagnosis of REBs based on
artificial intelligence or classical machine learning models, such as artificial neural networks
(ANNs) [3–7], K-nearest neighbor (KNN) [5] and support vector machine (SVM) [6–9].
Moreover, comparisons between the performances of different ML models such as between
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ANN and KNN [10] and between ANN and SVM [11] have also been carried out for bearing
defect diagnosis.

Classical ML-based techniques involve feature extraction and selection, which still
require expert knowledge of these domains. In order to further automate the process
of fault diagnosis, deep learning (DL)-based techniques such as autoencoder (AE)-based
techniques, deep belief network (DBN)-based techniques and convolutional neural net-
work (CNN)-based techniques were introduced. DL-based models do not require manual
feature extraction and can automatically extract features from vibration data for end-to-end
diagnosis and further reduce human intervention in the process of fault diagnosis.

Convolutional neural networks are a special type of deep neural networks (DNNs) which
are famous for their image identification and classification ability [12]. One-dimensional (1D)
and two-dimensional (2D) CNN models have been used by the researchers for the defect
diagnosis of rolling element bearings. Raw vibration data can be directly used as input
to 1D-CNN models [13,14], however, for 2D-CNN models, vibration data must first to be
converted into representative images such as spectrograms [15–17], scalograms [17,18],
order maps [19] or other types of vibration images [20]. Afterwards, these images which
represent the vibration signal in image form are used as input to the 2D-CNN model. These
2D-CNN models are capable of performing end-to-end diagnosis without domain expert
involvement by automatically extracting the features from input vibration characteristic
images and learning them for correct classification. For this purpose, the CNN model can
be developed and trained from scratch or already developed and trained CNN models
on other types of datasets can be used with transfer learning. Training a CNN model
from scratch may require a large training dataset which is |mostly not available in the
case of REBs. Therefore, for defect diagnosis, different pretrained image classification
networks that have already learned to extract powerful and informative features from
training on a subset of the ImageNet database can be used by fine tuning the deeper
layers using the available bearings’ fault data. The ImageNet database is a large collection
of images annotated by humans for providing a comprehensive dataset to develop and
test computer vision algorithms [21]. It consists of over fifteen million labeled images
belonging to over 22,000 categories. This dataset can be used as a valuable resource for
object recognition and image classification applications. From 2010, an annual competition
called the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was started as
a benchmark competition in object category classification and detection. A subset of the
ImageNet dataset consisting of one thousand categories and more than one million images
is used for this competition [22]. The initial layers of the pretrained network are frozen for
generic feature extraction and a final few layers are retrained for the learning of specific
features [23]. Using a pretrained network with transfer learning is typically much faster and
saves in terms of computational cost as compared to training a network from scratch [24,25];
however, it is still computationally expensive and requires a lot of training time if GPU is
not available, and therefore, it may not be suitable for online monitoring and diagnosis
applications or in the presence of hardware and resource limitations.

Instead of using CNNs as end-to-end classifiers, they can also be used as deep feature
extractors, and these features can be used to train conventional ML models such as SVM,
KNN and ANN. Xie et al. compared different ML models for the fault diagnosis of
bearings using features extracted by a pretrained CNN model on a bearing dataset [26].
Moreover, image features can be extracted using descriptors such as the histogram of
oriented gradients (HOG) and local binary patterns (LBPs), whilst those features can be
used for fault diagnosis using conventional ML models. Khan and Kim performed the
diagnosis of bearing defects using the KNN classifier and LBP features extracted from
grayscale vibration images [27]. Kaplan et al. converted the bearings’ vibration signal into
gray images and performed fault diagnosis using different ML models as classifiers and
LBP features as input to ML models [28]. Chen et al. transformed vibration signals into
bi-spectrum contour maps and extracted HOG features from the transformed bi-spectrum
maps to use them as input to the random forest (RF) model for the diagnosis of bearings
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and the impeller defects of self-priming pump [29]. These image-processing-based defect
diagnosis techniques are less computationally expensive compared to CNN, even while
using it as an end-to-end classifier with transfer learning.

Moreover, the performances of different models may be affected differently; (1) under
small sample conditions, i.e., if minimal training data are available; and (2) if the operating
conditions under which the model is tested are slightly different to the operating conditions
under which the model was trained [19,30]. Therefore, there is a need to evaluate the
trade-off between the computational expense and desired accuracy to choose the best
image-processing-based technique for the intelligent defect diagnosis of REBs: (1) under
normal conditions, when sufficient training samples are available; (2) in the case of minimal
data availability; and (3) if the operating conditions change slightly.

In this study, the suitability of eleven different famous pretrained CNN models on a
subset of the ImageNet database used in ILSVRC was evaluated for its application in defect
diagnosis of rolling element bearings using the transfer learning approach. A comparison
of the performances of all these CNN models being used as end-to-end classifiers and with
other image-processing-based techniques was performed: (1) CNN + ML models (KNN,
ANN, SVM); and (2) handcrafted features (HOG, LBP) + ML models (KNN, ANN, SVM)
were carried out in terms of fault detection accuracy and the time taken for training and
testing during the defect diagnosis process. Based upon the best selected features type
and ML models, a hybrid-ensemble method is proposed for the defect diagnosis of REBs.
The performance of all these models is also compared in the case of minimal training data
availability and for diagnosis under slightly different operating conditions, as compared to
those under which models were trained to ascertain their generalizability and ability to
diagnose correctly under the minimal availability of training data.

2. Theoretical Background
2.1. Spectrogram

A spectrogram using the short-time Fourier transform (STFT) is a visual representation
of a signal in the time–frequency domain which is used to investigate the variation in the
frequency of the signal over time, as shown in Figure 1. The STFT of a signal x(n) is
calculated by sliding a window of length L over the signal and calculating the discrete
Fourier transform (DFT) of each window. The window hops over the signal at intervals of
P samples. The DFT of each window segment is added into a matrix which contains the
phase and magnitude for each point in frequency and time. The number of rows of the
DFT matrix is equal to the DFT points and the number of columns of the DFT matrix can
be calculated as follows:

j =
⌊

Nx −O
L−O

⌋
(1)

where Nx is the length of the signal and O is the overlap length. The STFT matrix can be
expressed as follows:

X( f ) = [X1( f ) X2( f ) X3( f ) . . . . . . Xk( f )] (2)

where the mth element of the matrix can be given as follows:

Xm( f ) =
∞

∑
n=−∞

x(n) g(n−mP)e−j2π f n (3)

where Xm( f ) is the DFT of the windowed data about mP; g(n) is the window function
of length L; and P is the hoop size between two successive DFTs. The hoop size is the
difference between window size L and overlap size O.
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Figure 1. Example of a spectrogram.

2.2. Artificial Neural Network

Inspired by biological systems, artificial neural networks are intelligent systems which
are composed of simple elements operating in a parallel way [31]. ANN has the ability
to replicate the functioning of the human brain, i.e., generalizing and refereeing through
situations by analyzing the processing information [32]. A basic neural network is known
as a perceptron which can be used as a classifier. In order to form a network which can
solve nonlinear problems, an intermediate layer of neurons is added between the input
and output of a single-layered perceptron. Any intermediate layer of the neuron is called
a hidden layer. This network is called a multilayer perceptron (MLP) which consists of
an input layer, one or more hidden layers and an output layer. The number of input
and output variables decide the number of nodes in the input and output layers of the
MLP, respectively. Hidden layers may consist of many computational nodes which are
called neurons. The number of hidden layers in the MLP and the number of neurons in
each hidden layer may affect the computational power and generalization ability of the
neural network. A feedforward neural network is the basic type of such networks. In a
feedforward neural network, information flows in one direction, i.e., from input nodes
to a hidden layer and then to the output layer [10]. Because of the ability of MLP/ANN
to measure nonlinear relationships in complex processes, it can be employed in REBs’
defect diagnosis.

2.3. K-Nearest Neighbors

K-nearest neighbors is a simple but robust non-parametric method for regression
and classification. Training data are used as the input and output of the model and are
dependent on whether the model is used for regression or classification. Classification
is performed on the basis of similarity measure, i.e., the minimum distance between the
patterns in the feature space, which can be measured by Mahalanobis or Euclidean distance,
etc. [33,34]. The distance metric, number of neighbors value (K) and some decision rules
are involved while making the decision. In this study, the KNN model is used as a classifier
for the REBs’ defect diagnosis where output is a class membership.

2.4. Support Vector Machine

The support vector machine is a supervised learning model which can also be used
for classification and regression. The SVM classifier separates the training sample using the
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hyperplane which is found to maximize the margin. SVM is a binary classifier: therefore, if
the classification task involves more than two classes, then multiclass SVM is used, and the
multiclass problem is converted into a series of binary classification problems. There are
different techniques to handle multiclass classification. In this study, while utilizing SVM as
a classifier for REBs’ defect diagnosis, we used the one vs. one technique. In this technique,
for each binary learner, one class is positive and another class is negative, whereas all other
classes are ignored. As such, all combinations of class pairs are used.

2.5. Convolutional Neural Network

CNNs are well known for their image recognition and classification capabilities.
They comprise of an input layer, hidden layers and an output layer. Hidden layers in
convolutional neural networks generally consist of convolutional layers, rectified linear
unit (ReLU) layers, subsampling or pooling layers and fully connected layers [35]. By
moving the kernels horizontally and vertically, the 2D convolutional layer convolves the
input through the dot product of kernels and input and then adds the bias term. The
input of the 2D convolutional layer is the output of the preceding layer. Local features of
the input region are extracted by kernels. From the results of the convolution operation,
output is obtained in terms of features by using an activation function, such as ReLU. It
performs a threshold operation in which all the values that are less than zero are set to zero.
Equation (4) describes the mathematical model of the convolutional layer.

Ym
j = f (∑i∈Cj

Ym−1
i ∗ km

ij + bm
j ) (4)

where an input map selection is symbolized by Cj, m is the mth layer in the network, Ym−1
i

is the input of the convolutional channel, f is a nonlinear activation function such as ReLU,
b is the bias matrix and k is the kernel matrix.

In order to reduce the size of the input features and network parameters, a subsampling
or pooling layer was applied after the convolutional layer. The pooling operation can be
average pooling or max pooling based upon the pooling function. Equation (5) describes
the mathematical model of the pooling layer.

Ym
j = f (βm

j ∗ down(Ym−1
j ) + bm

j ) (5)

where βm
j is multiplicative bias and additive bias is represented by bm

j . The pooling function
is represented by “down (.)” which is the down-sampling function that is used to reduce
the dimension of feature maps attained after the convolution operation. It can be max(.)
in the case of max pooling or can be mean(.) in the case of an average or mean pooling
operation. It returns a maximum or average value over the selected segment size, as shown
in Figure 2.

Output is fed to a fully connected layer after the multiple stacking of convolutional lay-
ers and pooling layers. A fully connected layer is a feedforward neural network (multilayer
layer perceptron) that uses softmax as an activation function in the output. Softmax is an
activation function which converts the raw output of the network into a vector containing
probabilities for each class, i.e., it normalizes the output of the network into probability
distribution over predicted classes. Before the application of softmax, some components of
the network output vector may be negative or greater than one and their sum may not be
equal to one. However, after the application of the softmax activation function, the output
vector will contain all the numbers in a range between zero and one, and their sum will
be equal to one; therefore, they can be inferred as probabilities related to corresponding
classes. The softmax activation function is described in Equation (6)

δ(
→
x )i =

exi

∑N
j=1 exj

(6)
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where
→
x is the input to the sofmax function δ and the input vector

→
x contains N number of

elements for N classes. Here, the softmax applies the standard exponential function to each
element xi of input vector

→
x and divides these exponentials by the sum of all exponentials

in order to ensure that the sum of all the elements of the output vector δ(
→
x ) is equal to one.

All the neurons in a fully connected layer are connected to all the neurons in the previous
layer because their objective was to gather all the features learned from previous layers to
identify patterns.
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Transfer Learning

Training a CNN model from scratch may require a lot of time and a lot of data. An
alternate solution may be that of transfer learning, in which the weights of a pretrained
network on standard data such as those of the ImageNet dataset are used to train the
network on a different dataset. In transfer learning, the parameters of the neural network
are determined by transferring the knowledge from a network which was already learned
from a huge set of training data. The initial layers of CNN were not updated because they
work as a feature extractor. However, the final layers are fine-tuned using the application
training data. In this study, different pretrained CNN models on the ImageNet dataset are
used for bearing defect diagnosis using transfer learning.

2.6. Image Features Extraction

Image features are distinctive signatures of the image which can be used to identify an
image or to differentiate between different images. The different types of image features
are given as follows:

2.6.1. Deep Features

The automatic defect diagnosis of REBs using vibration characteristic images without
the involvement of experts is also possible by only utilizing the CNN model for feature
extraction and those features can be used to train a classical ML model such as SVM, KNN,
or ANN for a defect diagnosis task. The activations of a fully connected layer or pooling
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layer are mostly used as the deep features of an image for an image classification task in
combination with different ML models.

2.6.2. Handcrafted Features

Different handcrafted algorithms such as a histogram of oriented gradients and local
binary patterns can be used to extract image features which can be further used as input to
an ML model for recognition or classification tasks.

Histogram of Oriented Gradient

A histogram of oriented gradients is an important method for image feature extraction.
It has been widely used for objects and human detection. In this method, the occurrences of
gradient orientations in the local regions of an image are counted. Images are described by
the sets of local histograms. The local appearance of an object in an image can be described
by intensity gradients’ distribution or the direction of edges. The image is divided into
small cells and a histogram of gradient directions is composed for the pixels within each
cell. These histograms are then concatenated. This concatenation produces the HOG
features vector [36]. These HOG features can be used as input to the ML model for image
classification tasks. In this study, we used the (8 × 8) cell size, which is grouped into blocks
of size (2 × 2).

Local Binary Patterns

LBP is an efficient descriptor for texture classification. LBP features can be used as
input to an ML model to categorize objects. The image is divided into cells. Each pixel in
the cell is compared to each of its neighbors following a circle [37]. Normally, the neighbors’
value varies from 4 to 24. In this study, the value of neighbors is kept at 8. If the neighbor’s
pixel’s value is greater than the center’s pixel value, then “1” is written—otherwise “0” is
written. As such, an eight-digit binary code is obtained which is converted into a decimal
number. A histogram which is a multi-dimensional feature vector that is computed over the
cell. The feature vector for the entire window is obtained by normalizing and concatenating
the histograms of all cells.

3. Experimental Setup and Vibration Data

In this study, an open source benchmark-bearing dataset provided by the CWRU
bearing center was utilized [38]. The experimental setup is shown in Figure 3. It consists
of an electric motor which drives a shaft on which a torque transducer and encoder are
mounted. The torque is applied using a dynamometer. In order to collect fault data, three
types of defects—namely (1) inner race; (2) outer race; and (3) ball defects of different sizes
ranging from 0.007 to 0.028 inches—were introduced in fan-end and drive-end bearings
(SKF deep groove ball bearings: 6203-2RSJEM and 6205-2RSJEM, respectively) using electri-
cal discharge machining (EDM). The experimentation was carried out at a constant speed at
different loads between 0 and 3 hp. Due to the change in load, there was a slight change in
average speed, ranging between 1796 and 1729 rpm and generating four slightly different
operating conditions, as given in Table 1.

Table 1. Different operating conditions.

Operating Condition (OC) Number Load (HP) Speed (rpm—Approximate)

1 0 1797

2 1 1772

3 2 1749

4 3 1720
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Figure 3. Experimental Setup [38].

Vibration data were collected in the vertical direction using the accelerometer from
the drive-end bearing housing (DE), fan-end bearing housing (FE) and base plate support-
ing the motor (BA). Sampling frequencies of 12 kHz and 48 kHz were used for the data
collection. The outer race defects can be further divided into three groups depending on
the fault position with respect to the load zone: (1) centered (fault at 6.00 o’clock posi-
tion); (2) orthogonal (fault at 3.00 o’clock position); and (3) opposite (fault at 12.00 o’clock
position). In this study, vibration data collected at 48 kHz sampling frequency from the
drive-end bearing were utilized. Three levels of fault severity/size—0.007, 0.014 and
0.021 inches—are considered for all three types of defects: inner race, outer race and ball
defects. This creates 10 classes including the normal base line data, as given in Table 2. For
the outer race, centered defects are used.

Table 2. Selected bearing fault classes.

S. No Defect Class Number Defect Type Defect Size (Inches)

1 0 Normal/healthy -

2 1 Ball defect 0.007

3 2 Ball defect 0.014

4 3 Ball defect 0.021

5 4 Inner race defect 0.007

6 5 Inner race defect 0.014

7 6 Inner race defect 0.021

8 7 Outer race defect 0.007

9 8 Outer race defect 0.014

10 9 Outer race defect 0.021

4. Applied Methodology

In order to carry out the defect diagnosis of REBs using image-processing-based
techniques, the vibration data are first converted into representative time–frequency images
and then image classification-based techniques are applied. The vibration data for each
considered class in this study were divided into segments using a window size of 0.25 s
and an overlapping of 80%. Each signal segment was converted into a spectrogram using
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short-time Fourier transform. The spectrograms for all ten classes considered in this study,
at 2 hp, i.e., OC-3, are shown in Figure 4. These spectrogram images were used for the defect
diagnosis of REBs. Three image-processing-based defect diagnosis techniques involving
different models and combinations were compared. Initially, the performance comparison
in terms of defect diagnosis accuracy and the time taken for training and testing (as a metric
for computational expense) was carried out using a sufficient number of training images
(170 images for each class). Afterwards, the performance in terms of defect diagnosis
accuracy was compared under the following conditions: (1) when minimal training data
are available (using only 20 and 14 spectrogram images); and (2) when the operating
conditions are slightly changed. The hardware platform used in this study was a laptop
with an Intel(R) Core (TM) i7-4810MQ CPU @ 2.80 GHz and 8 GB of RAM. A description
of all three considered image-processing-based defect diagnosis methods and a proposed
hybrid-ensemble method is given as follows:
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4.1. Method-1 (CNN as End-to-End Classifier—Transfer Learning)

Spectrogram images are used as input to pretrained CNN models for end-to-end
defect diagnosis. The last few layers of different pretrained CNN models, trained on the
ImageNet database, were fine-tuned using the training data of spectrogram images of REBs’
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vibration data. AlexNet [39] is considered the pioneer CNN model which was implemented
on GPU and provided a breakthrough in deep learning by connecting the growing compu-
tation power with deep learning. Later on, encouraged by the deep learning revolution,
researchers introduced many powerful architectures such as GoogLeNet and SqueezeNet.
For this study, eleven different CNN models—mostly used by the researchers of different
fields for image classification applications—were considered. The pretrained CNN models
considered in this study along with the required input image size are given in Table 3.
For detailed information about each considered CNN model, the references mentioned
against them can be consulted. The trained CNN models after transfer learning were
tested using the testing data of spectrogram images. Method 1 is shown in Figure 5. The
performances of eleven different CNN models were compared in terms of fault diagnosis
accuracy and the time taken for the training and testing processes. Training was carried
out for five epochs for all models.

Table 3. CNN models.

S. No Network/Model Input Image Size

1 AlexNet [39] 227-by-227

2 SqueezeNet [40] 227-by-227

3 GoogLeNet [41] 224-by-224

4 ResNet-18 [42] 224-by-224

5 MobileNet-v2 [43] 224-by-224

6 Inception-v3 [44] 299-by-299

7 DenseNet-201 [45] 224-by-224

8 ResNet-50 [42] 224-by-224

9 ResNet-101 [42] 224-by-224

10 VGG -16 [46] 224-by-224

11 VGG -19 [46] 224-by-224
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4.2. Method-II (Deep Features + Classical ML Models)

Instead of using CNN as an end-to-end classifier, it can be used for the extracting deep
features from images. Activations from convolutional or pooling layers can be used as input
to a classical ML model for a defect diagnosis task. The CNN model was selected based
upon defect diagnosis accuracy and the least time taken for training and testing during the
process of using CNN models as end-to-end classifiers. The selected CNN model was used
for deep feature extraction from spectrogram images. The extracted features were used to
train three ML models: KNN, SVM and ANN. The performance of all three ML models for
the defect diagnosis of REBs, using deep image features as input, was compared with all
CNN models used as end-to-end image classifiers. Method-II is shown in Figure 6.
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4.3. Method-III (Handcrafted Features + ML Model)

Handcrafted features were extracted from the spectrogram images using HOG and
LBP descriptors. These features were used as input to three ML models—KNN, SVM and
ANN—for the defect diagnosis of REBs. The performance of all these combinations was
compared with the performance of all combinations of Method-I and Method-II. Method-III
is illustrated in Figure 7.
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4.4. Proposed Hybrid-Ensemble Method

The performance comparison of all models and image-processing-based defect diagno-
sis techniques considered in this study was carried out in terms of fault detection accuracy
and the time taken for the training and testing processes in function of the sufficient avail-
ability of training data. Based upon best the combinations of image feature types and ML
models, a hybrid-ensemble method involving the majority voting-based decision fusion
technique is proposed for the defect diagnosis of REBs. The proposed method is illustrated
in Figure 8.

After the computation of spectrogram images, HOG and deep-CNN features (selected
based upon the performance comparison given in Section 5) are extracted in parallel to
train the selected ML models (SVM and ANN) separately. The output of all models, treated
equally, is fused to give the final decision about the state of the bearing’s health using
majority voting-based decision level fusion. In this method, the final decision about the
class label is made based upon the most frequent output from the combined set of individual
classifiers’ output. As such, the voting benefit from different ML models trained on different
types of features is achieved to predict the correct health state of rolling element bearings.
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5. Results and Discussion

The performance of all image-processing-based intelligent defect diagnosis techniques
considered in this study was initially compared in terms of the fault diagnosis accuracy
and time taken for the training and testing processes under the conditions when sufficient
training samples were available (170 spectrogram images for each defect class). The
vibration data of operating condition-3, as given in Table 1, were used for this comparison.
The results are given in Table 4.

For transfer learning (Method-I) using pretrained CNN models, all the CNN models
considered in this study performed fault diagnosis with 100% accuracy on unseen testing
data. However, some models were much more computationally expensive compared to
other models and consumed much more time for the training and testing processes keeping
the same number of epochs. AlexNet took least time, and therefore, the relative time
taken by all other models is shown in terms of the time taken by AlexNet. The VGG19
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model took the most time, which was 12.6 times that of AlexNet. For very large datasets
such as the ImageNet dataset which contains 1000 classes of images, the performance may
improve by improving the model such as by increasing the depth at the expense of the
computation cost. However, for the application considered in this study, it is observed
that very deep networks are not required if a sufficient number of training images are
available. A relatively simple network such as AlexNet can perform sufficiently well for
defect classification with lesser computational expense. Therefore, AlexNet was selected
for the extraction of deep features from spectrogram images for Method-II. The extracted
features were used to train KNN, ANN and SVM models as classifiers. ANN and SVM
achieved fault diagnosis with 100% accuracy and KNN achieved fault diagnosis with 99.7%
accuracy using deep features extracted using the AlexNet. The time for all three models
in Method-II was significantly less compared to that of the CNN models of Method-I
due to it having less computational requirements, thus making it more suitable for online
monitoring and diagnosis. In Method-III, two descriptors, LBP and HOG, were used for
feature extraction from spectrogram images. All three ML models considered in this study
were trained using these features separately. HOG + ANN and HOG + SVM achieved fault
diagnosis with 100% and 99.7% accuracy, respectively. However, other all combinations
considered in Method-III achieved fault diagnosis with less than 97.8% accuracy. The time
taken by all HOG combinations is comparable to the time taken by Method-II combinations;
however, the time taken by LBP combinations is much less compared to HOG combinations.
However, the performance of LBP features was significantly inferior to the performance
of HOG and deep features in terms of defect diagnosis accuracy. Moreover, the overall
performance of KNN was much more inferior to the performance of ANN and SVM in
terms of defect diagnosis accuracy. Therefore, two ML models—SVM and ANN—and
two types of features—deep features and HOG features—were selected for the proposed
hybrid-ensemble technique. The proposed method achieved fault diagnosis with 100%
accuracy, as shown in Figure 9, and only took 36% of the time taken by AlexNet while
being used as end-to-end classifier in Method-I. A comparison of the performances of all
the considered image-processing-based techniques is shown in Figure 10.
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Table 4. Performance comparison results using different sizes of training datasets (OC-3).

Size of Training Dataset (for Each Class) 170 Images 20 Images 14 Images

Method Accuracy (%) Time (s)
Relative Time
with Respect

to AlexNet
Accuracy (%) Accuracy (%)

1
Transfer learning from

pretrained CNN models
on ImageNet dataset

AlexNet 100 1026.1 1 87.5 78.1

SqueezeNet 100 1206.4 1.2 87 74.5

GoogLeNet 100 1817.9 1.8 90.3 84

ResNet-18 100 1849.8 1.8 100 99.9

MobileNet-v2 100 3053.1 2.9 99.6 99.6

ResNet-50 100 4772.4 4.6 99.9 99.5

Inception-v3 100 6347.5 6.2 99.4 99.2

DenseNet-201 100 9655.8 9.4 100 99.9

ResNet-101 100 7691.9 7.5 99.9 99.9

VGG -16 100 8632.2 8.4 40.7 23.2

VGG -19 100 12,875.5 12.6 77.6 50.4

2 Deep CNN features
+ ML model

CNN + KNN 99.7 117.5 0.11 99.5 98.1

CNN + ANN 100 205.4 0.2 99.7 99.7

CNN + SVM 100 118.03 0.12 100 99.7

3 Handcrafted features
+ ML model

LBP + KNN 95.7 53.2 0.08 92 91.7

LBP + ANN 96.3 60 0.07 93.1 89.7

LBP + SVM 97.7 58.99 0.08 97.5 94

HOG + KNN 95 195.5 0.2 86.1 83

HOG + ANN 100 221.5 0.22 95 94.8

HOG + SVM 99.7 231.6 0.27 98.5 94.1

4 Proposed
hybrid-ensemble meth.

HOG and deep
CNN features +
ANN and SVM

100 367 0.36 99.8 99.5

Afterwards, in order to ascertain the capability of the considered image-processing-
based defect diagnosis techniques to correctly diagnose the faults when minimal training
data are available, the models were trained using only: (1) 20 images for each class; and
(2) 14 images for each class. The effect on the fault detection accuracy of all considered
models under the conditions of minimal training data is also given in Table 4. For Method-I,
by reducing the number of training images for each class from 170 to 20, fault detection
accuracy was significantly reduced for AlexNet, SqueezeNet and GoogLeNet. The same
trend was observed by further reducing the size of training dataset to 14 images for each
class. Out of these three CNN models, minimum fault detection accuracy was exhibited by
SqueezeNet, which was 74.5% when 14 spectrogram images were used as training data.
However, ResNet18, MobileNetv2, ResNet50, Inceptionv3, DenseNet201 and ResNet101
performed very well under the conditions of the minimal training data availability. Out
of these six CNN models, the minimum fault detection accuracy of 99.2% was exhibited
by Inceptionv3. However, the performances of the vgg16 and vgg19 models was dropped
drastically by reducing the size of the training dataset. The defect diagnosis accuracies
for vgg16 and vgg19 were only 23.2% and 50.4%, respectively, when 14 images for each
class were used as training data. Out of the six CNN models whose performances were not
significantly affected by reducing the size of the training dataset, ResNet18 was found to
be the best model and the least computationally expensive. The defect diagnosis accuracy
for ResNet18 was 100% and 99.9% for 20 and 14 training images, respectively. A confusion
chart for ResNet18 while using the smallest training dataset is shown in Figure 11. For
Method-II, the defect diagnosis accuracy was not significantly affected for ANN and SVM
models by reducing the training data. The minimum defect diagnosis accuracy for both
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models remained 99.7%; however, it dropped to 98.1% for KNN. For Method-III, the
defect diagnosis accuracy was significantly reduced for all combinations. However, the
performance of the proposed method was not significantly affected by reducing the size of
the training dataset. The defect diagnosis accuracy for the proposed method remained 99.8%
and 99.5% while using 20 and 14 spectrogram images as the training datasets, respectively.
A confusion chart for the proposed hybrid-ensemble method with the smallest training
dataset is shown in Figure 12. The impact of reducing the size of the training dataset on all
the considered image-processing-based defect diagnosis techniques is shown in Figure 13.
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Figure 10. Performance comparison under the conditions of the sufficient availability of training data
(largest training dataset).
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To ascertain the defect diagnosis capability of all considered image-processing-based
defect diagnosis techniques under slightly different operating conditions, models trained
under operating condition-3 were tested under all other considered operating conditions
in this study, as shown in Table 1. The results are illustrated in Table 5. For Method-I, the
maximum average defect diagnosis accuracy under slightly different operating conditions
was 94.3%, as exhibited by ResNet101, and the minimum average accuracy was 87.3%,
which was depicted by vgg16. For Method-II, the maximum and minimum average
accuracies for defect diagnosis under slightly different operating conditions were 91.1%
and 87.9%, as depicted by SVM and KNN, respectively. For Method-III, the average defect
diagnosis accuracy was drastically reduced, especially for LBP features’ combinations.



Machines 2022, 10, 908 18 of 22

The maximum and minimum average defect diagnosis accuracies under slightly different
operating conditions were 92.8% and 35.6%, as exhibited by HOG + ANN and LBP + KNN,
respectively. The proposed hybrid-ensemble method performed the defect diagnosis task
under slightly different operating conditions with 95.7% accuracy, and outperformed all
the combinations and models deemed under all three methods compared in this study. A
confusion chart for the proposed method tested under OC-4 is shown in Figure 14 and the
impact of changing operating conditions on the defect diagnosis accuracy of all considered
image-processing-based defect diagnosis techniques is shown in Figure 15.

Machines 2022, 10, 908 20 of 23 
 

 

 
Figure 14. Confusion chart for the proposed method: training performed under OC-3 and tested 
under OC-4. 

  
Figure 15. Impact of testing under slightly different operating conditions. 

The application of different image-processing-based methods/techniques for the de-
fect diagnosis of rolling element bearings under different limitations and conditions, as 
performed in this study, will give confidence to the researchers working in this field in 
using these image-processing-based defect diagnosis techniques which have not been 
widely used in the past, but specifically for this application. Moreover, the comparison 
performed can help researchers select appropriate image-processing-based defect diagno-
sis technique according to the applicable conditions and limitations. The performance of 
the proposed hybrid ensemble method remained comparable to that of the best CNN 
models for defect diagnosis in both cases of the sufficient and minimal availability of 

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Tested under same operating conditions

Tested under slightly different operating conditions (Average)

Figure 14. Confusion chart for the proposed method: training performed under OC-3 and tested
under OC-4.

Machines 2022, 10, 908 20 of 23 
 

 

 
Figure 14. Confusion chart for the proposed method: training performed under OC-3 and tested 
under OC-4. 

  
Figure 15. Impact of testing under slightly different operating conditions. 

The application of different image-processing-based methods/techniques for the de-
fect diagnosis of rolling element bearings under different limitations and conditions, as 
performed in this study, will give confidence to the researchers working in this field in 
using these image-processing-based defect diagnosis techniques which have not been 
widely used in the past, but specifically for this application. Moreover, the comparison 
performed can help researchers select appropriate image-processing-based defect diagno-
sis technique according to the applicable conditions and limitations. The performance of 
the proposed hybrid ensemble method remained comparable to that of the best CNN 
models for defect diagnosis in both cases of the sufficient and minimal availability of 

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Tested under same operating conditions

Tested under slightly different operating conditions (Average)

Figure 15. Impact of testing under slightly different operating conditions.



Machines 2022, 10, 908 19 of 22

Table 5. Performance comparison results for different operating conditions.

Testing Operating Condition OC-1 OC-2 OC-4 Average
Accuracy (%)Method Accuracy (%) Accuracy (%) Accuracy (%)

1
Transfer learning from pretrained
CNN models on ImageNet dataset

AlexNet 96.5 87.5 95 93

SqueezeNet 92.8 89.7 96.8 93.1

GoogLeNet 91.7 89.7 98.6 93.3

ResNet-18 98.5 89.7 90.6 92.9

MobileNet-v2 96.6 88.9 94.1 93.2

ResNet-50 96.9 89 93.5 93.1

Inception-v3 96.2 87.7 90 91.3

DenseNet-201 95.7 89.4 92.1 92.4

ResNet-101 98.8 89.6 94.6 94.3

VGG-16 83.9 89.5 88.5 87.3

VGG-19 87.2 89.4 97.9 91.5

2 Deep CNN features + ML model

CNN + KNN 87.8 86.8 89.1 87.9

CNN + ANN 88.3 88.1 89.7 88.7

CNN + SVM 96.4 87.7 89.3 91.1

3 Handcrafted features + ML model

LBP + KNN 32 30.7 44.2 35.6

LBP + ANN 48.5 40.9 44.4 44.6

LBP + SVM 45.1 35.9 35.2 38.7

HOG + KNN 72 66.1 72.9 70.3

HOG + ANN 92.4 88.3 97.8 92.8

HOG + SVM 80.4 73.8 87.9 80.7

4 Proposed hybrid-ensemble
technique

HOG and deep CNN
features + ANN and SVM 99.2 89.6 98.4 95.7

The application of different image-processing-based methods/techniques for the
defect diagnosis of rolling element bearings under different limitations and conditions,
as performed in this study, will give confidence to the researchers working in this field
in using these image-processing-based defect diagnosis techniques which have not been
widely used in the past, but specifically for this application. Moreover, the comparison
performed can help researchers select appropriate image-processing-based defect diagnosis
technique according to the applicable conditions and limitations. The performance of the
proposed hybrid ensemble method remained comparable to that of the best CNN models
for defect diagnosis in both cases of the sufficient and minimal availability of training data,
and is computationally far less expensive as compared to CNN models. Moreover, for
defect diagnosis under slightly different operating conditions, it outperformed all other
considered image-processing-based techniques, including all the CNN models considered
in this study. The analysis of the effect of different operating conditions on the defect
diagnosis accuracy was performed at slightly different speeds ranging between 1720 rpm
and 1797 rpm. However, the performance degradation may be more significant if the
change in speed is substantial.

6. Conclusions

In this study, three image-processing-based intelligent defect diagnosis methods were
compared for REBs’ defect diagnosis using spectrogram images to ascertain their suitability
for the defect diagnosis of REBs under: (1) the sufficient availability of training data;
(2) the minimal availability of training data; and (3) slightly different operating conditions.
Based upon the best image-features’ types and ML models considered in this study, a
hybrid-ensemble technique was proposed for the defect diagnosis of REBs.
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Under the sufficient availability of training data, while using pretrained CNN models
through transfer learning as end-to-end classifiers (Method-I), all the CNN models con-
sidered in this study achieved fault diagnosis with 100% accuracy; however, AlexNet was
found to be least computationally expensive model and vgg19 was found to be the most
computationally expensive model among all the CNN models considered in this study.
All the combinations considered in Method-II, a few combinations in Method-III and the
proposed hybrid-ensemble method achieved fault diagnosis with an accuracy comparable
to that of Method-I, despite being significantly less computationally expensive. By reducing
the size of the training dataset to only 14 images, the defect diagnosis accuracies of six CNN
models (ResNet18, MobileNetv2, ResNet50, Inceptionv3, DenseNet201 and ResNet101)
was not significantly affected and remained above 99%; however, the defect diagnosis
accuracies of the other CNN models considered in this study was drastically reduced.
As the least computationally expensive model out of the six models whose performance
remained excellent, ResNet18 was found to be the best model among the considered CNN
models for defect diagnosis under the conditions of the minimal availability of training data.
Among the less computationally expensive methods, the performances of Method-II and
the proposed hybrid-ensemble method were not significantly affected and remained above
99%, except for deep features + KNN; however, the defect diagnosis accuracy of Method-III
was significantly reduced under the condition of the minimal availability of training data.
Overall, LBP features were found to be inferior to HOG and deep features, and ANN and
SVM models were found to be superior to KNN due to their better performance in terms of
fault detection accuracy.

For defect diagnosis under slightly different operating conditions, the proposed hybrid-
ensemble method outperformed all other image-processing-based defect diagnosis methods
considered in this study by exhibiting an average accuracy of 96%. The performance of
all combinations using LBP features was the worst, which exhibited less than 45% defect
diagnosis accuracy under slightly different operating conditions.
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