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Abstract: In this paper, a novel feature-based sampling strategy for nonlinear Model Predictive Path
Integral (MPPI) control is presented. Using the MPPI approach, the optimal feedback control is
calculated by solving a stochastic optimal control (OCP) problem online by evaluating the weighted
inference of sampled stochastic trajectories. While the MPPI algorithm can be excellently parallelized,
the closed-loop performance strongly depends on the information quality of the sampled trajectories.
To draw samples, a proposal density is used. The solver’s and thus, the controller’s performance is
of high quality if the sampled trajectories drawn from this proposal density are located in low-cost
regions of state-space. In classical MPPI control, the explored state-space is strongly constrained by
assumptions that refer to the control value’s covariance matrix, which are necessary for transforming
the stochastic Hamilton–Jacobi–Bellman (HJB) equation into a linear second-order partial differential
equation. To achieve excellent performance even with discontinuous cost functions, in this novel
approach, knowledge-based features are introduced to constitute the proposal density and thus
the low-cost region of state-space for exploration. This paper addresses the question of how the
performance of the MPPI algorithm can be improved using a feature-based mixture of base densities.
Furthermore, the developed algorithm is applied to an autonomous vessel that follows a track
and concurrently avoids collisions using an emergency braking feature. Therefore, the presented
feature-based MPPI algorithm is applied and analyzed in both simulation and full-scale experiments.

Keywords: sample-based nonlinear model predictive control; stochastic system dynamics; nonlinear
model predictive control; maritime systems; collision avoidance

1. Introduction

Recently, empowered by the progresses in efficiency of optimization algorithms and
the available computing power, sample-based nonlinear model predictive control (NMPC)
approaches can be used to solve nonlinear stochastic OCP in real time [1]. Using the path
integral control framework [2], the stochastic HJB equation that corresponds to a restricted
class of stochastic OCPs can be transformed into a linear partial second-order differential
equation [3]. This class is characterized by arbitrary but input affine dynamics, containing
additive white Gaussian noise (AWGN) at the inputs, and the cost function is only restricted
to be quadratic in the controls [4]. According to [3], a Feynman–Kac path integral can
be used to express the solution for both, the optimal controls and the optimal value
function. Thus, the solution of the transformed stochastic HJB is formulated as a conditional
expectation value with respect to the system dynamics. As a result, the optimal control can
be estimated using Monte Carlo methods drawing samples of stochastic trajectories [5].
While in general the resulting optimal feedback control function has an unknown structure,
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there are different approaches for its representation. Besides reinforcement learning (RL)
approaches based on offline learning a parametrized policy [6,7], NMPC has become the
de-facto technological standard [8,9]. Based on path integrals, a new type of sample-based
NMPC algorithm was presented in [8]. Using a free energy definition described in [10]
and [11], the input affine requirement is completely removed by [4]. Because MPPI is
based on Monte Carlo simulation, the information content of the drawn samples is highly
dependent on the proposal density [12,13]. Due to this fact, the system’s performance
can be significantly improved by provisioning a good proposal density. While recently
in [14] a robust MPPI version, in [15] a covariance steering approach and in [16] a learning-
based algorithm are introduced, in this paper, a novel feature-based MPPI extension is
presented. In Section 2, the basics of the MPPI approach are described. This is followed by
the derivation of a feature-based extension of the MPPI algorithm in Section 3. In Section 4,
an application scenario is defined containing the equations of motions of a vessel and cost
functions, which are combined as an OCP. Furthermore, an emergency braking feature
is defined. In Section 5, the controller design is presented including the architecture, the
controller parameters and the cost function parameters. A comparison of usual MPPI
control and its feature-based extension in a simulation environment is given in Section 6.
In Section 7, full-scale experiments with the research vessel Solgenia are used to compare
the MPPI algorithm and its feature-based extension. This is followed by the conclusions of
this paper including ideas for future work in Section 8.

2. Model Predictive Path Integral Control

Recently, a sample-based NMPC algorithm was derived by [4] using the path inte-
gral framework. This so-called MPPI approach calculates the optimal control inputs by
numerically solving the time-discrete nonlinear stochastic OCP

min
U

EQ

{
φ(XT) +

T−1

∑
t=0

[C(Xt) + u>t Rut]|X0 = x0

}
(1a)

with Xt+1 = F(Xt, vt), ∀t ∈ {0, 1, . . . , T − 1}, (1b)

and vt = ut + εt, εt ∼ N (0, Σ), R = λΣ−1, λ ∈ R+

in real time, where F : Rn×Rm → Rn denotes the time-discrete nonlinear system dynamics
of the stochastic system state Xt ∈ Rn, and the actual system input denoted by vt ∈ Rm

that is given by the commanded system’s input ut ∈ Rm with time discrete AWGN
εt ∈ Rm with covariance matrix Σ ∈ Rm×m. The so-called temperature of the stochastic
system is denoted by λ. The objective function is given by the expected value of the
terminal costs denoted by φ(XT), the instantaneous stage costs denoted by C(Xt) and
a quadratic input term with weighting matrix R ∈ Rm×m. The objective function to be
minimized in (1a) evaluates the expected costs subject to the commanded system inputs
U = {u0, u1, . . . , uT−1} ∈ Rm×T under the measurement distribution Q corresponding to
the probability density function (PDF)

q(V) =
T−1

∏
t=0

[(2π)m|Σ|]−
1
2 exp

(
−1

2
(vt − uP

t )
>Σ−1(vt − uP

t )

)
, (2)

where V = {v0, v1, . . . , vT−1} denotes the sequence of actual input values. The distribution
of the controlled system denoted by Q corresponds to an open-loop sequence of manip-
ulated variables ut = uP

t for t = 0, 1, . . . , T − 1. According to [17], the expectation value
under a measurement is defined as EQ(ρ(V)) :=

∫
ρ(V)q(V) dV , where ρ denotes a scalar

function. In this section, the basics of this novel algorithm are described before it will be
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extended in the next section. According to [4], the density function of the uncontrolled
system denoted by P with zero input ut = 0, t = 0, 1, . . . , T − 1 leads to the PDF

p(V) =
T−1

∏
t=0

[(2π)m|Σ|]−
1
2 exp

(
−1

2
v>t Σ−1vt

)
. (3)

An initial state x0 and a realized sequence of input values Vk can be uniquely assigned
to a trajectory without stochastic influence by recursively applying (1b). Introducing the
cumulated state-dependent path costs S(Vk) = φ(xk,T) + ∑T−1

t=0 C(xk,t) according to [4], the
value function of the OCP (1a) is given by

V(t, xt) = −λ logEP
{

e−
1
λ S|Xt = xt

}
, (4)

with respect to the uncontrolled dynamics [4]. To express the value function with respect to
Q, the likelihood ratio p(V)

q(V)
must be introduced, which yields

V(t, xt) = −λ logEQ

{
p(V)

q(V)
e−

1
λ S|Xt = xt

}
. (5)

Applying Jensen’s inequality according to [4] yields

V(t, xt) ≤ −λEQ

{
log

p(V)

q(V)
e−

1
λ S|Xt = xt

}
, (6)

where the bound is tight with

q∗(V) =
1
η

exp
(
− 1

λ
S(V)

)
p(V), (7)

where η ∈ R denotes a normalization constant. In [4], it is shown that the associated
optimal control values are given by

u∗t = arg min
ut

DKL(Q∗||Q)

= EQ∗ [vt] (8)

where DKL denotes the Kullback–Leibler divergence, and Q∗ denotes the abstract optimal
distribution. According to [4], the optimal input is given by

u∗t =
∫

ΩV

q(V)
q∗(V)

p(V)

p(V)

q(V)︸ ︷︷ ︸
ω(V)

vtdV (9a)

= EQ{ω(V)vt} (9b)

minimizing (1a), where ΩV denotes the image of the sample space, and the importance
weighting

ω(V) =
1
η

exp

(
− 1

λ
S(V) +

T−1

∑
t=0

1
2

u>t Σ−1ut − v>t Σ−1ut

)
(10)

can be calculated using the PDFs (2), (3) and (7). Using Monte Carlo simulation, (9a) can be
estimated via the iterative update law

ui+1
t = ui

t +
N

∑
n=1

ω(Vn)(vn
t − ui

t), (11)
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where N samples are drawn from the system dynamics (1b) with the commanded control
input sequence U = {u0, u1, . . . , uT−1}. The iterative procedure described in Algorithm 1
is used to estimate the optimal commanded control input, and to improve the required
importance sample distribution Q simultaneously.

Algorithm 1 Optimize Control Sequence (OCS) acc. to [4]

Input: F: Transition model;
K: Number of samples;
T: Number of timesteps;
U I : Initial control sequence;
x0: Recent state estimate;
Σ, φ, C, λ: Control hyper-parameters;

Output: UO: Optimized control sequence
S: Average costs;

1: for k ∈ {0, 1, . . . , K− 1} do
2: xk,0 ← x0;
3: Sample {εk

0, εk
1, . . . , εk

T−1};
4: S(k)← 0;
5: for t ∈ 1, 2, . . . , T do
6: xk,t ← F(xk,t−1, uI

t−1 + εk
t−1);

7: S(k)+ = C(xk,t) + λuI>
t−1Σ−1εk

t−1;
8: end for
9: S(k)+ = φ(xk,T);

10: end for
11: β← mink[S(k)];
12: η ← ∑K−1

k=0 exp(− 1
λ S(k)− β);

13: for k ∈ {0, 1, . . . , K− 1} do
14: ω(k)← 1

η exp(− 1
λ S(k)− β);

15: end for
16: for t ∈ {0, 1, . . . , T − 1} do
17: uO

t ← uI
t + ∑K−1

k=0 ω(k)εk
t ;

18: end for
19: S← 1

K ∑K−1
k=0 S(k);

20: return UO = {uO
0 , uO

1 , . . . , uO
T−1} and S

3. Extension to Feature-Based Proposal Density

In this section, the exploration problem of standard MPPI control is described, the idea
of feature-based extension is presented and the resulting feature-based MPPI algorithm
is presented.

3.1. Exploration Problem of Classical MPPI Control

To improve the sampling efficiency, both the value function (5) and the optimal control
sequence (9b) can be calculated by sampling trajectories under the probability measure
Q with the proposal PDF (2). Due to the restrictive assumption R = λΣ−1, the proposal
PDF is only parametrized by a sequence of inputs UP = {uP

0 , uP
1 , . . . , uP

T−1}. The sampling
efficiency is dependent on the quality of the proposal density [13]. In [4], the recent estimate
Ut of the optimal control sequence U∗ is used to determine the proposal PDF for the next
sampling iteration. The objective function (1a) is not necessarily convex. Using an infinite
number of samples, the MPPI algorithm is a global minimizer. However, due to a finite
number of drawable samples, the explored state-space is concentrated around the last
approximation. In order not to remain in a local minimum, the explored state-space must
be enlarged. An exemplary possibility to enlarge the explored state–space is shown in
Figure 1.
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Figure 1. Explored state–space in a full–scale experiment visualized by sampled trajectories using
proposal densities with mean U0 (red) and mean UF (blue) representing the emergency braking
feature. The actuators’ force vectors are drawn in red. The desired trajectory is visualized in green.

3.2. Feature-Based Extension of the Search Space

An enlargement of the explored state-space is possible by introducing an additional
feature-based proposal density to draw a part of the samples from. Therefore, a feature is
implicitly defined by solving the artificially designed OCP

UF = arg min
U

EQF

{
φF(XT) +

T−1

∑
t=0

[CF(Xt) + u>t Rut|X0 = x0]

}
(12a)

with Xt+1 = F(Xt, vt) and vt ∼ N (ut, Σ), R = λΣ−1, (12b)

where φF : Rn → R denotes the terminal costs of a feature and CF : Rn → R denotes the
instantaneous costs of a feature. Thus, the feature-based proposal density is given by

qF(V) =
T−1

∏
t=0

[(2π)m|Σ|]−
1
2 exp

(
−1

2
(vt − uF

t )
>Σ−1(vt − uF

t )

)
, (13)

parametrized by a sequence of inputs UF = {uF
0 , uF

1 , . . . , uF
T−1}. Analogous to the previous

section, the stochastic OCP (12a) can be solved by using the MPPI algorithm.

3.3. Resulting Feature-Based MPPI Algorithm

The resulting feature-based MPPI algorithm is presented in Algorithm 2. First, the
control sequence is optimized using Algorithm 1, and the predicted costs are evaluated.
Then, all feature control sequences are improved, and their performances regarding the
main cost function are evaluated. The best control sequence is chosen to be the main
control sequence. Then, the first element of the control sequence is applied. Subsequently,
the sequence is shifted, and the last element is initialized. Note: In the implementation,
lines 4 and 5 can be combined to reduce the computational effort.
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Algorithm 2 Feature-Based MPPI Control

Input: F: Transition model;
K: Number of samples;
T: Number of timesteps;
U0: Initial control sequence;
x0: Recent state estimate;
Σ, φ, C, λ: Control hyper-parameters;
I: Number of features with feature index i = {1, 2, . . . , I};
U i: Initial control sequence of ith feature;
φi, Ci: State dependent costs of ith feature;
Ki: Number of ith features samples;

1: while Controller is active do
2: [U0, S0]← OCS(K, T, U0, x0, Σ, φ, C, λ)
3: for i ∈ {1, 2, . . . , I} do
4: [U i,−]← OCS(Ki, T, U i, x0, Σ, φi, Ci, λ)
5: [−, Si]← OCS(Ki, T, U i, x0, Σ, φ, C, λ)
6: end for
7: i∗ ← argmin

i
Si, with i = 0, 1, .., I

8: U0 ← U i∗

9: SendToActuator
(
u0

0
)
;

10: for t ∈ {1, 2, . . . , T − 1} do
11: u0

t−1 ← u0
t

12: end for
13: u0

T−1 ← Initialize
(
u0

T−1
)

14: end while

4. Maritime Application Scenario

Autonomous mobility of maritime systems is a central problem of our time. Due to
advances in science and technology, the requirements for the performance are constantly
increasing. For example, recent publications such as [18–20] show how NMPC algorithms
are used in the maritime environment to solve complex control engineering problems.
Moreover, algorithms in the context of RL such as Deep Q-learning [21], Deep Deterministic
Policy Gradients [22] or Actor–Critic [23] are increasingly used, which achieve good results
for various applications, but the majority of them are only validated in simulation. While
MPPI control was used to dock a fully actuated vessel in full-scale autonomously [24], a
gap in this research area is the feature-based MPPI control of an autonomous vessel for
collision avoidance. In order to also being able to perform autonomous maneuvers, such as
heading for a defined target outside the port, it must be ensured that the hazards during
these maneuvers are minimized. As regulated by the International Regulations for Preventing
Collisions at Sea (COLREG) [25], in the event of a predicted collision, it is mandatory to take
evasive action. In poor visibility conditions such as fog, heavy rain or due to obstacles
appearing through the water surface, there are scenarios where the vessel’s sensors will
not detect potential collision partners until a short distance away. In such a scenario, using
the standard MPPI approach, all sampled trajectories would result in a collision. This
overloads the controller and makes it impossible to avoid a collision. Thus, the question
arises how feature-based MPPI control can be applied to avoid a collision even in such a
scenario. To answer the question, the feature-based MPPI control algorithm is applied in
an emergency braking scenario for an autonomous vessel. In the scenario being discussed,
the vessel is traveling at full speed along a predefined path,where an obstacle appears at a
certain point. Therefore, the vessel has to autonomously perform a so-called last-minute
maneuver to avoid a collision. To provide an overview, first the state and dynamics of the
fully actuated research vessel Solgenia are presented. Then, a standard MPPI controller is
parameterized, which causes the vessel to follow a predefined path. This is then extended
to a feature-based MPPI controller by introducing an emergency brake feature.
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4.1. Dynamics of the Vessel

In [26], a detailed description of the dynamics of the research vessel Solgenia including
identification of the model parameters and the calculation of the actuator thrusts is outlined.
Nevertheless, a short description of the modeling is given in the following since the model
is an elementary component of the MPPI approach used in the scenario. A photography
of the research vessel Solgenia is shown in Figure 2a. According to [27], the vessel’s state
vector is given by a combination of the 2D pose η = (x y ψ)> and the velocity vector
ν = (u v r)> in body-fixed coordinates, shown in Figure 2b. This model was extended
in [24] to also consider the dynamics of the actuators. Thus, the transfer properties of the
i = 1, 2, 3 controlled actuators can be modeled in each case by a first-order low-pass filter
with an equivalent time constant TE, limited slope ã, and dead time TT represented by

ȧi(t) =


ãi if ai(t)−wi(t−TTi)

TEi
> ãi

−ãi if ai(t)−wi(t−TTi)
TEi

< −ãi
ai(t)−wi(t−TTi)

TEi
else

, (14)

where wi denotes the i-th actuator’s desired state and ai denotes the i-th actuator’s actual
state. Thus, the actual actuator states a = (a1 a2 a3)

> = (nAT α nBT)
>, where the

speed of the azimuth thruster (AT) is denoted by nAT, the orientation of the AT is denoted
by α and nBT denotes the speed of the bow thruster (BT), and the desired actuator states
w = (nd,AT αd nd,BT)

> denoting the desired variables of a get a part in the system state

x = (η> ν> a> w>)> ∈ R12. (15)

(a) (b)

Figure 2. Photography and technical drawing of the research vessel Solgenia. (a) photography of the
research vessel Solgenia on Lake Constance in front of the Constance harbor; (b) technical drawing of
the research vessel Solgenia with local and body-fixed coordinate systems, geometrical parameters
and thruster forces.
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The whole dynamic model of the vessel is given by

ẇ = u (16a)

ȧ = d(a, w) (16b)

Mν̇ + CRB(ν)ν + N(ν)ν = τc(a, ν) + τd (16c)

η̇ = J(ψ)ν, (16d)

where in (16a) the desired variable vector w includes the integral action u. In (16b), the
actuators’ dynamics are considered by d : R3 ×R3 → R3 whose components are given
in (14). According to [27], the time derivative of the body-fixed velocity ν̇ is implicitly
described in (16c) as a function of the body-fixed velocity ν, the mass matrix

M =

 m− Xu̇ 0 0
0 m−Yv̇ mxg −Yṙ
0 mxg − Nv̇ Jcomp

, (17)

the Coriolis matrix

CRB(ν) =

 0 −mr −mxgr
mr 0 0

mxgr 0 0

 (18)

and the damping matrix

N(ν) =

 −Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 (19)

including the system parameters listed in Table 1, the input vector τc and disturbance
vector τd. The kinematics equation (16d) describes the transformation of the body-fixed
velocity into local coordinates as a function of the rotation matrix J(ψ). The influence of
unmodeled effects and environmental disturbances are represented by the disturbance
vector τd. The controlled force vector

τc(a, ν) =

 FAT(nAT, ν) cos α
FAT(nAT, ν) sin α + FBT(nBT, ν)

FBT(nBT, ν)LBT − LATFAT(nAT, ν) sin α

 (20)

depends on the geometric parameters LBT, LAT and α and the thrusts FAT and FBT, shown
in Figure 2b. The thrust FAT is generated by the AT, and FBT denotes the thrust generated by
the BT. These thrust forces can be modeled according to [28] dependent on various physical
constants, the body fixed velocity vector ν and the actual states of the actuators a. Thus,
the force generated by the BT is given by

FBT = KT ρ d4
BT nBT |nBT|e−cbu2

, (21)

where KT denotes a unitless constant with

KT =

{
d1 if nBT ≥ 0
d2 if nBT < 0

, (22)

ρ denotes the density of the water, the diameter of the propeller is denoted by dBT. Further-
more, the quadratic damping of the thrust dependent on the surge velocity component is
scaled by a coefficient denoted by cb. Using this modeling structure, the influence of the
relative speed in the axial direction of the BT is assumed to be small and hence neglected.
This assumption cannot be used when modeling the force FAT, since the relative axial
velocity component of the AT is large in the given application scenario and given by
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ua = u cos(α) + (v− rLAT) sin(α), (23)

where LAT denotes the distance between the AT and the vessel’s center of gravity (CG).
According to [26], the force generated by the AT is modeled by

FAT = c1 ρ d4
AT nAT |nAT| − c2 ρ d3

AT ua |nAT|, (24)

where dAT denotes the AT’s diameter, and the coefficients c1 and c2 are given by

(
c1
c2

)
=


(a1 b1)

> if nAT ≥ 0∧ ua ≥ 0
(a1 0)> if nAT ≥ 0∧ ua < 0
(a2 b2)

> if nAT < 0∧ ua < 0
(a2 0)> if nAT < 0∧ ua ≥ 0

, (25)

where a1, a2, b1, b2 ∈ R denote the coefficients of the AT. The parameters identified by [26]
are listed in Table 2. Note that, according to [26], the parameters b1, b2 and cb are eliminated
during the evaluation phase of the identification process. For more detailed information
about the dynamics, the reader is referred to [24,26,27].

Table 1. Identified vessel parameters of the dynamic model [26] and the parameters of the actuators’
models [24].

Vessel’s Dynamics
Parameter Value Actuators’ Dynamics

Parameter Value

m 3100 kg |nAT,max| 2300 rpm
xg 0 m TE,1 105 ms

Jcomb 21179 kgm2 TT,1 240 ms
Xu̇ −155 kg ã1 71.66 1/s2

Yv̇ −1070 kg |αmax| -
Yṙ −1008 kgm TE,2 95 ms
Nv̇ −3328 kgm TT,2 160 ms
Xu −86.5 Ns/m ã2 1.496 rad/s
Yv −796 Ns/m |nBT,max| 3800 rpm
Nr −5230 Ns/m TE,3 270 ms
Yr −896 Ns/m TT,3 80 ms
Nv −958 Ns/m ã3 10,000 1/s2

Table 2. Identified parameters of the actuators’ thrust models according to [26].

Parameter Value Parameter Value

a1 0.9047 d1 0.21
a2 0.6545 d2 0.24

dAT 0.36 m ρ 1000 kg/m3

dBT 0.23 m LAT 2.9 m

4.2. Inequality Constraints

Due to the maximum speed of the actuators, two inequality constraints

h(x, u) =
(
|nAT| − |nAT,max|
|nBT| − |nBT,max|

)
≤ 0, ∀t ∈ [t0, t0 + T], (26)

are defined. By considering the actuator dynamics (14) in the model, no further inequality
constraints are required.
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4.3. Equality Constraints

In the treated scenario, the most important aim is to avoid collisions. In order to
achieve this, first the indicator function

ζ(η) =

{
0 if η ∈ ηfine
1 if η ∈ ηcol

(27)

is defined, where ηcol is the subset of the state-space where the vessel causes a collision and
ηfine is a disjoint subset. Consequently, the equality constraint to be fulfilled is given by

g(x) = ζ(η), (28)

where only the indicator function (27) is used. In the next part, the derivation of the cost
function is presented for the given scenario.

4.4. Cost Function

The instantaneous state-dependent cost function C(x) significantly governs the behav-
ior of the controlled system, since it is used to evaluate the sampled stochastic trajectories.
However, for a complex task, the stage cost function can be learned from expert behavior;
using inverse reinforcement learning [29–31] for the given scenario, we can define the
linguistic criteria for the cost function and then express them as simple equations and
subsequently add them up. The vessel should move on a predefined trajectory shown
in Figure 3 and should avoid collisions. This task is complicated by significant current,
wind and further disturbance effects that occur when moving in the Rhine River. For a
good system behavior, the vessel should meet the following criteria, which are sorted in
descending order of importance:

1. A collision should be prevented.
2. The actuators must not be overloaded.
3. The position should follow a predefined the trajectory.
4. The orientation should be in line with the trajectory.
5. While the surge velocity component should match a reference, the absolute value of

the sway component and yaw-rate component should be minimized.

Figure 3. Bird’s eye view on the Rhine river between the docking area and the open lake [32]. The
locations of P1 and P2 are specified in Table 3. The desired path is drawn in green. The borders to the
inadmissible area next to the river bank are visualized in red. Due to the application scenario, the
width and orientation of the river are approximated by 2b = 120 m and ψstart = −31.96 ◦.
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While criteria 1 and 2 are already treated introducing the inequality and equality
constraints, to meet criteria 3–5, the quality of sampled trajectories is evaluated based on
two parts

C(x) = Cpos(η) + Cvel(ν), (29)

where Cpos(η) denotes the position and orientation dependent costs used to meet the
criteria 3 and 4, Cvel(ν) denotes the part of the cost function that is dependent on the
body-fixed velocity ν and thus is introduced w.r.t. meeting criterion 5. In the following, the
parts of the cost function (29) are presented.

4.4.1. Costs Dependent on the Position

For a clear presentation of the costs dependent on the position, these are defined in
transformed local coordinates, which are generated by the linear transformation

η = (x y ψ)> = J−1(ψstart)(η− ηstart), (30)

where the start orientation of the trajectory is denoted by ψstart and ηstart denotes the 2D
pose located at P1 given in Table 3. Subsequently, the costs dependent on the transformed
position are given by

Cpos(η) = cx(|xdes − x|) + cy|y|+ cψ|ψ|, (31)

where cx, cy, cψ ∈ R+ denote weighting coefficients, and xdes ∈ R+ denotes the distance
between P1 and P2 shown in Figure 3.

Table 3. Significant points specifying the application scenario.

Point Latitude Longitude Description

P1 47.668279218023123 9.174018424704204 Start position
P2 47.666282640256334 9.178596676673507 End position

4.4.2. Costs Dependent on the Velocity

The difference between the body-fixed velocity components and the desired reference
velocity is penalized using

Cvel(ν) = cu|udes − u|+ cv|v|+ cr|r|, (32)

where cu, cv, cr ∈ R+ denote the weighting coefficients. Note that this velocity dependent
part of the cost function is minimized by the optimal velocity ν∗ = (udes 0 0)>. Thus,
a drifting behavior of the vessel is penalized. In the next section, the resulting problem
formulation is given.

4.5. Resulting Problem Formulation

To minimize the cumulated costs (29) subject to the given dynamics (16a)–(16d), for
the inequality constraints (26) and the equality constraints (28) using MPPI control, the
OCP has to be formulated in the assumed structure (1a)–(1b). Consequently, the equality
and inequality constraints must be considered in the cost function with

CMPPI(x) = C(x) + cpen(max[0, h(x)] + g(x)) (33)

being defined, where cpen ∈ R+ denotes coefficients of the penalty terms. In addition, the
terminal cost function φ(x) must be determined. Because this function is not needed in the
given scenario, it is defined as

φ(x) = CMPPI(x). (34)

In MPPI control according to [4], a discrete-time system dynamics with additive
input noise is assumed in (1b). Therefore, the time continuous system dynamics given
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in (16a)–(16d) is discretized using the explicit fourth order Runge–Kutta method with a
step size h. Therefore, the input signal is chosen to be piecewise constant within this step
size. Consequently, the discrete-time vessel dynamics that maps a system state is given by

Xt+1 = Fv(Xt, ut). (35)

Finally, the assumption that the input of the system is disturbed with time discrete
AWGN yields

ut ∼ N (udes,t, Σ), (36)

where ut denotes the actual and udes,t the desired system input at time instance t. The
covariance matrix of the AWGN is denoted by Σ. Using these assumptions, the resulting
stochastic OCP is given by

min
Udes

EQ

{
T−1

∑
t=0

[CMPPI(Xt) + u>des,tRudes,t]|X0 = x0

}
(37a)

with Xt+1 = Fv(Xt, ut), ∀t ∈ {0, 1, . . . , T − 1}, (37b)

and ut ∼ N (udes,t, Σ) , R = λΣ−1,

where the sequence of desired inputs is denoted by Udes = {udes,0, udes,1, . . . , udes,T−1}.
In the next part, the usual MPPI approach is extended to the feature-based MPPI to improve
the system’s behavior.

4.6. Feature Definition

To use the presented feature-based MPPI algorithm, at least one feature has to be
chosen. As already discussed in Section 4.4, the selection of the features can be done by
inverse reinforcement learning [30,31] or by the definition of a linguistic quality criterion,
which is subsequently formulated mathematically. It is important to note that only well-
chosen features lead to an improvement of the system’s behavior. In this context, well-
chosen means that, in some cases, low-cost regions of the original cost function (33) of
state-space are explored by sampling trajectories with controls, which minimizes the feature
costs. Note, for the given scenario, the following linguistic quality criterion is defined:
a reduction in speed can mitigate or even prevent a collision with an obstacle. For this
purpose, an emergency break feature is defined by choosing

C1(x) = φ1(x) = ν>Qν, Q = diag(cFu, cFv, cFr), (38)

where cFu, cFv, cFr ∈ R+ denote the coefficients of the velocity dependent costs. Conse-
quently, a control sequence that minimizes this feature leads to the exploration of the
region of the state-space decreasing the vessel’s velocity. In the following section, the
presented scenario is used to compare the performance of classical MPPI and feature-based
MPPI control.

5. Controller Design

In this section, the design for both the standard MPPI controller presented in Section 2
and the feature-based MPPI controller presented in Section 3 is shown with application to
maritime scenario presented in Section 4. For this purpose, the modularized and distributed
control structure used is described. Note that an Unscented Kalman Filter (UKF) according
to [33] is used to estimate the system state based on the sensor signals and the actuators’
states. These are controlled in subordinate control loops. This is followed by a description
of how the control parameters are determined. Finally, the selection of the cost function’s
coefficients is presented.
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5.1. Architecture

An overview of all parts of the used control architecture is given in Figure 4. The
state estimation and the communication are performed by the rapid prototyping system
MicroAutoBox2 (MABX2). While the supervisory MPPI algorithm is running on the MABX3,
three subordinate 1232SE control units by Curtis are used to control the drives. An RTK-GPS
and an IMU sensor send their measurement data to the MABX2 using a UDP protocol.
Using a UKF, this information is fused with the measured actuator state a to estimate
the system’s 2D pose denoted by η̂, the body-fixed velocity vector ν̂ and the disturbance
forces τ̂d, which are sent to the MABX3 via UDP protocol. The MPPI algorithm uses the
provided state estimation to calculate the desired system input u. Because the system
input is defined as the zero-order-hold time derivative of the desired values of the actuator
control loops, an explicit Euler integrator can be used to calculate w implemented on the
MABX3. Subsequently, w is sent via UDP protocol to the MABX2, which then provides w
to the subordinated actuator controllers via CAN protocol. The encoders’ measurements
of a are denoted by am and collected with high quality; therefore, no additional signal
processing is needed. The measured actuator states are sent from the encoders to the 1232SE
drive controllers, which then send them via UDP to the MABX2 for state estimation.

Figure 4. Distributed and modularized control architecture for full-scale experiments on research
vessel Solgenia. The connections are realized via UDP and CAN protocol.

5.2. Controller Parameters

The choice of controller parameters determines the properties of the sampled trajecto-
ries, which are realizations over Q. They have a significant influence on the quality of the
estimation of the optimal control sequence.

5.2.1. Numerical Solution of the Initial Value Problem

As already discussed, the corresponding initial value problem can be solved numeri-
cally using the explicit fourth order Runge–Kutta method with a step size of h = 40 ms to
sample the trajectories. It should be noted that, in principle, there is no information about
the future course of the disturbance variables. Due to the river current, the disturbance
vector τd is assumed to be constant within the predicted horizon.

5.2.2. Choice of Controller Step Size

The controller step size denoted by TCTRL should be selected as large as possible to
reduce the dimension of the control sequence in the optimization problem, but also small
enough to be able to induce a desired system behavior. Furthermore, it has to be considered
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that TCTRL is a multiple of h = 40 ms. Simulations have shown that good performance can
be achieved with TCTRL = 360 ms.

5.2.3. Prediction Horizon

The dimension of the control sequence, as well as the influence of the inaccuracies of
the model, increases with rising prediction horizon denoted by T. However, a sufficiently
large prediction horizon is essential for evaluating the result of the choice of control
sequence. Based on the vessel’s dynamics, the prediction horizon is determined based on
the time until the maximum surge velocity is achieved. To reach umax = 3 m/s with a
maximal acceleration of 0.2 m/s2, a duration of 15 s is needed and thus a prediction horizon
of T = 41 time steps is chosen.

5.2.4. Covariance Matrix of Additive Noise

In path integral control framework [12], the choice of the covariance matrix Σ of the
AWGN, the quadratic costs of the input is determined by Σ = λR. The quadratic penalty
term u>Ru relates to the accelerations of the propellers and the rotational velocity of the
AT. We assume uncorrelated noise processes to excite the system’s behavior and thus the
covariance matrix

Σ =

 σ2
AT 0 0
0 σ2

α 0
0 0 σ2

BT

 (39)

is chosen. The elements of Σ are chosen proportionately to the corresponding actuator
dynamics listed in Table 1. While the maximum dynamics of the AT is given directly, the
maximum acceleration of the BT is calculated using a first order Taylor approximation of
the delay time, this yields an equivalent time constant of TT + TE = 350 ms. Thus, the
variances of the AWGN are given by

(σ2
AT σ2

α σ2
BT) = c

(
71.66 s−4 1.4966 rad2/s2 188.57 s−4

)
, (40)

where parameter c is introduced to scale the variances. Regarding the explore-exploit
dilemma [12], the optimal value c∗ = 0.09 is approximated by numerically solving the
minimization problem

c∗ = arg min
c

Tsim

∑
k=0

[CMPPI(x̃k) + ũ>k Rũk], (41)

where Tsim denotes the number of simulation steps, ũk denotes the approximated optimal
system input using MPPI control and x̃k denotes the resulting state at the time instance k
with x̃k+1 = F(x̃k, ũk). Using the initial state η0 = ν0 = a0 = w0 = 0 and Tsim = 3T = 123
simulation steps c∗ is found, which parameterizes the MPPI algorithm leading to minimal
cost of the scenario. Note that, using the MPPI update law (11), the noise of the AWGN
and thus its scaling factor c has a huge influence of the approximated optimal controls ũ.

5.2.5. Temperature

According to [12], the temperature λ with

R = λΣ−1 (42)

scales the quadratic input costs matrix R. The relation between R and CMPPI has a significant
impact on the resulting system behavior. However, CMPPI has already been scaled freely.
Thus, λ = 1 has been chosen.
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5.2.6. Number of Predicted Trajectories

Using the MPPI update law (11), the expected value is approximated by the mean
over the sampled trajectories. Thus, the quality of the approximation increases with the
number of drawn samples used. However, the required computing time also increases
with the number of realizations. A buffer tbuf > 15 ms is targeted to make the real-time
capability of the controller robust. Empirically determined, one core of the TI AM5K2E04
processor with four ARM Cortex-A15 cores 1.4 GHz on the rapid prototyping system
MABX3 requires 343 ms to simulate and evaluate 9000 trajectories. Thus, the real-time
capability of the controller with a buffer tbuf = 17 ms > 15 ms is ensured. The choice of
all controller parameters determined in this subsection. To provide a structured overview,
the parameters are listed in Table 4. Note that, for an objective comparison of the standard
MPPI and the feature-based MPPI approaches, the parameters are chosen to be equal.

Table 4. Controller parameters of the standard MPPI and the feature-based MPPI approaches.

Parameter MPPI Feature-Based MPPI

K 9000 8500
T 41 41
c∗ 0.0167 0.0167
λ 1 1

C(Xt) Equation (33) Equation (33)
φ(XT ) 0 0

K1 - 500
C1(Xt) - Equation (38)
φ1(XT ) - Equation (38)

5.2.7. Cost Function Parameters

The structure of the cost function (33) and the structure of the feature costs (38) are
already derived in previous sections. Since their coefficients have a huge influence on the
behavior of the system, they must be determined with a similar diligence as the control pa-
rameters. The units of the coefficients are chosen in such a way that the corresponding prod-
uct is unitless. With respect to the parameters cx, cy and cψ, which are associated with the
positions, reaching the desired position xdes = 409.9 m and keeping the desired orientation
is weighted more than leaving the path orthogonally. Thus, cx = 500 1/s > cy = 200 1/s
and cψ = 2500 1/rad are chosen. With reference to cu = 5000 s/m, cv =10 s/m and
cr = 7500 s/rad, which are assigned to the velocity components, errors of the surge speed
w.r.t. the desired surge speed udes = 2 m/s and yaw rate is weighted more heavily than the
occurrence of a sway speed component. The feature cost coefficients with cFu = 300 s/m,
cFv = 30 s/m and cFr = 10 s/rad are chosen to weight the surge speed component by far
the most, since it can be assumed that this component dominates in the application scenario.
Subsequently, it is assumed that there is an obstacle which in the case of x > xcollision = 80 m
would cause a collision. Furthermore, it is assumed that the vessel detects the obstacle if its
position is x > xappear = 60 m. An overview of the coefficients is given in Table 5.

Table 5. Coefficients of the costs (33) and the feature costs (38).

Parameter Value Parameter Value
cx 500 1/m xdes 409.9 m
cy 200 1/m udes 2 m/s
cψ 2500 1/rad cFu 300 s/m
cu 5000 s/m cFv 30 s/m
cv 10 s/m cFr 10 s/rad
cr 7500 s/rad xappear 60 m

cpen 1× 108 xcollision 80 m
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6. Simulation Results

The MPPI controller presented in Section 2 and its feature-based extension intro-
duced in Section 3 are embedded in a simulation environment to compare their perfor-
mances when controlling the vessel model in the maritime application scenario described
in Section 4. Therefore, the parameters derived in Section 5 are used. The vessel model
including the actuator dynamics, the UKF according to [33], the MPPI controller and the
feature-based MPPI controller are implemented in a simulation environment. According
to [33], a constant river current is assumed with a velocity of 0.45 m/s and an orientation
of 200◦ to the x-axis. The simulation time is determined to 60 s. To compare the vessel’s
behavior, both the standard MPPI approach and subsequently the feature-based MPPI
approach are used to control the vessel. The resulting trajectories are compared in Figure 5.
Furthermore, to visualize the orientation of the vessel along the trajectory, the vessel’s
contour is plotted at the time instances ti = i(∆T) with i = {0, 1, 2, 3, 4, 5, 6} and ∆T = 10 s.
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Figure 5. Comparison of the resulting trajectories of the vessel in the simulation environment.
While the upper plot shows the performance of standard MPPI control, the lower plot shows the
performance of the feature–based MPPI control approach. Both plots use transformed coordinates
calculated by (30). The green lines visualize the reference trajectories in both plots. After passing the
black line, the vessel detects the obstacle visualized as a red line.

In the absence of an obstacle, both trajectories are quite similar in orientation and
position. Note the position difference in y occurs since it is only penalized slightly in (1a).
After the obstacle appears, the different control approaches cause different behavior. While
the system controlled by the standard MPPI controller causes a collision with the obstacle,
the feature-based MPPI control approach can prevent this collision by performing a braking
maneuver. The time courses of the body-fixed surge velocity and the vessel’s velocity in the
direction of the x-axis are shown in Figure 6. In the absence of the obstacle for t ≤ 44 s, the
plotted velocity components show the same behavior. After a learning phase of about 5 s
immediately after activating the controllers, the vessel accelerates till it reaches the desired
surge velocity. After the acceleration phase, the surge velocity is kept exact at 2 m/s. For
t > 44 s using the feature-based approach, the vessel decelerates and reaches ẋ = 0 m/s at
t = 59 s. A comparison of the desired and the actual actuator values is given in Figure 7.
Furthermore, in Figure 8, the caused costs using the different approaches are plotted over
time. In contrast, using the standard MPPI controller, the vessel’s velocity does not change
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after the vessel appears. This effect results from the fact that, due to the small explored
state-space using conventional MPPI control, all predicted trajectories cause a collision for
t > 44 s.
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Figure 6. Comparison of the body–fixed surge velocity u and the velocity ẋ in simulation.

Consequently, the vessel controlled by the standard MPPI approach collides with the
obstacle at full speed at t = 52.5 s. Regarding the input trajectories shown in Figure 7, the
desired and actual actuator values are well fitting. Furthermore, in absence of an obstacle
for t ≤ 44 s, the input trajectories show nearly the same behavior. To keep the surge velocity
at 2 m/s, the AT is driven with about 950 rpm after it reaches its maximal value during
the acceleration phase. While the AT is used to reach and keep the desired velocity, the BT
is used to compensate the disturbances due to the river current. Using the feature-based
MPPI approach for t > 44 s, the actuators’ trajectories lead to the braking behavior of the
system.
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Figure 7. Comparison of the resulting input trajectories of the vessel in the simulation environment.

To reach the maximal deceleration of the vessel, the AT’s orientation is inverted while
its speed is maximized. Regarding the time series of the stage costs shown in Figure 8 in the
absence of an obstacle for t ≤ 44 s, both approaches cause the same costs. Both controllers
find inputs leading to decreasing costs. After the obstacle is detected, the feature-based
control approach applies the learned inputs corresponding to the defined feature. These
inputs lead to increasing cost due to the decelerating surge velocity; however, in contrast
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to the standard MPPI approach, a collision is prevented and thus being in the high cost
region of state-space is avoided. In this section, it was shown that, using the feature-based
MPPI control approach, a significant improvement of the vessel behavior in a maritime
application scenario is reached.
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Figure 8. Comparison of costs in the simulation scenarios plotted over time. Note the logarithmic
representation of the plotted costs.

7. Full-Scale Results

To validate the simulation results, full-scale scale experiments are used. For this
purpose, the algorithms used in the simulation will be transferred to the rapid prototyping
systems of the research vessel Solgenia. A distributed structure of the components is used
as already described in Section 5. In addition, the same controller parameters and cost
functions are used as in the previous sections. The data are recorded directly during the
experiments on the vessel. Regarding the disturbances immediately before the experiments,
a river current of 0.46 m/s was determined in the vicinity of the trajectory. This current
has an orientation of about ψcurr = 165 ◦ and is thus almost opposite to the movement of
the vessel on the trajectory. However, it should be noted that, although the current values
were measured by allowing the research vessel to drift uncontrolled in the vicinity of the
trajectory, they vary along the river and can therefore only be regarded as rough estimates,
which, in reality, are overlaid by a stochastic component. In the experimental phase, the
task described in Section 4 was executed once with a standard MPPI controller and once
with a feature-based MPPI controller. For this purpose, the vessel’s position is stabilized
at the beginning of the trajectory using feedback linearization according to [33] until the
MPPI controller is activated. Then, the MPPI controller is activated for 60 s because both a
collision or a collision avoidance maneuver could occur within this time span. In Figure 9,
a comparison of the vessel’s behavior is shown for both experiments. In this figure, the
vessel’s trajectories are plotted in local coordinates. Furthermore, the vessel’s contour and
thus its orientation are shown at the time instances ti = i(∆T), with i = {0, 1, 2, 3, 4, 5, 6}
and ∆T = 10 s. While using the standard MPPI control visualized in the upper plot of
Figure 9, the vessel collides with the obstacle; using feature-based MPPI control, a collision
can be prevented. Compared to the simulation results presented in the previous section, in
the full-scale experiments, the vessel tracks the reference trajectory with higher errors. This
behavior is to be expected due to model inaccuracies and the disturbance vector assumed
to be constant within the prediction horizon.
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Figure 9. Comparison of the resulting trajectories of the vessel in full–scale experiments at Rhine river
in Constance. Both plots use transformed coordinates calculated by (30). The green lines visualize
the reference trajectories in both plots. After passing the black line, the vessel detects the obstacle
visualized as a red line.

In the application example described, special focus is placed on the surge velocity
component, since it is the most weighted in the selection of the coefficients of the cost
function and thus the most important property in the case of the absence of an obstacle.
However, if an obstacle is detected in this scenario, it is interesting to see how the speed
develops in the direction of this obstacle. Thus, the surge velocity in body-fixed frame
denoted by u and the velocity in direction of the obstacle denoted by ẋ are shown in
Figure 10. The corresponding actuators’ signals are shown in Figure 11. The minimal
path costs β are plotted over time in Figure 12 in logarithmic scale. Using the described
subordinated actuator control loops, the actual values of the actuators follow the desired
values pretty good. Both the conventional MPPI controlled system and the feature-based
MPPI controlled system show almost the same behavior for t ≤ 44.6 s in the absence of
an obstacle.
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Figure 10. Comparison of the body–fixed surge velocity u and the velocity ẋ in x direction in
local frame.
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Figure 11. Comparison of the resulting input trajectories of the vessel in the full–scale experiments.

Standalone paragraphs require initial indentation, i change to indentation, please con-
firm At t = 5.1 s, the surge velocity increases until a maximum is reached with u = 1.93 m/s
at t = 15.5 s. After that, the surge velocity is kept at about 1.9 m/s by both controllers. It
should be noted that both controllers achieve a good response to the disturbances. The
difference between the desired and actual surge velocity is assumed to be due to the limita-
tion of the propeller speed of the AT and model inaccuracies in this state region of high
speed. At t = 44.6 s, the vessel collides with the obstacle within the prediction horizon. The
standard MPPI controller does not decelerate after the detection of the obstacle. This effect
results from the fact that, due to the small explored state-space using conventional MPPI
control, all predicted trajectories cause a collision for t > 51.2 s. Consequently, predicted
trajectories with surge velocity close to udes cause lower costs. In contrast, the feature-based
MPPI controlled system explores more important areas of the state-space shown in Figure 1.
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Figure 12. Comparison of costs plotted over time in full-scale experiments. Note the logarithmic
representation of the cost.

This allows the feature-based MPPI controller to apply the learned braking trajectory,
which is optimal regarding the emergency braking feature (38), as soon as the obstacle
is detected. Thus, it can also react excellently for t > 44.6 s and brake in time to avoid a
collision. As can be seen in Figure 9, braking is achieved by counterclockwise rotation of
the vessel, which allows the hydrodynamic effects of the vessel to be utilized in addition
to the thruster forces of the propellers. As a consequence, while using the standard MPPI
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controller, the vessel’s velocity in the direction of the obstacle is 1.85 m/s at the moment
hitting the obstacle; using the feature-based MPPI approach, the feature-based MPPI con-
troller decelerates the velocity in the direction of the obstacle down to 0.05 m/s and thus
avoids a collision. The minimum path costs, which are shown in Figure 12, are equal due
to the equivalent system behavior of the two control approaches up to the detection of
the obstacle. Using the standard MPPI approach after the detection, a low-cost region
of state-space next to ηcol is explored. However, this leads to the fact that, already for
t > 51 s, all predicted trajectories cause a collision. In contrast, using feature-based MPPI
control, directly after the obstacle detection, the explored state-space is located at a region
around the braking trajectory. This yields to higher costs, but even prevent the real high
state-dependent costs caused by a collision. Using an MPC approach, the considera-
tion of costs directly provides a quantitative quality criterion. Thus, if the cost curves
in Figures 8 and 12 are compared, it can be seen that the quality with regard to the cost
function to be minimized is almost identical. In this section, it was shown that feature-based
MPPI control in full-scale conditions can greatly expand and improve the behavior of a
vessel and prevent collision without increasing the computational cost.

8. Conclusions

In this paper, an extension of the MPPI algorithm [4] is presented improving the
sample efficiency by a knowledge-based feature definition. This is the first possibility
to incorporate information subject to a scenario additive to the usual cost function into
the control algorithm. The conventional MPPI and the presented feature-based MPPI
control approaches are compared in a collision avoidance scenario. Therefore, a stochastic
nonlinear OCP for enabling a vessel to follow a track and avoid collisions is presented
and subsequently solved with both approaches. The performances of the algorithms are
evaluated using data out of a simulation environment and full-scale experiments. In both
simulation and full-scale experiments, while the standard MPPI would collide with an
obstacle, the feature-based MPPI can prevent the collision although the same number of
trajectories were drawn in both cases. In the absence of an obstacle, the feature-based MPPI
controller learns an optimal braking trajectory that minimizes the feature costs subject to the
modeled system dynamics. When the obstacle is detected, this is then successfully applied
to avoid a collision. Thus, by inserting an emergency braking feature, the performance
and usability of the algorithm could be increased significantly. Concerning other NMPC
approaches, the MPPI control algorithm is characterized by a very good parallelization
capability, since the samples can be drawn in different kernels. This property is not affected
by the presented feature-based extension. Thus, the number of features that could be
explored and learned can be increased by adding further parallel computing power. In
future work, an evaluation of how the presented feature-based approach can be used in
other sample-based NMPC algorithms could be scientifically valuable.
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