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Abstract: The manipulation of complex robotics, which is in general high-dimensional continuous
control without an accurate dynamic model, summons studies and applications of reinforcement
learning (RL) algorithms. Typically, RL learns with the objective of maximizing the accumulated
rewards from interactions with the environment. In reality, external rewards are not trivial, which
depend on either expert knowledge or domain priors. Recent advances on hindsight experience
replay (HER) instead enable a robot to learn from the automatically generated sparse and binary
rewards, indicating whether it reaches the desired goals or pseudo goals. However, HER inevitably
introduces hindsight bias that skews the optimal control since the replays against the achieved
pseudo goals may often differ from the exploration of the desired goals. To tackle the problem, we
analyze the skewed objective and induce the decayed hindsight (DH), which enables consistent
multi-goal experience replay via countering the bias between exploration and hindsight replay. We
implement DH for goal-conditioned RL both in online and offline settings. Experiments on online
robotic control tasks demonstrate that DH achieves the best average performance and is competitive
with state-of-the-art replay strategies. Experiments on offline robotic control tasks show that DH
substantially improves the ability to extract near-optimal policies from offline datasets.

Keywords: robotic control; goal-conditioned reinforcement learning; offline reinforcement learning;
sparse rewards; experience replay; hindsight bias

1. Introduction

Learning and planning without an accurate dynamic model provide a great challenge
for complex robotics control. In awareness of the daunting difficulty of physical control,
reinforcement learning (RL) [1], which instead treats the environment dynamic as a black
box, implicitly learns optimal behaviors from interactions with the environment in pursuit
of the maximal accumulated rewards. Combined with deep neural networks, deep RL has
achieved great success in both simulated and real-world robotic control tasks, such as dex-
terous manipulation [2–6], motion control [7–10], navigation [11–13] and so on [14–16]. In
the ideal case, the reward function for each task should be an indicator for task solving [2,6].
Nevertheless, most algorithms rely on a delicately designed and appropriately shaped
task-specific reward function that reflects the domain knowledge [17,18]. For example,
Ref. [6] takes the distance from the gripper to the handle as well as thedifference between
the current and desired door pose into the reward function for a door-opening task. How-
ever, it is impractical to engineer rewards for all the tasks, especially for high-dimensional
continuous control tasks with enormous state–action spaces (as shown in Figure 1). As it
grows tougher and requires considerably more exploration, the ability to efficiently robotic
control with unshaped task-solving rewards is indispensable.
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(a) Pushing (b) ManipulateEgg (c) ManipulatePen

(d) Hopper (e) Walker (f) HalfCheetah

Figure 1. High-dimensional continuous control tasks suffering from sparse rewards. (a–c) Object
manipulation tasks with a fetch robotic arm or a shadow dexterous hand; (d–f) motion control tasks
with simulated physics. We consider it a success if an agent achieves the desired goal state within
some task-specific tolerance.

The recent advancement on hindsight experience replay (HER) [19] proposes to replay
past experiences with pseudo goals (abstracted from states indicating task solving), which
enriches pseudo task-solving signals and enables learning from failures. Incorporated
with HER, goal-conditioned RL [20–22], where agents pursue various goals in an open-
ended environment, learns to achieve and generalize across different goals with sparse
task-solving rewards. Recent advances in experience replay with hindsights have shown to
greatly enable goal-conditioned RL in various scenarios [23–30]. However, when replaying
the experience, it introduces a well-known cognitive bias that describes the overestimation
of one’s foresights after acquiring the outcomes of executing certain actions, which is
called hindsight bias [31] and impedes learning in sequential decision-making tasks [32,33].
Concretely, pseudo rewards from the relabeled experience may give the agent unreasonable
confidence in reaching past achieved goals, neglecting the actual outcomes of its policy. For
value-based learning, the bias leads to overestimation in value function.

In countering the bias of regenerating past experiences with original goals and hind-
sight goals, existing work either increases the likelihood of sampled actions by assigning
aggressive rewards for relabeled experiences [34], or reduces changes in the likelihood of
sampled trajectories [35]. However, hindsight replay changes the distribution of replayed
goals, yet most of the goals will not be further explored. Thus, assigning excessive hindsight
rewards results in the unreliable generalization for goal-conditioned RL, which assumes
that behaviors for one goal can generalize to another similar one. As hindsight goals
progressively spread across all the goal space in an unprincipled manner, the value function
approximation may collapse. Therefore, it is of great significance to restrict excessive
hindsights on goals with high uncertainties under the current policy.

Dealing with the mentioned problem, we analyze the biased value function and
consider stabilizing it with decayed hindsight rewards, namely decayed hindsight (DH).
Compared to vanilla HER, if the current policy cannot regenerate the past experience with a
hindsight goal very well, the hindsight reward assigned to the experience will be decreased.
Embodying DH into HER enables consistent experience replay, Decayed-HER. For one
thing, the inevitable hindsight bias will be adaptively reduced, according to the distribution
dissimilarity with replayed goals. For another, it maintains a balance between hindsight
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replay and task-solving indication. Both in online and offline settings, we evaluate our
proposed Decayed-HER on various goal-conditioned manipulation tasks using a simulated
physics engine [36]. Experiments demonstrate that it achieves the best average performance
over the state-of-the-art multi-goal replay strategies in online learning and improves the
performance in offline learning.

Our contribution can be summarized as below:

• As far as we know, this manuscript is the first to propose a surrogate objective over
hindsight experiences after analyzing the hindsight bias in HER, which is the founda-
tion of reliable and unbiased multi-goal value estimation.

• We propose a tractable implementation of the decayed hindsight and successfully
embed it to online multi-goal replay and offline RL. Compared to existing works, the
proposed method is effective and easy to implement with the potential of getting rid
of low sample efficiency and heavy computation burden.

• We conduct a series of experiments and show promising results on high-dimensional
continuous control tasks with sparse rewards. Especially for offline RL, the proposed
method pictures a prospective future to effectively learn from experiences and datasets
without exploring the environment.

2. Related Works

Rewards shaping. Rewards shaping [17,18] mostly aims at managing every-step reward
that heuristically reflects domain knowledge, such as the likelihood of achieving the desired
goal. However, as mentioned in [19], HER with shaped rewards [17] performs worse than
with sparse rewards. The source of it is that dense shaped rewards are more likely to
collapse the value function approximation. We emphasize that manipulation hindsight
rewards to counter bias are fundamentally different from reward shaping. In general, bias
countering cares about the likelihood of regenerating past experiences by the current policy
instead of providing every-step rewards.

Except for task-solving rewards, recent works construct various signals to encourage
exploration. Ref. [37] proposesself-balancing shaped rewards, which award sibling rollout
to reconstruct a self-balancing optimum. Ref. [38] appliesan asymmetric reward relabeling
strategy to induce competition between a pair of agents. Both [37,38] encourage exploration
beyond the original tasks.

Self-Imitation. Self-imitation [39] shares the similar idea of HER and can be extended
to goal-conditioned RL [40–43]. These works imitate achieved trajectories with goal-
conditioned policies, just like replaying past experiences with the achieved goals in HER.
For self-imitation, the hindsight bias may also lead to unstable policy updates. We will
explore it in future work.

3. Materials and Methods

In this section, we revise the value-based goal-conditioned RL framework and its
universal value function approximators, then analyze experience replay with the hindsight
bias mentioned before, and derive Decayed-HER in the following.

3.1. Goal-Conditioned RL and Universal Value Function Approximators

Goal-conditioned RL extends typical RL to goal-conditioned behaviors. Consider a
discounted Markov decision process (MDP), (S ,A,G, P, r, γ), where S ,A, G each represent
a set of states, actions and goals, P : S × A × S → R and r : S × A × G → R are the
transition probability distribution and reward function, γ ∈ (0, 1) is a discount factor. At
the beginning of each episode, the RL agent obtains the desired goal g ∈ G. Then at time
step t, it observes a state st ∈ S , executes an action at ∈ A and receives a reward r(st, at, g)
at the next time step that indicates task solving. Concretely,

rt = r(st, at, g) =

{
0, ||φ(st+1)− g||2 ≤ δg

−1, otherwise
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where φ : S → G defines a tractable mapping from states to goals, and δg is a pre-defined
task-specific tolerance threshold [22].

Let τ = s0, a0, s1, a1, . . . , sT−1, aT−1, sT denote a trajectory, and Rt = ∑T−1
i=t γi−tri denote

its accumulated discounted return at t ∈ [0, T − 1]. Let π : S × G → A denote a universal
policy, Vπ : S × G → R and Qπ : S × G × A → R denote its universal value function.
Combined with neural networks, universal value function approximators (UVFA) [21] have
the expectation of generalizing the value estimation over various goals. With experience
(s, a, s′, g, r), it optimizes π via performing policy improvement with the expectation

Qπ(s, g, a) := Es′

[
r + γ max

a′
Qπ(s′, g, a′)

]
. (1)

In general, HER variants concatenate states and goals together as joint inputs for the
Q-value function, just like [19,23,44,45].

3.2. Hindsight Bias

Dealing with sparse task-solving rewards, HER utilizes the hindsight—the pseudo
goal is going to be achieved in the near future—to learn from failures. Concretely, it relabels
experience e = (s, a, s′, g, r) with a pseudo goal gh and enables to learn from the relabeled
experience (s, a, s′, gh, r(s, a, gh)) with a hindsight reward r(s, a, gh). Since the pseudo goal
is randomly sampled from the same trajectory of the original experience [19], the hindsight
reward thus yields a higher probability of goal reaching than r. Formally, the current policy
π is updated with Equation (1) via

Qπ(s, gh, a)← r(s, a, gh) + γ max
a′

Qπ(s′, gh, a′),

which plays a key role to remember and reuse multi-goal experiences.
However, HER neglects the fact that without loss of generality, we have

π(s, g) 6= π(s, gh)

for most of the states and policies. It introduces hindsight bias indicating that HER in-
evitably changes the sample distribution of experiences. For experience e, we regard the
original distribution of experience as f (e), and the distribution of hindsight experience
as h(e). The vanilla HER proposes hindsight goals in a random manner, which makes an
unpredictable distribution shift from f (e) to h(e) and skews the value estimation over the
distribution from Ee∼ f [Qπ(e)] to Ee∼h[Qπ(e)]. Notice that

Ee∼ f [Qπ(e)] =
∫

e
Qπ(e) f (e)de =

∫
e
[

f (e)
h(e)

Qπ(e)]h(e)de

= Ee∼h[
f (e)
h(e)

Qπ(e)]. (2)

Importance sampling seems natural for canceling the sampling bias but is non-trivial in
practice, which may result in policy updates with high variance [22,46].

As the environment dynamic is independent of goals, a goal-conditioned policy is
able to regenerate the transition (s, a, s′) of e with any input goal as long as, with some
probability, it can generate the action a at the state s. Without loss of generality, replaying
experience with hindsights equals adding diverse behavior policies in advance. Thus
we can assume that f (e) < h(e) for most of sampled hindsight experiences but f (e)
progressively approaches h(e), as the pseudo goal approaches the original goal. Informally,
we assume that

f (e)
h(e)

< c ≤ 1, ∆Qπ(e) = (1− f (e)
h(e)

)Qπ(e) > (1− c)Qπ(e)
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for almost every replayed e and some constant c.
In order to verify that this theoretical overestimation does exist in practice, we plot

the true return and the value estimation of TD3 [47], which already addresses function
approximation error in actor-critic methods, on a goal-conditioned continuous control
task named parking-v0 [48], in which the ego-vehicle must park in a given space with
the appropriate heading. For every epoch during training, we obtain the values with the
current policy. Concretely, we randomly sample a (s, a, g) pair from the replay buffer and
take its Qπ-value as value estimation under the current policy π. Then we take the true
discounted returns over 100 rollouts that start with the pair and follow π as the return. In
Figure 2a, we plot the averaged value estimations and returns over 50 pairs at each epoch.
We can see that there is a very clear overestimation during the training process, which
may be minimal but cannot be neglected. For one thing, the skewed value function leads
to sub-optimal policies. For another, the overestimation may result in a more significant
bias for unexplored goals, given the iterated Bellman updates. Countering the effect of
hindsight bias is essential.

(a) (b)

Figure 2. Demonstrating overestimation in the value estimation of TD3 with and without decayed
hindsights on parking-v0 during the training process (for approximately 1 million steps). (a) TD3
without decayed hindsights; (b) TD3 with decayed hindsights.

3.3. Decayed Hindsights

In view of Equation (2), we consider the skewed objective ηπ = f (e)
h(e) Qπ(e) for relabeled

experience e = (s, a, s′, gh). Noticing that importance sampling is non-trivial for hindsight
experience, we instead directly learn to approximate ηπ in the derived MDP

ηπ(e) = r̃ + γEe′∼h[η
π(e′)]

with reward

r̃ = m(e)r− γ(1−m(e))Ee′∼h[η
π(e′)],

where m(e) = f (e)
h(e) describes the distribution dissimilarity and we assume that h(e) > 0

holds for every sampled e.

Theorem 1. Under mild conditions, ηπ is a surrogate estimate for Qπ .
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Proof. By appending r̃ = m(e)r− γ(1−m(e))Ee′∼h[η
π(e′)] into the derived MDP, we can

trivially obtain

Ee∼h[η
π(e)] = Ee∼h[r̃ + γEe′∼h[η

π(e′)]]

= Ee∼h[m(e)r− γ(1−m(e))Ee′∼h[η
π(e′)] + γEe′∼h[η

π(e′)]]

= Ee∼h[m(e)r + γm(e)Ee′∼h[η
π(e′)]]

= Ee∼h[m(e)(r + γEe′∼h[η
π(e′)])]

= Ee∼h[m(e)(r + γEe′∼ f [Q
π(e′)])]

= Ee∼ f [Qπ(e)].

which indicates that we can approximately estimate the true value Qπ over f by self-
bootstrapped estimating ηπ over h with r̃.

The new MDP inherits the convergence from the original MDP as long as the reward is
bounded, i.e., for any experience e, e′, bounded r and some constant C > 0, we hold |r̃| < C.
It is evident that if m(e) is bounded, the reward is bounded. According to the previous
analysis, we can assume that with probability 1− δ, m(e) ≤ 1 holds. Then it converges and

r− r̃ = (1−m(e))(1 + γEe′∼h[η
π(e′)]) = (1−m(e))(1 + γEe′∼ f [Q

π(e′)])

is in principle positive for goal-reaching hindsight experience and optimal policy.
On the basis of this observation, we make the following statements:

1. As the difference r − r̃ grows with 1 − m(e), the hindsight reward is in principle
decreased with the distribution dissimilarity. We call the reconstructed hindsight
rewards decayed hindsights.

2. Nevertheless, obtaining r̃ is non-trivial, as the estimation of m(eh) can be intractable
for hindsight experience eh = (s, a, s′, gh, rh). As most of the pseudo goals will not be
further explored, we instead consider the ability of the current policy π to reproduce
the sampled trajectory containing transition (s, a, s′), given the original goal go and
the hindsight goal gh. Under mild conditions, we have

m(eh)|eh∼h =
f (eh)

h(eh)
|eh∼h ≈

P(τ, gh)

P(τ, go)
∝

Πiπ(ai|si, gh)

Πiπ(ai|si, go)
,

where τ = {s1, a1, s2, a2, . . . } is the sampled trajectory, and both the probability of
sample gh with f and the probability of sample go with h are omitted. (For simplicity,
we denote P(a = π(s, g)) as π(a|s, g).) Concretely, we take

log m(e)|eh∼h ≈ log
Πiπ(ai|si, gh)

Πiπ(ai|si, go)
= ∑

i
log π(ai|si, gh)−∑

i
log π(ai|si, go)

m(eh) ≈ exp{∑
i
(log π(ai|si, gh)− log π(ai|si, go))}.

For fear of high variance, we constrain m(e) ∈ (0, c], c < 1 in the implementation. In
future work, we may pay attention to further easing the computation burden.

After obtaining m(e) and appending

r̃ = m(e)r(e)− γ(1−m(e))η̂π(e′)

in the value updates, we modify the vanilla algorithm in solving parking-v0 to TD3 with
DH. In Figure 2b, we also plot the averaged value estimations and returns over 50 pairs at
each epoch. We can see that the overestimation progressively disappears. As the learning
becomes stable, the value estimations match well with the returns. Compared to Figure 2a,
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the returns are higher than those obtained by TD3 without decayed hindsights. Figure 2
shows that the hindsight bias does exist and can be decreased by our proposed decayed
hindsights.

3.4. Decayed-HER

Figure 3 presents the overall framework for Decayed-HER.

Figure 3. The overall framework for Decayed-HER (on the basis of the vanilla HER). It consists of
collecting rollout data and replaying hindsight data. Our proposed DH enables optimized unbiased
ηπ over hindsight experiences with modified hindsight rewards. If this DH module is disabled, it
degrades to optimize Qπ over hindsight experiences that are biased due to overestimated hindsights.

As shown in the framework, the training process runs along each module in a loop:

• Given the desired goal g at the start of each episode, AGENT interacts with ENV with
a goal-conditioned policy π and stores the generated trajectory τ into BUFFER.

• Sample a trajectory from BUFFER and RELABEL experiences with hindsight goals
and the resulting hindsight rewards. Here, we show a simple strategy for sampling
replay goals: First, we randomly sample a state sk and a future state along the same
trajectory after it, sl . Then, we abstract the goal representation of sl as gh and store
the relabeled eh = (sk, ak, sk+1, gh, r(sk, ak, gh)). If the decayed hindsights module is
enabled, the hindsight rewards will be modified.

• OPTIMIZER samples experiences (that may be a mixed batch of original experiences
and hindsight experiences) from BUFFER to update the policy π of AGENT.

We apply DH to the decayed hindsights module, which is significantly different
from other HER algorithms and is indispensable to the loop for unbiased objective ηπ .
Subsequently, we present the resulting Decayed-HER, which can incorporate decayed
hindsights with any goal-conditioned off-policy RL algorithm, as shown in Algorithm 1.
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Algorithm 1 Decayed hindsight experience replay.
Input: A goal-conditioned off-policy RL algorithm π, a strategy S for sampling

replay goals, a reward function r : S ×A× G → R, max episodes num M,
max interaction steps T and policy update number N of each episode

1 Initialize π, replay buffer R, constant c = 0.99, discounted factor γ
2 for episode = 1→ M do

// Set
3 Sample a goal go and an initial state s0
4

// Interact
5 Generate a T−steps trajectory τ = s0, a0, s1, a1, . . . , aT−1, sT using π
6

// Replay
7 for t = 0→ T − 2 do
8 rt := r(st, at, go)
9 Store eo = (st, at, st+1, go, rt) in R

10 Sample a set of additional goals G := S(τ)
11 for gh ∈ G do
12 Relabel e = (st, at, st+1, gh, r(st, at, gh))
13 Relabel e′ = (st+1, at+1, st+2, gh, r(st+1, at+1, gh))
14 Approximate

m(e) ≈ min(exp{∑i(log π(ai|si, gh)− log π(ai|si, go))}, c) using π
15 Decayed r̃ = m(e)r(st, at, gh)− γ(1−m(e))ηπ(st+1, gh, at+1)
16 Store e = (st, at, st+1, gh, r̃) in R
17 end
18 end
19

// Update
20 for n = 1→ N do
21 Sample a minibatch B from the replay buffer R
22 Perform one step of optimization of π using B
23 end
24 end

3.5. Offline Decayed-HER

While Algorithm 1 works for online multi-goal tasks directly, we consider the proba-
bility of applying it in offline settings, where it learns from a fixed dataset without further
exploring the environment. Notice that there is no explicit goal in the locomotion tasks; we
consider the final states of expert trajectories with high returns as goals.

The offline dataset can be regarded as a static replay buffer with trajectories pre-
generated by diverse behavior policies. Without loss of generality, let µ : S × G → A
denote a universal behavior policy. In off-policy RL, the target policy π can learn from
experiences generated by any behavior policy as long as if P(a = π(s, g)) > 0, we have
P(a = µ(s, g)) > 0 for each (s, g). Conversely, if any state-action pair is unavailable for
any behavior policy, there will be an approximation error in the estimation of Qπ . One
of the great challenges for offline RL is to address the problem of potentially learning
from unavailable state-action pairs, i.e., out-of-distribution (OOD) data. Most existing
offline RL algorithms adopt the conventional value-based framework but regularize the
policy learning to match with the behavioral data to mitigate this problem. One stream of
works [49–51] avoid OOD state–action value evaluation by constraining the target policy
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within the distribution or support of the behavioral data. In general, these offline RL
algorithms define the penalized value function as

Vπ
D (s, g) = ∑

t
γtEst [r(st, at, g)− αD(π(at|st, g), µ(at|st, g))]

where D is a divergence function between distributions over actions (such as KL diver-
gence), α > 0 is the penalization factor. It requires a pre-estimated cloned policy µ since we
do not have access to any µ.

Based on the realization of m(e), we provide a practical realization of D in terms of a
T-step trajectory τ. Concretely, we take

r̃(e) = m(e)r(e)− γ(1−m(e))η̂π(e′)− α(1−m(e))

= m(e)r(e)− (1−m(e))(γη̂π(e′) + α)

for hindsight experience e. The first term in r̃ shows that we decrease the original r with the
dissimilarity. The second term represents the punishment proportional to 1−m(e), which
gets rid of the estimation of µ.

4. Results

We evaluate Decayed-HER on goal-oriented tasks in both online and offline settings.

4.1. Online Multi-Goal Replay
4.1.1. Experimental Settings

HER variants. Multi-goal replay with hindsights is the key role to enable goal-
conditioned RL with sparse binary rewards. The framework is the same as the one for our
proposed Decayed-HER, as shown in Figure 3. In Table 1, we give a detailed description
of existing HER variants. The strategy S changes the distribution of replayed goals and
introduces hindsight bias. The base variant HER [19] neglects the bias when uniformly
replaying hindsight goals; ARCHER [34] variant assigns aggressive rewards to counter
the bias by amplifying the hindsight rewards; BHER [35] counts the likelihood bias of
regenerating sampled trajectories, then proposes an approximated batch projection to
reduce the bias; Filtered-HER [52] rejects hindsight experience with goals already achieved
to ease another kind of estimation bias. There are HER variants that prioritize hindsight
goals: CHER [45], which evaluates hindsight goals and generates an implicit curriculum
for progressive exploration, and MEP [23], which incorporates with HER and optimizes
a weighted entropy-based objective for exploration. We compare Decayed-HER with
other biased-reduced HER variants and show if DH can improve the performance of HER
variants that neglect the hindsight bias.

Table 1. HER variants with different hindsight rewards. The vanilla HER neglects the bias when
uniformly replaying hindsight goals. ARCHER, BHER, and our Decayed-HER try to address the
bias on the modified hindsights. Filtered-HER filters meaningless experiences but makes no effect
on hindsight bias. CHER and MEP variants pay more attention to how to sample hindsight goals
for replay.

Reward for e = (s, a, s′, gh) Bias-Reduced Hindsight Bias Strategy S

HER [19] r NO −

random
ARCHER [34] constant · r YES YES

Filtered-HER [52] r YES NO
BHER [35] e∑t(||at−π(st ,go)||22−||at−π(st ,gh)||22)r YES YES

Decayed-HER (ours) m(e)r− γ(1−m(e))η̂π(e′) YES YES
CHER [45] r NO − curriculum-based
MEP [23] r NO − entropy-regularized
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Goal-oriented tasks. We perform the evaluation on goal-oriented tasks based on Robotic
Fetch and Hand simulators [22,36,53], as shown in Figure 1. In Table 2, we list the di-
mensions of states, goals, and actions for each task, as well as a brief description and the
tolerance threshold. At the beginning of each episode, the agent obtains the desired goal.
Once the agent approaches the desired goal within a tolerance threshold, we consider it a
success. The comparison is mainly based on the averaged success rate on all the tasks.

Table 2. Goal-oriented continuous control tasks for evaluating HER variants.

Task Dim.(State) Dim.(Goal) Dim.(Action) Description Tolerance Threshold

Fetch
Pushing 10 3 4 push and roll a box 5 cm
Sliding 25 3 4 hit a puck 5 cm

Pick-and-Place 25 3 4 grasp and move a box 5 cm

Hand
ManipulateBolck 61 7 20 rotate x, y, z axes 1 cm, 0.1 rad
ManipulateEgg 61 7 20 rotate x, y, z axes 1 cm, 0.1 rad
ManipulatePen 61 7 20 rotate x, y axes 5 cm, 0.1 rad

Controlling parameters. In fairness, we implement Decayed-HER with a DDPG [7]
algorithm exactly as the other state-of-the-art HER variants. All the variants share the
common environment setting and the same experimental configuration (in Table 3). As for
their private controlling parameters, we make a parameter tuning referring to the original
work. We conduct experiments on a TITAN V with 8 Gpus and each test runs with 5 Cpu
workers. For every update, parameters are averaged by 2 rollouts for each worker. More
running works can improve the performance but increase the computation burden. We
figured out that our experimental setting is capable of these tasks.

Table 3. Main controlling and training parameters for Decayed-HER.

epoch 50
episode number M 50

max steps T 50 for Fetch, 100 for Hand
buffer size |R| 106 transitions

update number N 40
batch size |B| 256

4.1.2. Results and Analysis

Benchmark results. After the policy update at each epoch, we perform 10 rollouts with
the current policy and take the averaged success rate as its performance. We compare the
performance of different bias-reduced HER variants and compare mean success rates in the
final evaluation, which are averaged over 6 random seeds and all the workers. For each
variant on every task, we list the final mean success rate and its ratio to the best-achieved
results of all the variants. For ARCHER, we try different aggressive amplify factors and
give the best result (labeled as ARCHER_1). Thus, we obtain the averaged evaluation
results for each variant in Table 4.

As shown in Table 4, Decayed-HER obtains the best result on the multi-goal tasks
with sparse rewards, which is 99.6% average performance on all the manipulation tasks.
Concretely, it achieves the best performance on hand tasks while yielding competitive
results on fetch tasks. ARCHER, which achieves the best average results on Fetch tasks,
achieves a poor result on hand tasks. BHER, which only considers the regenerating bias
of trajectories, also works well, especially on tasks ManipulateBolck and ManipulatePen.
Except for bias-reduced correction on hindsight rewards, there is an additional operation
of value projection in BHER [35], which transfers the bias correction from zero rewards to
non-zero rewards. We will study the effect of this operation in future work.
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Table 4. Final mean success rates comparison. We list the final average success rate for each variant
on each task and its ratio to the best achieved average success rate on the task.

Task

Variant
HER ARCHER_1 Filtered-HER BHER Decayed-HER (Ours)

Pushing 0.996/99.9% 0.994/99.7% 0.997/100.0% 0.995/99.8% 0.996/99.9%
Sliding 0.549/86.9% 0.632/100.0% 0.554/87.7% 0.613/97.0% 0.628/99.4%

Pick-and-Place 0.811/87.0% 0.932/100.0% 0.897/96.2% 0.864/92.7% 0.918/98.5%
ManipulateBolck 0.454/81.1% 0.189/33.8% 0.444/79.3% 0.51/91.1% 0.56/100.0%
ManipulateEgg 0.136/78.2% 0.011/6.3% 0.119/68.4% 0.113/64.9% 0.174/100.0%
ManipulatePen 0.173/74.6% 0.146/62.9% 0.171/73.7% 0.186/80.2% 0.232/100.0%

Average success rate 0.520 0.484 0.530 0.547 0.585
Average relative ratio 84.6% 67.1% 84.2% 87.6% 99.6%

By comparing to HER and Filtered-HER, we show that Decayed-HER achieves better
final performances after adopting Decayed Hindsights. By comparing to ARCHER, we
show that the adaptable decayed rewards work better than simply assigning constant-factor
amplified rewards. By comparing to BHER that neglects the skewed values, we show that
the proposed surrogate objective is effective in value estimation and achieving better results.
In Figure 4, we additionally provide the learning curves for all the results on the pushing
and ManipulateEgg tasks to show the stable learning process and high sample efficiency of
Decayed-HER.

Learning curves. In Figure 4, we plot learning curves of different bias-reduced HER
variants, which show the median test success rate with shaded areas representing perfor-
mance fluctuations along with the training process. For ARCHER, we plot the best one
(labeled as ARCHER_1) and the average one (labeled as ARCHER_2) after trying different
constant aggressive amplify factors.

(a) (b)

Figure 4. Learning curves for bias-reduced HER variants on (a) Pushing, (b) ManipulateEgg. The
bold line shows the median test success rate over 6 random seeds and the shaded areas represent
the 25th to 75th percentile. For ARCHER, we plot the best and averaged results with two different
aggressive amplify factors. Our method achieves the best average performance both on sample
efficiency and final median success rate.

We can see that (1) when achieving some success rate, our Decayed-HER uses fewer
epochs most of the time. Thus it obtains the best sample efficiency and achieves the highest
success rate on task Pushing and ManipulateEgg. (2) ARCHER is fragile on hand tasks,
which indicates that amplifying the hindsight rewards by a constant may be dangerous
for complex manipulation tasks. (3) While HER realizes stable baseline results, our DH
successfully improves HER in both the sample efficiency and final success rate.
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Ablation study. We perform ablation studies on decayed Hindsights by applying it to
state-of-the-art non-bias-reduced HER variants, i.e., the CHER variant and MEP variant.
These variants significantly encourage exploration across the goal space, which makes
them good testbeds for evaluating the effect of DH assigned to different goals. We conduct
experiments on the pick-and-place task and sliding task in the fetch environment across
three random seeds. The variants with decayed hindsight are labeled as CHER_DH and
MEP_DH. Learning curves in Figure 5 show that with the effect of DH, the performance of
the original variant has an obvious improvement.

(a) (b)

Figure 5. Ablation study on DH by performing experiments on (a) Pick-and-Place; (b) Sliding.
Variants with DH perform better or no worse than before.

4.2. Offline Decayed-HER
4.2.1. Experimental Settings

Offline RL as goal-conditioned RL. We consider the offline dataset D4RL [54], which con-
tains different sub-sets generated by different strategies and provides a popular benchmark
of offline RL. In Table 5, we list the sub-set information for continuous locomotion tasks
halfcheetah, walker2d and hopper (shown in Figure 1). In the first place, it stops the train-
ing of a policy early and then constructs the subsets: the ‘medium-replay’ sub-set contains
all the experiences during the training; the ‘medium’ sub-set collects random rollouts with
the partially-trained policy; and the ‘medium-expert’ sub-set mixes expert demonstrations
with sub-optimal data, which are generated via the partially trained policy or by unrolling
a uniform-at-random policy. With more sub-optimal data, behavior-regularized methods
will obtain a more poor result.

The sub-sets are not generated via goal-conditioned policies. To solve offline RL as
goal-conditioned RL, we adopt a goal-conditioned policy and random sample states with
high accumulated rewards as goals to guide the training. It in a way enriches training
samples. When evaluating the performance, RL agent sets the sampled states as goals and
then rollouts. Once the agent approaches the states within a tolerance threshold (i.e., the
distance of normalized states is small than a pre-defined constant), we consider it a success.
Except for such sparse goal-reaching signals, the locomotion tasks receive external rewards.
D4RL transforms accumulated rewards into normalized scores compared to its baseline.
We adopt the setting and compare the average normalized scores on all the tasks.
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Table 5. Offline continuous locomotion tasks in D4RL.

Task Sub-Set Dim.(State) Dim.(Action) Size Description

halfcheetah
medium 17 6 106 generated by a partially-trained policy

medium-replay 17 6 101,000 all samples in the replay buffer
medium-expert 17 6 2× 106 mixed expert and sub-optimal data

walker2d
medium 17 3 106 generated by a partially-trained policy

medium-replay 17 3 100,930 all samples in the replay buffer
medium-expert 17 3 2× 106 mixed expert and sub-optimal data

hopper
medium 11 3 106 generated by a partially-trained policy

medium-replay 11 3 200,920 all samples in the replay buffer
medium-expert 11 3 2× 106 mixed expert and sub-optimal data

Controlling parameters. To give a fair comparison, we implement offline Decayed-
HER with the vanilla BRAC [51]. They share a common environment setting and the
same experimental configuration. In Table 6, we list the main parameters for training and
evaluation. The performance is averaged over 100 rollouts at each evaluation.

Table 6. Main controlling parameters for offline Decayed-HER.

training steps 106

batch size 256

goals selection random, within high-rewarding
trajectories

number of rollouts 100
batch size 256
max steps 1000

4.2.2. Results and Analysis

Benchmark results. We compare our offline Decayed-HER with value-based behavior-
regularized offline RL: BCQ [49], BEAR [50], BRAC [51], although they are not initially
designed for goal-conditioned learning. In Table 7, we can see that (1) our method shows
competitive results on the locomotion tasks, which indicates the original tasks can be solved
as a goal-conditioned RL; (2) in almost all the sub-sets, our method outperforms the vanilla
BRAC, which shows the effect of decayed hindsights; (3) our method achieves the best
average normalized scores on ’medium’ sub-sets for all the tasks, which lies in the fact that
in such sub-sets, our method is able to well estimate the static distributions.

The proposed offline Decayed-HER is based on BRAC but works better than BRAC,
which indicates the effectiveness of applying DH to the offline settings. By comparing it
to BCQ and BEAR, we show that offline Decayed-HER achieves competitive performance
with other value-based offline algorithms, especially in ‘medium’ datasets generated by a
stable policy.

Learning curves. Except for the comparison on the final performance, we compare the
performance of goal-conditioned RL with and without DH on the task hopper, and plot
learning curves in Figure 6. It shows the average normalized scores along with the training
process over each sub-set. We can see that DH substantially improves the performance
of the basic goal-conditioned policy on ‘medium’ and ‘medium-expert’ sub-sets. In the
‘medium-replay’ sub-set, the one with DH yields a fluctuated average performance with
fewer samples.



Machines 2022, 10, 856 14 of 17

Table 7. Average normalized scores on D4RL benchmark tasks. The evaluations are averaged on
100 random seeds and normalized by following [54]. Our method shows promising results on the
locomotion tasks.

Task
Method

BCQ BEAR BRAC Offline Decayed-HER (Ours)

halfcheetah-medium 47.0 41.7 46.3 48.1
halfcheetah-medium-replay 40.4 38.6 47.7 45.2
halfcheetah-medium-expert 89.1 53.4 41.9 86.7

walker2d-medium 72.6 59.1 81.1 82.7
walker2d-medium-replay 52.1 19.2 0.9 36.4
walker2d-medium-expert 109.5 40.1 81.6 108.4

hopper-medium 56.7 52.1 31.1 71.2
hopper-medium-replay 53.3 33.7 0.6 63.5
hopper-medium-expert 81.8 96.3 0.8 68.2
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Figure 6. Ablation study on DH over datasets (a) medium, (b) medium-replay and (c) medium-expert.
Offline goal-conditioned RL with DH performs better than before.

5. Discussion and Conclusions

In recent years, the rapid development of neural networks has made it possible to
efficiently and continuously control high-dimensional tasks. The approximation errors
introduced by the neural networks are from different sources. In value-based RL, function
approximation errors lead to overestimated value estimates and sub-optimal policies [47].
In our work, we focus on another approximation error from the abuse of hindsights,
which widely exist in HER [19]. While existing works on hindsight bias neglect the effect
of distribution shift on rewards, we instead derive a surrogate objective with modified
rewards, i.e., decayed hindsights.

In this paper, we propose decayed hindsights to ease the influence of the overestima-
tion of regenerating the hindsight experience. We analyze the hindsight bias in vanilla
HER and approximate an unbiased MDP with decayed rewards. It leads to an efficient,
bias-reduced consistent multi-goal hindsight replay, namely Decayed-HER. With its help,
continuous control with sparse rewards in high dimensions can be consistently and ef-
fectively solved via multi-goal RL. In general, we incorporate our decayed Hindsights
both with online multi-goal replay and offline behavior-regularized policies. Experiments
show that it enables obtaining high performance and stabilizing the learning from sparse
rewards. By framing typical offline RL into goal-conditioned RL, we are able to apply
goal-conditioned policies in solving tasks without explicit goals.

In future work, we will further explore the hindsight bias in the goal-conditioned
self-imitation method. It adopts a similar idea to hindsight replay but can be realized in
a policy-based manner [40–43]. The hindsight bias, which reflects the difference between
the estimated value and actual return, may lead to unstable and uncontrollable policy
updates. It is essential to directly counter the bias in addition to trust the region policy
optimization [9,55].
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