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Abstract: As scalar neurons of traditional neural networks promote dimension reduction caused
by pooling, it is a difficult task to extract the high-dimensional spatial features and long-term
correlation of pure signals from the noisy vibration signal. To address the above issues, a vibration
signal denoising method based on the combination of a dilated self-attention capsule network
and bidirectional long short memory network (DACapsNet–BiLSTM) is proposed to extract high-
dimensional spatial features and learn long-term correlations between two adjacent time steps. An
improved self-attention module with spatial feature extraction ability was constructed based on
the random distribution of noise, which is embedded into the capsule network for the extracted
spatial features and denoising. The dilated convolution is integrated into the improved capsule
network to expand the receptive field to obtain the spatial features of the vibration signal. The
output of the capsule network was used as the input of the bidirectional long-term and short-term
memory network to obtain the timing characteristics of the vibration signal. Numerical experiments
demonstrated that DACapsNet–BiLSTM performs better than other signal denoising methods, in
terms of signal-to-noise ratio, mean square error, and mean absolute error metrics.

Keywords: capsule networks; bi-directional long- and short-term memory networks; vibration signal;
dilated convolution; denoising; self-attention

1. Introduction

Rolling bearing operating conditions are the main factor affecting the overall operating
condition of rotating machinery [1]. The fault diagnosis method based on the rolling bearing
is feature extraction of vibration signals to determine the fault status. However, due to the
inherent physical limitations of various acquisition devices, the collected vibration signals
contain many interfering signals, which have a negative impact on the subsequent fault
diagnosis [2]. Therefore, it is necessary to suppress noise to optimize the signal-to-noise
ratio and provide accurate feature extraction of the vibration signal.

In the past two decades, researchers have continuously thrived to investigate efficient
denoising algorithms, including spatial domain filtering, transform-domain threshold-
ing, sparse representation, etc., and aimed to restore reasonable estimates from different
vibration signals while preserving fault features. Traditional vibration signal denoising
methods include wavelet thresholding denoising [3–5], empirical mode decomposition
(EMD) [6,7], singular value decomposition (SVD) denoising [8], local mean decomposition
(LMD) [9], filter denoising [10,11], and variable component modal decomposition (VMD),
etc. Smith [12] proposed the LMD algorithm for the denoising of EEG perception data,
which used frequency and energy structure to analyze a wide variety of natural signals.
Dragomiretskiy et al. [13] proposed a VMD algorithm for the denoising of the artificial
and real signals by decomposing a signal into an ensemble of band-limited intrinsic mode
functions. The SVD is also a denoising algorithm for solving linear least squares problems
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with rank deficiencies. Among of the above methods, the performance of signal processing
is related to parameter selection, which usually depends on the experience of the engineer.

In recent years, methods based on deep learning, such as deep neural networks
(DNNs) [14], denoising auto-encoders (DAEs) [15], convolutional neural networks (CNNs) [16],
and recurrent neural networks (RNNs), have developed rapidly in various bailiwicks such
as audio, denoise image, natural language processing, and fault diagnosis. Compared with
traditional denoising methods, signal denoising methods based on deep learning can learn
the nonlinear correlation among the noisy and the original signal. During the last several
years, convolutional neural networks (CNNs) have been significantly applied in the field
of denoising. Convolutional kernels are used to map the input features in CNNs, which
integrate global features through the learning of local features. Several improvisations
for vibration signal denoising based on CNN methods have been developed afterward to
accelerate filter implementation and to improvise the qualitative and quantitative results.
Jain et al. [17] used CNN for the first time for denoising and demonstrated that convo-
lutional neural networks can directly learn the end-to-end nonlinear mapping from the
underlying image-to-image subjected to Gaussian noise with good results. Lou et al. [18]
proposed a new denoising autoencoder model based on simplified convolution to extract
the superior features to eliminate noise in a chaotic signal. Fan et al. [19] constructed a
vibration signal denoising model based on the ResNet network to eliminate noise from
measured vibration data.

However, as a data-driven approach, CNN-based methods require a stronger long-
range correlation learning capability in order to be able to completely separate the noise
from the original signal. In traditional CNN, stacked convolutional layers are used to
increase the perceptual field to improve global feature extraction, which leads to deeper net-
work layers and reduced convergence. This further leads to phenomena including gradient
disappearance or explosion. Dilated convolution was proposed to enlarge the receptive
field with fewer parameters to solve above problem [20], which was used for fault diagnosis
to extract rich fault features. Kumar et al. [21] constructed a dilated convolutional network
for fault diagnosis. Chu et al. [22] constructed a multi-scale network based on dilation rates
and an attention mechanism for fault detection. Wu et al. [23] proposed a convolutional
neural network with a novel loss function to extract features from seismic data. However,
the distortion of test data and the random distribution of noise will weaken the feature
extraction ability of CNN and lead to performance degradation. An attention mechanism is
introduced to focus on different feature information in the influence of complex data, based
on the feature of adaptive weight allocation. Wang et al. [24] proposed a convolutional
neural network with an attention mechanism to deal with vibration signals in complex
environment. Fu et al. [25] constructed a CNN and long–short time hybrid neural network
based on a self-attentive mechanism for the prediction of temporal signals. Zhong et al. [26]
proposed an improved lightweight convolutional neural network based on transfer learning
for bearing fault detection. The pooling layers provide the prior probability of translational
invariance for the model; however, they ignore the specific spatial information in CNNs.
The azimuthal features cannot be fully extracted by the CNN. In addition, CNNs learn more
spatial features by stacking convolutional layers to expand the perceptual domain, which
ignores the relative position information between features. Therefore, CNN classification
performance decreases in the face of complex data classification containing relative location
information. To overcome the above shortcomings, Sabour et al. [27] introduced the capsule
network (CapsNet), where multidimensional vector neurons are used as capsules to encode
the relative location features of objects, and dynamic routing algorithms are used to pass
important information between the capsules [28]. CapsNet uses a capsule layer instead
of a pooling layer to efficiently retain valuable information and positional relationships in
the signal without the addition of additional parameters. Scholars have tried to implement
the CapsNet model in various applications, such as image recognition [29–31], traffic fore-
casting, fault diagnosis, etc. [32,33]. Liu et al. [34] applied the capsule network to extract
the unbalanced fault feature of rolling bearings to enhance the classification accuracy of
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networks. Long et al. [35] proposed a deep learning model for diagnosing robot faults by
fusing the feature extraction capability of CNNs and the learning capability of CapsNet for
spatial location.

Although capsule networks make full use of stacked convolutional layers to capture
the spatial correlation of sequential data, they ignore the dependency features between local
information [36]. Recurrent neural networks (RNNs) perform well against sequential data,
but the gradient disappearance during backpropagation deteriorates their performance;
therefore, a “gate” structure is added to the long and short term memory (LSTM) to address
the above issues [37]. As a further development of the LSTM model, the bidirectional-
LSTM (BiLSTM) model captures finer-grained correlations between data by accessing both
sequence directions [38]. Cui et al. [39] constructed a multi-channel speech enhancement
algorithm based on multiple targets, which uses BiLSTM networks to deal with noise
and reverberation problems. Shi et al. [40] introduced a BiLSTM-based network model
to classify faults by extracting spatial and temporal features from the complex position–
direction information of gearboxes.

Aiming at the above problems, we noted that the original CapsNet model ignores
the temporal features of the time series data for vibration signals and the temporal and
spatial features of noise. Therefore, we aimed to design a combined DACapsNet–BiLSTM
model to capture the discriminative fault features, which can maintain the advantages of
spatial information in CapsNet and bidirectional temporal information in LSTM, as well
as remove the noise information in the vibration signal. In comparison to other single
structure models, the proposed model embeds dilated convolution in the capsule network
part to enhance the spatial extraction capability of the network, and BiLSTM is applied
to deal with temporal features in time-series data. As noise has the property of being
randomly distributed in space, we propose a novel location self-attentive mechanism to
remove the noise. The main contributions of this paper include as follows.

(1) A hybrid neural network for signal denoising is proposed, which takes the original
time signal as input to denoise the vibration signal.

(2) The one-dimensional vibration signal is transformed into a two-dimensional image
as the input to the DACapsNet–BiLSTM model. The dilated convolution is integrated
into the network model to enlarge the receptive field of the network and strengthen the
feature extraction ability of the proposed model. The improved self-attention mechanism is
embedded into the capsule network, in which the location focus mechanism is introduced to
enhance the ability to extract the temporal characteristics of vibration signals and suppress
the influence of random distribution of noise.

(3) BiLSTM networks were used to extract the temporal features of vibration signals to
enhance the weakness of capsule neural networks in modeling long-term dependencies.

The remainder of this paper is structured as follows. Section 2 introduces the basic
principles including signal denoising, dilated convolution, self-attention, CapsNet, and
BiLSTM. Section 3 presents the proposed vibration signal denoising model based on the
DACapsNet–BiLSTM network. In Section 4, a comparative experiment is conducted to
verify the validity of the DA model, and the article is concluded with the conclusion in
Section 5.

2. Preliminaries
2.1. Signal Denoising

The common form of a denoising problem can be expressed by

s(n) = x(n) + δe(n) (1)

where s(n) is the real signal, x(n) is the clean signal, e(n) is the noise and δ is the noise
level. The goal of denoising is to eliminate the noise from the real signal.
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It is assumed that noises do not interfere with each other. The total noise conforms to
the probability distribution of white Gaussian noise based on the central limit theory and
follows a normal distribution.

e(n) ∼ N
(

0, σ2
)

(2)

where σ2 is the power of the noise, N is the normal distribution. These noises are randomly
generated and spuriously distributed, which can disrupt the inherent features of the signal.

2.2. Dilated Convolution

In general, orientation features are necessary when it regards to signal processing.
Dilated convolution is used to increase the field of perception and to collect large amounts
of spatio-temporal data for accurate recognition, which can improve the field of perception
by generating zeros between pixels in the convolution kernel that can be applied to learn
the global distribution of feature information without sacrificing resolution. The dilated
convolution kernel with an expansion rate of 2 has the same perceptual field as the con-
volution kernel, but with only 9 parameters, which is 36% of the number of convolution
parameters. This enrichment of the output features of each convolution by increasing
the perceptual field without decreasing the accuracy allows the application of dilated
convolution in domains with long-term dependencies.

2.3. Self-Attention

A self-attention structure is seen in classical architecture, which calculates the correla-
tion matrix between different features to extract the long-distance correlation to enhance
the overall the performance of the network as a whole as shown in Figure 1. Suppose
X ∈ Rn×d is a sequence sample of input features. The n is the number of input samples, and
d is the latitude of a single sample. The definition of the correlation output of self-attention
is expressed by

Output(K, Q, V) = so f tmax(
QKT
√

dk
)V (3)

where K, Q and V are different transformations of input X ∈ Rn×d, and the long-range
correlation is captured though the correlation matrix obtained by multiplying K, Q, and V,
and dk is a scaling factor, respectively. T is the transposition of the matrix K.
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Figure 1. The architecture of self-attention.

2.4. Spatial Features Captured by CapsNet

Capsule networks can maintain the relative position information in the data through
a set of neurons, and can preserve the key features of the vibration signal. Capsule
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neural networks provide an abstract representation of describing multidimensional features
through vectors, where the length and direction of the vectors represent the feature inherent
probability information and feature location information, respectively, and the features are
passed through a dynamic routing algorithm by the clustering algorithm. The architecture
of capsule network structure is described in Figure 2.
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Figure 2. The architecture of CapsNet.

As shown in Figure 2, the local areas of the input signal are convolved using the
convolutional kernel, and the sliding operation of the convolutional kernel is used to
convolve the input data of the whole upper layer. The primary capsule layer and the digital
capsule layer encode the input feature information to encapsulate the feature information
and reduce the parameters without losing the feature information. The activation function
is used to map the one-dimensional feature information to the spatial dimension, which
can be described by

Xl
j = f

(
N

∑
i=1

xl−1
i · kl

ij + bj
l

)
(4)

where N is the number of convolutional kernels in the l − 1th layer, Xl
j and xl−1

i are the
output and input of the convolutional kernels, k and b are the respective kernels and bias,
and f is the nonlinear activation function. The ReLU function is selected into the activation
function of the convolution output.

The main capsule layer is the first capsule layer where the scalar-valued feature
extractor is replaced with a vector-valued capsule. The output of the main capsule is
expressed by

ul(i,j) = fs


fa

(
zl(i,j)

1

)
fa

(
zl(i,j)

2

)
...

fa

(
zl(i,j)

m

)

 = fs


fa

(
Kl

1i × xl(rj)
)

fa

(
Kl

2i × xl(rj)
)

...
fa

(
Kl

mi × xl(rj)
)

 (5)

where ul(i,j) represents the primary capsule, fa

(
zl(i,j)

m

)
is the output of the convolutional

layer after activation, and fs is the squeeze function. The squashed nonlinear function is
used as the activation function in the capsule neural network to secure the output vector
length between 0 and 1.
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The dynamic routing algorithms are employed to perform selective connections be-
tween the primary capsule layer and the digital capsule layer, as shown in Figure 3.
Forecasts for high-level capsules are expressed by

uj|i = Wijui (6)

where ui is i-th input capsule, Wij is the weighting matrix, and uj|i is the forecast vector.
The input vectors of advanced capsules are the weighted sum of all their prediction vectors.

Sj = cijuj|i (7)

where cij is the coupling factor and satisfies the equation for ∑
i

cij = 1. The coupling

coefficients cij can be described by

cij =
ebij

∑j ebij
(8)

where bij is the log prior probability the aggregation of capsule i and the capsule j, and bij
is updated as

bij = bij + Wijuivj (9)
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The vector of the capsule is output through a “squashed” activation function by

Vj = Squash
(
Sj
)
=

‖Sj‖2

1 + ‖Sj‖2

Sj

‖Sj‖
(10)

where Vj is the output of high-level capsule,
Sj
‖Sj‖

is the direction of the vector, and
‖Sj‖2

1+‖Sj‖2

indicates the scaling factor.

2.5. BiLSTM

BiLSTM and LSTM have recurrent neural network (RNN) architecture for processing
sequential data, as shown in Figures 4 and 5. The BiLSTM is one of the improvements
of LSTM that stores historical information while checking the relationship between two
directions of data. LSTM flexibly solves long-term related issues in the form of a gate
structure. Three control units are introduced into the LSTM model, including input gates,
output gates, and forgetting gates, as well as a memory unit, as shown in Figure 4. The gate
structure ensures the selective passage of information. The input gate is used to choose
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the important input feature that need to be stored, the forgetting gate is used to drop the
non-essential feature, and the output gate is used to output the selected feature.

Machines 2022, 10, x FOR PEER REVIEW 7 of 23 
 

 

2.5. BiLSTM 

BiLSTM and LSTM have recurrent neural network (RNN) architecture for processing 

sequential data, as shown in Figures 4 and 5. The BiLSTM is one of the improvements of 

LSTM that stores historical information while checking the relationship between two di-

rections of data. LSTM flexibly solves long-term related issues in the form of a gate struc-

ture. Three control units are introduced into the LSTM model, including input gates, out-

put gates, and forgetting gates, as well as a memory unit, as shown in Figure 4. The gate 

structure ensures the selective passage of information. The input gate is used to choose 

the important input feature that need to be stored, the forgetting gate is used to drop the 

non-essential feature, and the output gate is used to output the selected feature. 

x

xx

+

  tanh

tanh

tx

1th − th

1tC −

tf ti to

tC

 

Figure 4. Structure of the LSTM network. 

 

Figure 5. Structure of the BiLSTM network. 

The architecture of BiLSTM is shown in Figure 5. The output of BiLSTM is a series of 

output values of forward information propagation and output values of backward infor-

mation propagation, which can consider the correlation between the nodes before and 

after the data. 

3. DACapsNet–BiLSTM Network for Signal Denoising 

In this section, an end-to-end intelligent denoising method (DACapsNet–BiLSTM) is 

proposed to extract the spatial and temporal feature in the vibration signal by improving 

the deep learning architecture and output the denoised vibration signal. DACapsNet–

BiLSTM can extract spatial features and temporal features of vibration signals by cascad-

ing improved capsule networks and BiLSTM networks. The improved capsule network is 

embedded with a self-attention mechanism with the spatial attention to enhance the de-

noising capability of the network, which is used as an input to the BiLSTM to extract tim-

ing feature. 

3.1. Data Preprocessing 

Two-dimensional grayscale images contain more feature information. The one-di-

mensional vibration signal is transformed into a two-dimensional gray scale image and 

Figure 4. Structure of the LSTM network.

Machines 2022, 10, x FOR PEER REVIEW 7 of 23 
 

 

2.5. BiLSTM 

BiLSTM and LSTM have recurrent neural network (RNN) architecture for processing 

sequential data, as shown in Figures 4 and 5. The BiLSTM is one of the improvements of 

LSTM that stores historical information while checking the relationship between two di-

rections of data. LSTM flexibly solves long-term related issues in the form of a gate struc-

ture. Three control units are introduced into the LSTM model, including input gates, out-

put gates, and forgetting gates, as well as a memory unit, as shown in Figure 4. The gate 

structure ensures the selective passage of information. The input gate is used to choose 

the important input feature that need to be stored, the forgetting gate is used to drop the 

non-essential feature, and the output gate is used to output the selected feature. 

x

xx

+

  tanh

tanh

tx

1th − th

1tC −

tf ti to

tC

 

Figure 4. Structure of the LSTM network. 

 

Figure 5. Structure of the BiLSTM network. 

The architecture of BiLSTM is shown in Figure 5. The output of BiLSTM is a series of 

output values of forward information propagation and output values of backward infor-

mation propagation, which can consider the correlation between the nodes before and 

after the data. 

3. DACapsNet–BiLSTM Network for Signal Denoising 

In this section, an end-to-end intelligent denoising method (DACapsNet–BiLSTM) is 

proposed to extract the spatial and temporal feature in the vibration signal by improving 

the deep learning architecture and output the denoised vibration signal. DACapsNet–

BiLSTM can extract spatial features and temporal features of vibration signals by cascad-

ing improved capsule networks and BiLSTM networks. The improved capsule network is 

embedded with a self-attention mechanism with the spatial attention to enhance the de-

noising capability of the network, which is used as an input to the BiLSTM to extract tim-

ing feature. 

3.1. Data Preprocessing 

Two-dimensional grayscale images contain more feature information. The one-di-

mensional vibration signal is transformed into a two-dimensional gray scale image and 

Figure 5. Structure of the BiLSTM network.

The architecture of BiLSTM is shown in Figure 5. The output of BiLSTM is a series
of output values of forward information propagation and output values of backward
information propagation, which can consider the correlation between the nodes before and
after the data.

3. DACapsNet–BiLSTM Network for Signal Denoising

In this section, an end-to-end intelligent denoising method (DACapsNet–BiLSTM) is
proposed to extract the spatial and temporal feature in the vibration signal by improving
the deep learning architecture and output the denoised vibration signal. DACapsNet–
BiLSTM can extract spatial features and temporal features of vibration signals by cascading
improved capsule networks and BiLSTM networks. The improved capsule network is em-
bedded with a self-attention mechanism with the spatial attention to enhance the denoising
capability of the network, which is used as an input to the BiLSTM to extract timing feature.

3.1. Data Preprocessing

Two-dimensional grayscale images contain more feature information. The one-dimensional
vibration signal is transformed into a two-dimensional gray scale image and fed into
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the capsule network for feature extraction. The vibration signal possesses a periodicity,
which implies that the signal state of the current moment associated with the state of the
nearby moment is also associated with the nearby period. The two-dimensional matrix
representation can help the network to learn the periodic characteristics of the vibration
signal sufficiently, as shown in Figure 6.
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Figure 6. Data processing flow chart.

The vibration signal is segmented using a sliding window, and the segmented vibration
signal data are sequentially used as the rows of the vibration matrix. The mathematical
function can be described by

I =

 x(t) · · · x(t + n− 1)
...

x(t + (m− 1)n) · · · x(t + mn− 1)

 (11)

where I is the signal image and x(t) is the vibration signal data of time t.

3.2. DACapsNet–BiLSTM Model
3.2.1. Framework

As shown in Figure 7, a vibration signal denoising method based on the DACapsNet–
BiLSTM network for bearings is proposed, which is composed of an improved CapsNet
module and BiLSTM module. The single layer convolution in the traditional capsule
network is replaced by the dilated convolution to increase the receptive field and extract
the shallow features of the vibration image. Due to the complexity of input data and
the random distribution of noise, the self-attention of location attention mechanism is
embedded to focus on spatial features. BiLSTM is introduced to focus on the periodicity
and long correlation of the time series vibration signals.
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3.2.2. Proposed Model
Dilated Self-Attention Convolution Network

Dilated convolution was used instead of ordinary convolution to expand the receptive
field, which is helpful for capsule network to extract the overall characteristics of vibration
signals. Dilated convolution has fewer parameters and decreases the training burden of the
model compared with traditional convolution. Under the same conditions, the receptive
field can be increased to prevent the loss of feature due to the use of the lower sampling
layer. The calculation formula of equivalent convolution kernel size in dilated convolution
can be described by

K = (r− 1)(k− 1) + k (12)

where k is the convolution kernel size, r is the dilated rate, and K is the equivalent convo-
lution kernel size. The dilated ratio is changed to obtain a larger receptive field, and zero
filling was used to keep the size of the feature image after dilated convolution unchanged,
which allows the convolution kernel to expand the receptive field without merging opera-
tions and information loss.

The expansion of the receptive field can be achieved by stacking expanded convolu-
tional layers and setting different expansion rates as the depths increases. The features of
the signal image output by convolution were extracted by cascading three-layer dilated
convolution. As shown in Figure 8, where k is the convolution kernel size and r is the
dilated ratio.

The self-attention layer was added to enhance the contribution of features in the
network at important moments to the current moment, where the location attention mecha-
nism was embedded in the self-attention layer to eliminate noise from random distributions,
as shown in Figure 9. The positional self-attention mechanism assigns different weights
to different local learning of the input sequence and learns the self-attention weights at
different times by the output key feature matrix and value feature matrix. The two different
pooling operations were used to aggregate the channel information of the two feature maps.
The original Key feature matrix and Value feature matrix were weighted separately to
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output feature maps through self-attentiveness to improve the spatial feature extraction
capability of the model; the formula can be described by

c = f conv · f Attention

= f conv(so f tmax(Key′, Query′) ·Value)
= f conv(so f tmax(Key · ( f conv[MaxPool(Key); AvgPool(Key)])·

Query · ( f conv[MaxPool(Query); AvgPool(Query)])))

(13)

where f Attention is the self-attention weight allocation, and f conv is the convolution operation.
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The traditional convolution was replaced by dilated self-attention convolution as
the input of the main capsule layer of the capsule network. The primary capsule layer
converts scalar neurons into a primary capsule with a dimension of 8 in vector form.
The spatial relationships among the local features extracted from the main capsule can
be learned by the digital capsule layer, and fully connected ones are used to connect
between the main capsule layer and the digital capsule layer and to assign weights though
the dynamic routing algorithm (Algorithm 1). Dynamic routing is performed between
two consecutive capsule layers to update the weight, and the assigned weight factors
determine the transmission mode of the feature information from the low-level capsule to
the high-level capsule.

The digital capsule layer transports the features to the fully connected layer, where
ReLu is used as the activation function for the fully connected layer. The output of the fully
connected layer can be determined by

z(t) =
[
zt

1, zt
2, zt

3, · · · , zt
N
]

(14)

Algorithm 1. Dynamic Routing Algorithm [21]

1 procedure ROUNTING(uj|i,,)
2 Initialize the coupling coefficients: bij ← 0
3 for r iterations do
4 for all capsule i in layer l: cij ← ebij

∑j ebij

5 for all capsule j in layer l + 1: Sj ← cijuj|i

6 for all capsule j in layer l + 1: Vj ←
‖Sj‖2

1+‖Sj‖2
Sj

‖Sj‖
7 for all bij: bij ← bij + uj|iVj
8 return Vj

Temporal Features Captured by BiLSTM

The BiLSTM model is a composite of two directional LSTMs, which can realize bidi-
rectional data processing of two separate hidden layers to be merged into the same output
layer. The hidden layer states of the two LSTMs jointly determine the output results, which
were used to extract the long-term correlation of the sequence data.

The current moment input is represented by

x(t) =
[
xt

1, xt
2, xt

3, · · · , xt
M
]

(15)

where M is the two-dimensional matrix after dimensional change of the input vibration
signal. The output feature of the LSTM at moment t− 1 is shown as

h(t− 1) =
[

ht−1
1 , ht−1

2 , ht−1
3 , · · · , ht−1

N

]
(16)

where N denotes the quantity of output feature maps.
The new candidate data Ct was calculated for the information passed in through the

input and the forgetting gate as

Ct = f (t)Ct−1 + i(t)tanh

(
M

∑
m=1

wmϕxt
m + bmϕ +

N

∑
n=1

wnϕht−1
n + bnϕ

)
(17)

tanh =
ex − e−x

ex + e−x (18)

where f (t) is the output of the forget gate and i(t) is the output of the input gate; the tanh
function is a hyperbolic tangent function that normalizes the variables between [−1,1].
The wmϕ and bnϕ denote the weights and biases corresponding to the new information
candidates Ct of the mth feature map at the current moment, respectively; wnϕ and bnϕ
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denotes the weights and biases corresponding to the nth feature map at the recent moment,
respectively.

The output gate O(t) is designed to filter the cell state during the present moment.

O(t) = σ

[
M

∑
m=1

wmrxt
m + bmr +

N

∑
n=1

wnrht−1
n + bnr

]
(19)

where wmr and bmr denote the weights and biases corresponding to the output gates O(t) of
the mth feature map at the current moment, respectively, and wnr and bnr denote the weights
and biases corresponding to the nth feature map at the previous moment, respectively.

The output h(t) of the LSTM at the current moment is represented as

h(t) = O(t)tanh(Ct) (20)

3.3. ReLu Activation Function

The convolution is a linear operation, which is difficult to use to describe the complex
relationship between signal and noise; therefore, activation functions are used to increase
the nonlinear learning capability. The ReLu function was applied to activate the output of
the convolution operation in a nonlinear manner, which has the advantages of preventing
gradient scattering and sparsity and speeding up the computation, and can be expressed by

ReLu(x) = max(0, x) =
{

x, x ≥ 0
0, x < 0

(21)

3.4. Performance Evaluation

The DACapsNet–BiLSTM network learns in a supervised manner to make predictions
from noisy inputs to the original noiseless outputs, where minimization error estimates are
used to reduce the errors present in the predictions.

The mean squared error was chosen as the training loss function, which can expressed by

MSE =
1
n

n

∑
i=1

(
yi
′ − yi

′′
)2 (22)

where y′ i represents the predicted output value and yi
′′ represents the actual output value.

4. Experimental Results
4.1. Experimental Environment

The DACapsNet–BiLSTM model was trained using the deep learning module of
Tensorflow 1.4.0 (San Francisco, USA) in an Intel(R) Core(TM) i5-9400F CPU@2.90GHz with
16 GB of RAM, and NVIDIA GeForce GTX 1080.The software programming environment
is Python 3.6, and Spyder of Anaconda software 4.2.1 (Austin, TX, USA).

4.2. Pre-Processing

The minimization of the denoising error was applied to adaptively adjust the model
arguments in the network learning, where the noisy signal is used as input and the pure
signal is fitted as output, as shown in Figure 10. It is essential to normalize the vibration
signal to ensure that the inputs have similar scales and the gradient descent algorithm can
converge quickly.
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4.3. Evaluation Indicators

The following three metrics were used to evaluate the performance of the model proposed.
(1) Signal-to-noise ratio (SNR) was used to evaluate the signal output from the model

in terms of the proportion of noise contained in the noise-containing signal by

SNR = 10× log10
Psignal

Pnoise
= 10× log10

∑n
1 y2

i

∑n
1 (yi − y′ i)

2 (23)

where yi is the noisy signal, y′ i is the clean signal, and n is the number of sampling points.
(2) The smaller value of mean square error (MSE) analysis of the error to evaluate the

model, which reflects the degree of difference between the predicted values and the actual
output. The MSE is calculated by

MSE =
1
n

n

∑
i=1

(
yi − y′ i

)2 (24)

where yi is the actual output, y′ i is the predicted values, and n is the number of samples.
(3) Mean absolute error (MAE) is an effective error assessment method, which avoids

errors canceling each other out by responding to the average of the absolute deviations of
the predicted and true values. The MAE is calculated by

MAE =
1
n

n

∑
i=1

∣∣yi − y′
∣∣ (25)

where yi is the actual output, y′ i is the predicted values, and n is the number of samples.

4.4. Simulation Experiment

The fault model was used to simulate the impact signal caused by local defects in the
bearing inner ring. White noise was added to the impact signal to simulate the early fault
signal of the bearing inner race. The analog signal can be represented as

x(t) = s(t) + n(t) = ∑
i

Aih(t− iT) + n(t)

h(t) = exp(−Ct) cos(2π fnt)
Ai = 1 + A0 cos(2π frt)

(26)

where s(t) is the cyclical impact component, n(t) is the Gaussian white noise component.
The SNR with noisy signal is −5 dB. A0 is the amplitude, fr is the rotational frequency, fn
is the resonance frequency and C is the attenuation coefficient. fs is the sampling frequency
of the analog signals.

The selection of these parameter values is shown in Table 1.
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Table 1. The simulated signal parameter values.

A0 fr C fn fs

0.3 30 Hz 700 4 KHz 17 KHz

The total of 16,000,000 sample data points were collected to analyze the vibration
signal analog signal. In order to maximize the feature analysis of the data, the collected
sample points were reconstructed into 8000 samples, and each sample point has 2000 data
points, where the training and test samples were divided in a 3:1 ratio. The 1 × 2000 one-
dimensional data were transformed into a 50 × 40 two-dimensional image for processing,
which reduces the complexity of signal handling and retains the periodic features of the
input signals.

Gaussian white noise was used in the simulated signal as the noisy signal, in which
the SNR of the noisy signal was −10 dB, −5 dB, 0 dB, 5 dB, and 10 dB. The simulated signal
and the noisy signal were used as training samples, and their waveforms and spectra are
shown in Figure 11.
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The one-dimensional vibration measurement was converted into the two-dimensional
vibration signal matrix, which were used as inputs to the DACapsNet–BiLSTM network.
The improved capsule network is composed of two dilated self-attention convolution
blocks, one primary capsule layer, one digital capsule layer, and one fully connected layer.
In the dilated self-attentive convolutional block, three dilated convolutional layers are used
to extract global features in the vibrating signal image and the ReLu activation function is
used to perform nonlinear activation. The self-attention with location attention mechanism
is embedded in the dilated self-attention convolution block. The output of the dilated
self-attention convolution block is used as the input to the primary capsule layer, where
the 5 × 5 convolution kernel is used to convolve to acquire a 32-way capsule feature map.
The size of each feature map is 17 × 12 × 8 and the weights of all capsules in the feature
map are shared. The main capsule layer is fully connected to the digital capsule layer, and
each weight is determined by a dynamic routing algorithm.

The digital capsule layer consists of 10 capsules, each with a size of 1 × 16. The
processed features of the digital capsule layer are transported to the fully connected layer,
which contains 2000 neurons. The temporal features of the vibration signal are extracted
by a bidirectional long and short-term memory network, where the hidden layer cells are
set to 256 and the 1 × 2000 feature map is used as the final output. The overall parameter
design of the DACapsNet–BiLSTM is shown in Table 2.
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Table 2. Parameter configuration of the DACapsNet–BiLSTM network model.

Parameters
Output Size

Kernel Size Channel Rate Stride Capsule Dimension

Input / / / / / 1 × 2000
Reshape / / / / / 50 × 40 × 1
Conv 1 3 × 3 32 1 1 / 50 × 40 × 32
Conv 2 3 × 3 32 2 1 / 50 × 40 × 32
Conv 3 3 × 3 32 5 1 / 50 × 40 × 32

Improved
Self-Attention1 / / / / / 50 × 40 × 32

Conv 4 3 × 3 32 1 1 / 50 × 40 × 32
Conv 5 3 × 3 32 2 1 / 50 × 40× 32
Conv 6 3 × 3 32 5 1 / 50 × 40× 32

Improved
Self-Attention2 / / / / / 50 × 40× 32

Primary capsule 5 × 5 32 / 2 8 17 × 12 × 32 × 8
Digital capsule / / / / 16 10 × 16

FC / / / / / 1 × 2000
BiLSTM / / / / / 1 × 2000
Output / / / / / 1 × 2000

The waveform, spectrogram and frequency plot of original vibration signal, the noise
added vibration signal (SNR = −5 dB) and the denoised signal are shown as Figure 12.
Figure 12 intuitively shows that most of the noise in the noisy signal after model learning
has been eliminated.
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In order to verify the robustness of the noise cancellation effect of the proposed
method, Gaussian white noise of different intensities was mixed into the simulated signal
to verify the robustness of the model (−10~10 dB). Three evaluation metrics, SNR, MSE
and MAE, were applied to evaluation of the noise reduction performance of the model, and
compared with other methods, including the wavelet threshold method (WT), empirical
mode decomposition (EMD) method, CNN, Capsnet, LSTM, Vanilla LSTM, Stacked LSTM
and BiLSTM. In addition to the above classical models, we have also added two recent
deep learning models, BLC–CNN and ResNet–LSTM [41].

Among the above methods, WT is a classical signal-processing method, in which
the choice of mother wavelet has an important influence on the performance of the WT
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method. Usually, the wavelets used in the denoising process should satisfy the following
properties, including orthogonality, symmetry, and regularity. The wavelet functions of the
Daubechies family better reveal the periodic behavior of vibration signals [42]. The wavelet
length of the mother wavelet function is a key determinant of signal denoising. Therefore,
we selected wavelets of different lengths to verify the performance of the selected mother
wavelet function under −10 SNR. The results are shown in Figure 13.
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Figure 13. SNR variation of signals with different wavelet length.

As can be seen in Figure 6, the value of SNR increases with the increase of wavelet
length. The value of SNR reaches the maximum when SNR equals to 24 (db12), and then the
value of SNR remains stable after slightly decreasing with the increase of wavelet length,
so db12 was used as the mother wavelet of the comparison model WT.

Table 3 shows the average SNR, MSE and MAE values of the test set of the traditional
signal denoising method and the signal denoising method based on deep learning under
the Gaussian white noise environment with five different SNRs. The results show that
the signal quality after noise reduction using the DACapsNet–BiLSTM network model
is significantly improved compared with other comparison methods. Specifically, when
compared with the traditional methods, in most cases, the deep learning denoising method
performed better in the three evaluation indexes. When compared with the CNN network,
the denoising effect of the capsule network shows obvious advantages: the SNR is larger,
and the evaluation indexes of Mae and MSE are more ideal. BiLSTM can further learn
the influence of the information before and after each time point in the vibration data on
the hidden features. When compared with LSTM, the denoising effect is better. When
compared with the normal LSTM and superimposed LSTM, the DACapsNet–BiLSTM has
lower MSE and MAE, so the denoising effect is better. The DACapsNet–BiLSTM has a
significant performance when compared to the capsule network and BiLSTM network on
three evaluation metrics. The proposed model has a higher denoising performance and
better performance in various evaluation metrics by embedding extended self-focused
convolution when compared to the BLC-CNN model. The performance of the proposed
model is more convincing compared to the ResNet–LSTM model. In summary, DACapsNet–
BiLSTM has excellent denoising performance and can achieve a better separation of noise
and useful vibration signals, which is beneficial to the subsequent fault feature extraction.



Machines 2022, 10, 840 17 of 21

Table 3. Comparison of noise reduction performance at different noise levels.

Noise
SNR
(dB)

Evaluation
Metrics

Original
Signal

Traditional Method Deep Learning Methods

WT EMD CNN CapsNet LSTM Vanilla
LSTM

Stacked
LSTM BiLSTM BLC–

CNN
ResNet–
LSTM

DACapsNet–
BiLSTM

−10
SNR −10.0008 0.1748 −2.3971 0.2665 0.2783 −0.0088 0.0021 0.0983 0.1024 0.3062 0.2794 0.3261

MSE 0.5873 0.0564 0.1020 0.0552 0.0542 0.0615 0.0601 0.0562 0.0545 0.0537 0.0541 0.0532

MAE 0.6116 0.1681 0.2410 0.1672 0.1655 0.1748 0.1732 0.1679 0.1659 0.1649 0.1652 0.1646

−5
SNR −4.9975 1.3244 0.0161 1.0340 1.5813 1.4953 1.4836 1.8125 2.2774 2.7766 1.9263 3.2113

MSE 0.1855 0.0432 0.0585 0.0482 0.0370 0.0395 0.0398 0.0364 0.0351 0.0335 0.0361 0.0329

MAE 0.3436 0.1513 0.1645 0.1610 0.1439 0.1479 0.1481 0.1432 0.1427 0.1421 0.1438 0.1412

0
SNR −0.0008 2.8428 2.9396 3.3862 3.6590 3.4550 3.5283 3.8124 4.0892 4.8326 3.8714 5.2637

MSE 0.0587 0.0305 0.0298 0.0286 0.0220 0.0256 0.0248 0.0201 0.0167 0.0163 0.0208 0.0162

MAE 0.1933 0.1311 0.1301 0.1293 0.1184 0.1252 0.1236 0.1173 0.1134 0.1102 0.1161 0.1094

5
SNR 4.9978 6.9163 8.9529 9.4165 9.6525 9.4891 9.4893 9.7962 11.4734 11.9966 10.1771 12.6432

MSE 0.0185 0.0119 0.0074 0.0068 0.0054 0.0058 0.0058 0.0053 0.0040 0.0037 0.0046 0.0032

MAE 0.1087 0.0870 0.0688 0.0673 0.0649 0.0663 0.0663 0.0642 0.0621 0.0619 0.0641 0.0619

10
SNR 9.9906 11.3013 12.0532 13.4246 13.6537 13.4909 13.5238 13.5976 13.6255 14.4083 14.0801 14.4862

MSE 0.0058 0.0039 0.0036 0.0033 0.0030 0.0032 0.0032 0.0031 0.0031 0.0029 0.0030 0.0029

MAE 0.0611 0.0530 0.0477 0.0470 0.0467 0.0469 0.0468 0.0466 0.0467 0.0462 0.0464 0.0461

4.5. Experimental Analysis and Engineering Applications

In order to verify the effectiveness of the method for bearing fault diagnosis, the
bearing vibration signal was denoised and analyzed.

Locomotive Bearing Vibration Signal Analysis

This experimental data comes from the vibration signal of the locomotive walking
section gearbox. A locomotive travel section uses a rolling bearing model 552732QT, whose
parameters are shown in Table 4. The top wheel test used a mobile top wheel device to jack
up one side of the locomotive wheel pair and pick up the vibration signal when the wheel
pair is rotating. The vibration acceleration sensor is installed in the upper position of the
axle box. Figure 14 shows the test diagram of the top wheel of the locomotive. The speed
of the axle was 515 r/min (8.58 Hz) and the sampling frequency was set to 12.8 kHz.

Table 4. Experimental rolling bearing parameters.

Model Inner Diameter Outer Diameter Roller Diameter Number of
Rollers

Contact Angle θ
(Degree)

552732QT 160 (mm) 290 (mm) 34 (mm) 17 0
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This experimental data set contains a total of ten different health states of the bearing
data, including six single scratch failure states, three compound scratch failure states and
one health state, as shown in Figure 15. The waveforms of the bearing vibration data
samples are shown, where the horizontal axis represents the sampling time and the vertical
axis represents the amplitude. For locomotive bearing vibration signals, 16,000,000 sample
data points were collected for data reconstruction.
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Figure 15. Time domain waveforms of bearing vibration signals for 10 states.

The Gaussian white noise with different signal-to-noise ratios was added to prove the
performance of DACapsNet–BiLSTM network. The noise reduction effect of the model was
evaluated using SNR, MSE, and MAE. The comparison of the proposed method with CNN,
CapsNet, LSTM, Vanilla LSTM, Stacked LSTM, BiLSTM, BLC–CNN, and ResNet–CNN
networks is shown as Table 5. Each model was experimented on using the same parameters
as the previous model.

The results show that the DACapsNet–BiLSTM model works well at five different
noise levels and outperforms other comparative methods. Specifically, although wavelet
denoising methods and empirical mode decomposition methods can enhance the SNR of
vibration signal to a limited degree, the improvement is limited due to complex data. The
deep learning model can learn the noise in noisy signal through training methods, which
can obtain the denoised signal with a higher SNR. Under different noise levels, compared
with CapsNet and BiLSTM network models, the DACapsNet–BiLSTM model can obtain
relatively high SNRs, especially when the SNR of noisy signals is negative. The higher
SNR indicates that the DACapsNet–BiLSTM network has an excellent ability to remove
noise, while the lower MSE and MAE indicators show that the DACapsNet–BiLSTM model
not only has a higher noise reduction level, but also has less waveform distortion after
noise reduction. The original vibration signal, the noisy signal (SNR = −5 dB), and the time
domain waveforms of the denoised signal are shown in Figure 16. The noise information
was removed in the time domain and the useful information is retained.
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Table 5. Comparison of noise reduction performance at different noise levels.

Noise
SNR
(dB)

Evaluation
Metrics

Original
Signal

Traditional Method Deep Learning Methods

WT EMD CNN CapsNet LSTM BiLSTM Vanilla
LSTM

Stacked
LSTM

BLC–
CNN

ResNet–
LSTM

DACapsNet–
BiLSTM

−10
SNR −9.9987 0.0384 −1.6465 0.0946 0.2464 −0.5444 0.1475 0.1511 0.2387 0.2639 0.2511 0.3092

MSE 3.7104 0.3678 0.5422 0.3421 0.3311 0.3689 0.3358 0.3328 0.3298 0.3291 0.3302 0.3283

MAE 1.5370 0.4074 0.5373 0.3933 0.3898 0.4052 0.3917 0.3913 0.3902 0.3899 0.3901 0.3892

−5
SNR −4.9999 1.1645 1.9972 2.2323 2.3944 2.1180 2.2965 2.2864 2.4362 2.5466 2.4133 3.0625

MSE 1.1737 0.2838 0.2343 0.2324 0.2256 0.2330 0.2303 0.2311 0.2247 0.2246 0.2252 0.2238

MAE 0.8644 0.3978 0.3862 0.3840 0.3799 0.3851 0.3796 0.3804 0.3741 0.3713 0.3762 0.3635

0
SNR −0.0012 2.5660 2.6498 3.2902 3.4103 3.3522 3.8473 3.6176 3.8735 4.3613 3.7358 5.1271

MSE 0.3712 0.2055 0.1958 0.1797 0.1743 0.1749 0.1724 0.1733 0.1698 0.1659 0.1711 0.1515

MAE 0.4862 0.3266 0.3249 0.3228 0.3195 0.3206 0.3182 0.3197 0.3171 0.3169 0.3183 0.3162

5
SNR 5.0004 7.3964 8.5021 9.4298 9.6120 9.4749 10.0173 10.0972 10.5764 11.4395 10.4284 12.2110

MSE 0.1173 0.0675 0.0524 0.0454 0.0411 0.0448 0.0378 0.0369 0.0355 0.0342 0.0388 0.0328

MAE 0.2733 0.2031 0.1826 0.1779 0.1728 0.1753 0.1703 0.1701 0.1693 0.1686 0.1697 0.1682

10
SNR 9.9976 12.6933 12.9967 13.0822 13.2107 13.5083 14.0711 14.0773 14.0791 14.2370 14.2237 14.3027

MSE 0.0371 0.0199 0.0186 0.0178 0.0173 0.0160 0.0147 0.0147 0.0146 0.0145 0.0146 0.0145

MAE 0.1537 0.1101 0.1088 0.1072 0.1065 0.1061 0.1053 0.1052 0.1052 0.1049 0.1051 0.1047
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5. Conclusions

The convolutional neural network will lose a large amount of information when ex-
tracting the spatial features of vibration signals. An improved capsule neural network
model was used to map the bearing vibration signal features to high-dimensional spa-
tial features for learning. The dilated self-attentive convolutional block is integrated into
the model to expand the receptive field, where an improved self-attentive module with
positional attention was introduced to denoise the noise according to its random distribu-
tion. Considering the temporal features of the bearing vibration data, a BiLSTM network
was added to extract the rich temporal information and achieve vibration signal denois-
ing. The model effectively avoids the manual selection and fine-tuning of parameters by
adaptively training parameters while learning nonlinear relationships between data. The
DACapsNet–BiLSTM model outperforms other existing models in different evaluation
metrics, and its performance in the SNR index has a significant advantage. As shown
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above, DACapsNet–BiLSTM has improved performance and robustness compared with
the prior denoising model.

Due to the fact that there is not enough fault data available for model training in indus-
trial applications, the accuracy of the proposed models with small sample training is more
demanding. Transfer learning can transfer the training data features of the relevant task to
the target task, which provides us with new ideas for subsequent improvements. In future
improvements, we aim to apply the knowledge of transfer learning to the proposed model
to improve the robustness of our network under small samples and achieve satisfactory
results in practical industrial applications.

Author Contributions: Conceptualization, Y.W. and G.C.; methodology, Y.W.; software, Y.W.; valida-
tion, Y.W., G.C. and J.H.; formal analysis, G.C.; investigation, G.C.; resources, Y.W.; data curation,
Y.W.; writing—original draft preparation, Y.W.; writing—review and editing, Y.W.; visualization,
Y.W.; supervision, Y.W.; project administration, Y.W.; funding acquisition, Y.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by National Natural Science Foundation of China, approval
number: 51875457; the Key Research and Development Program of Shanxi Province of China,
approval number: 2022SF-259; the graduate student innovation fund of Xi’an University of Post and
Telecommunications, approval number: CXJJLY202043.

Data Availability Statement: The data are available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shen, S.; Lu, H.; Sadoughi, M.; Hu, C.; Kenny, S. A physics-informed deep learning approach for bearing fault detection. Eng.

Appl. Artif. Intell. 2021, 103, 104295. [CrossRef]
2. Gao, S.; Ren, Y.; Zhang, Y.; Li, T. Fault diagnosis of rolling bearings based on improved energy entropy and fault location of

triangulation of amplitude attenuation outer raceway. Measurement 2021, 185, 109974. [CrossRef]
3. Jang, Y.; Sim, J.; Yang, J.R.; Kwon, N. The Optimal Selection of Mother Wavelet Function and Decomposition Level for Denoising

of DCG Signal. Sensors 2021, 21, 1851. [CrossRef] [PubMed]
4. Chen, W.; Li, J.; Wang, Q.; Han, K. Fault feature extraction and diagnosis of rolling bearings based on wavelet thresholding

denoising with ceemdan energy entropy and pso-lssvm. Measurement 2020, 172, 108901. [CrossRef]
5. Chen, X.; Yang, Y.; Cui, Z.; Shen, J. Wavelet denoising for the vibration signals of wind turbines based on variational mode

decomposition and multiscale permutation entropy. IEEE Access 2020, 8, 40347–40356. [CrossRef]
6. Geng, H.; Peng, Y.; Ye, L.; Guo, Y. Fault identification of rolling bearing with variable speed based on generalized broadband

mode decomposition and distance evaluation technique. Digit. Signal Processing 2022, 129, 103662. [CrossRef]
7. Gao, Z.; Liu, Y.; Wang, Q.; Wang, J.; Luo, Y. Ensemble empirical mode decomposition energy moment entropy and enhanced long

short-term memory for early fault prediction of bearing. Measurement 2022, 188, 110417. [CrossRef]
8. Bhavsar, K.; Vakharia, V.; Chaudhari, R.; Vora, J.; Pimenov, D.Y.; Giasin, K. A Comparatove Study to Predict Bearing Degradation

Using Discrete Wavelet Transform (DWT), Tabular Generative Adversarial Networks (TGAN) and Machine Learning Models.
Machines 2022, 10, 176. [CrossRef]

9. Sharma, S.; Tiwari, S.K.; Singh, S. The rotary machine fault detection by hybrid method based on local mean decomposition and
fluctuation based dispersion entropy. J. Sound Vib. 2021, 43, 700–705. [CrossRef]

10. Liu, B.; Li, Y. Ecg signal denoising based on similar segments cooperative filtering. Biomed. Signal Processing Control 2021,
68, 102751. [CrossRef]

11. Chandra, M.; Goel, P.; Ankita, A.; Kar, A. Design and analysis of improved high-speed adaptive filter architectures for ecg signal
denoising. Biomed. Signal Process. Control 2021, 63, 102221. [CrossRef]

12. Smith, J. The local mean decomposition and its application to EEG perception data. J. R. Soc. Interface 2005, 2, 443–454. [CrossRef]
[PubMed]

13. Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Processing 2014, 62, 531–544. [CrossRef]
14. Wang, C.; Xu, Z. An intelligent fault diagnosis model based on deep neural network for few-shot fault diagnosis. Neurocomputing

2021, 456, 550–562. [CrossRef]
15. Wang, K.; Guo, Y.; Zhao, W.; Zhou, Q.; Guo, P. Gas path fault detection and isolation for aero-engine based on LSTM-DAE

approach under multiple-model architecture. Measurement 2022, 202, 111875. [CrossRef]
16. Han, H.; Wang, H.; Liu, Z.; Wang, J. Intelligent vibration signal denoising method based on non-local fully convolutional neural

network for rolling bearings. ISA Trans. 2021, 122, 13–23. [CrossRef]
17. Jain, V.; Seung, H.S. Natural Image Denoising with Convolutional Networks. In Proceedings of the International Conference on

Neural Information Processing Systems, Red Hook, NY, USA, 8–10 December 2008; pp. 769–776.

http://doi.org/10.1016/j.engappai.2021.104295
http://doi.org/10.1016/j.measurement.2021.109974
http://doi.org/10.3390/s21051851
http://www.ncbi.nlm.nih.gov/pubmed/33800862
http://doi.org/10.1016/j.measurement.2020.108901
http://doi.org/10.1109/ACCESS.2020.2975875
http://doi.org/10.1016/j.dsp.2022.103662
http://doi.org/10.1016/j.measurement.2021.110417
http://doi.org/10.3390/machines10030176
http://doi.org/10.1016/j.matpr.2020.12.763
http://doi.org/10.1016/j.bspc.2021.102751
http://doi.org/10.1016/j.bspc.2020.102221
http://doi.org/10.1098/rsif.2005.0058
http://www.ncbi.nlm.nih.gov/pubmed/16849204
http://doi.org/10.1109/TSP.2013.2288675
http://doi.org/10.1016/j.neucom.2020.11.070
http://doi.org/10.1016/j.measurement.2022.111875
http://doi.org/10.1016/j.isatra.2021.04.022


Machines 2022, 10, 840 21 of 21

18. Lou, S.; Deng, J.; Lyu, S. Chaotic signal denoising based on simplified convolutional denoising auto-encoder. Chaos Solitons
Fractals 2022, 161, 112333. [CrossRef]

19. Fan, G.; Li, J.; Hao, H. Vibration signal denoising for structural health monitoring by residual convolutional neural networks.
Measurement 2020, 157, 107651. [CrossRef]

20. Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. In Proceedings of the 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 4–6 May 2016. [CrossRef]

21. Kumar, P.; Hati, A.S. Dilated convolutional neural network based model for bearing faults and broken rotor bar detection in
squirrel cage induction motors. Expert Syst. Appl. 2022, 191, 116290. [CrossRef]

22. Chu, C.; Ge, Y.; Qian, Q.; Hua, B.; Guo, J. A novel multi-scale convolution model based on multi-dilation rates and multi-attention
mechanism for mechanical fault diagnosis. Digit. Signal Process. 2021, 122, 103355. [CrossRef]

23. Wu, H.; Zhang, B.; Liu, N. Self-adaptive denoising net: Self-supervised learning for seismic migration artifacts and random noise
attenuation. J. Pet. Sci. Eng. 2022, 214, 110431. [CrossRef]

24. Wang, H.; Liu, Z.; Peng, D.; Cheng, Z. Attention-guided joint learning CNN with noise robustness for bearing fault diagnosis and
vibration signal denoising. ISA Trans. 2021, 128, 470–484. [CrossRef]

25. Fu, E.; Zhang, Y.; Yang, F.; Wang, S. Temporal self-attention-based Conv-LSTM network for multivariate time series prediction.
Neurocomputing 2022, 501, 162–173. [CrossRef]

26. Zhong, H.; Lv, Y.; Yuan, R.; Yang, D. Bearing fault diagnosis using transfer learning and self-attention ensemble lightweight
convolutional neural network. Neurocomputing 2020, 501, 765–777. [CrossRef]

27. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3859–3869. [CrossRef]

28. Zheng, L.; Zhou, B.; Siu, W.O.; Cao, Y.; Wang, H.; Li, Y.; Chan, K.W. Spatio-temporal wind speed prediction of multiple wind
farms using capsule network. Renew. Energy 2021, 175, 718–730. [CrossRef]

29. Dong, J.; Wang, N.; Fang, H.; Wu, R.; Zheng, C.; Ma, D.; Hu, H. Automatic damage segmentation in pavement videos by fusing
similar feature extraction siamese network (SFE-SNet) and pavement damage segmentation capsule network (PDS-CapsNet).
Autom. Constr. 2022, 143, 104537. [CrossRef]

30. Karim, F.; Shah, M.A.; Khattak, H.A.; Ameer, Z.; Shoaib, U.; Rauf, H.T.; AI-Turjman, F. Towards an effective model for lung
disease classification: Using Dense Capsule Nets for early classification of lung diseases. Appl. Soft Comput. 2022, 124, 109077.
[CrossRef]

31. Lin, Z.; Jia, J.; Huang, F.; Gao, W. A coarse-to-fine capsule network for fine-grained image categorization. Neurocomputing 2021,
456, 200–219. [CrossRef]

32. Ma, X.; Zhong, H.; Li, Y.; Ma, J.; Wang, Y. Forecasting transportation network speed using deep capsule networks with nested
lstm models. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4813–4824. [CrossRef]

33. Ye, X.; Yan, J.; Wang, Y.; Wang, J.; Geng, Y. A novel U-Net and capsule network for few-shot high-voltage circuit breaker
mechanical fault diagnosis. Measurement 2022, 199, 111527. [CrossRef]

34. Liu, J.; Zhang, C.; Jiang, X. Imbalanced fault diagnosis of rolling bearing using improved MsR-GAN and feature enhancement-
driven CapsNet. Mech. Syst. Signal Process. 2022, 168, 108664. [CrossRef]

35. Long, J.; Qin, Y.; Yang, Z.; Huang, Y.; Li, C. Discriminative feature learning using a multiscale convolutional capsule network
from attitude data for fault diagnosis of industrial robots. Mech. Syst. Signal Process. 2022, 182, 109569. [CrossRef]

36. Han, T.; Ma, R.; Zheng, J. Combination bidirectional long short-term memory and capsule network for rotating machinery fault
diagnosis. Measurement 2021, 176, 109208. [CrossRef]

37. Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.
Neural Netw. 2005, 18, 602–610. [CrossRef]

38. Han, L.; Deng, Y.; Chen, H.; Wei, G.; Sheng, K.; Shi, J. A robust VRF fault diagnosis method based on ensemble BiLSTM with
attention mechanism:Considering uncertainties and generalization. Energy Build. 2022, 269, 112243. [CrossRef]

39. Cui, X.; Chen, Z.; Yin, F. Multi-objective based multi-channel speech enhancement with bilstm network. Appl. Acoust. 2021,
177, 107927. [CrossRef]

40. Shi, J.; Peng, D.; Peng, Z.; Zhang, Z.; Goebel, K.; Wu, D. Planetary gearbox fault diagnosis using bidirectional-convolutional lstm
networks. Mech. Syst. Signal Process. 2022, 162, 107996. [CrossRef]

41. Wang, Y.; Cheng, L. A combination of residual and long-short-term memory networks for bearing fault diagnosis based on
time-series model analysis. Meas. Sci. Technol. 2021, 32, 015904. [CrossRef]

42. Rafiee, J.; Rafiee, M.A.; Tse, P.W. Application of mother wavelet functions for automatic gear and bearing fault diagnosis. Expert
Syst. Appl. 2010, 37, 4568–4579. [CrossRef]

http://doi.org/10.1016/j.chaos.2022.112333
http://doi.org/10.1016/j.measurement.2020.107651
http://doi.org/10.48550/arXiv.1511.07122
http://doi.org/10.1016/j.eswa.2021.116290
http://doi.org/10.1016/j.dsp.2021.103355
http://doi.org/10.1016/j.petrol.2022.110431
http://doi.org/10.1016/j.isatra.2021.11.028
http://doi.org/10.1016/j.neucom.2022.06.014
http://doi.org/10.1016/j.neucom.2022.06.066
http://doi.org/10.48550/arXiv.1710.09829
http://doi.org/10.1016/j.renene.2021.05.023
http://doi.org/10.1016/j.autcon.2022.104537
http://doi.org/10.1016/j.asoc.2022.109077
http://doi.org/10.1016/j.neucom.2021.05.032
http://doi.org/10.1109/TITS.2020.2984813
http://doi.org/10.1016/j.measurement.2022.111527
http://doi.org/10.1016/j.ymssp.2021.108664
http://doi.org/10.1016/j.ymssp.2022.109569
http://doi.org/10.1016/j.measurement.2021.109208
http://doi.org/10.1016/j.neunet.2005.06.042
http://doi.org/10.1016/j.enbuild.2022.112243
http://doi.org/10.1016/j.apacoust.2021.107927
http://doi.org/10.1016/j.ymssp.2021.107996
http://doi.org/10.1088/1361-6501/abaa1e
http://doi.org/10.1016/j.eswa.2009.12.051

	Introduction 
	Preliminaries 
	Signal Denoising 
	Dilated Convolution 
	Self-Attention 
	Spatial Features Captured by CapsNet 
	BiLSTM 

	DACapsNet–BiLSTM Network for Signal Denoising 
	Data Preprocessing 
	DACapsNet–BiLSTM Model 
	Framework 
	Proposed Model 

	ReLu Activation Function 
	Performance Evaluation 

	Experimental Results 
	Experimental Environment 
	Pre-Processing 
	Evaluation Indicators 
	Simulation Experiment 
	Experimental Analysis and Engineering Applications 

	Conclusions 
	References

