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Abstract: The optimal scheduling of multi-type combine harvesters is a crucial topic in improving
the operating efficiency of combine harvesters. Due to the NP-hard property of this problem,
developing appropriate optimization approaches is an intractable task. The multi-type combine
harvesters scheduling problem considered in this paper deals with the question of how a given
set of harvesting tasks should be assigned to each combine harvester, such that the total cost is
comprehensively minimized. In this paper, a novel multi-type combine harvesters scheduling
problem is first formulated as a constrained optimization problem. Then, a whale optimization
algorithm (WOA) including an opposition-based learning search operator, adaptive convergence
factor and heuristic mutation, namely, MWOA, is proposed and evaluated based on benchmark
functions and comprehensive computational studies. Finally, the proposed intelligent approach
is used to solve the multi-type combine harvesters scheduling problem. The experimental results
prove the superiority of the MWOA in terms of solution quality and convergence speed both in the
benchmark test and for solving the complex multi-type combine harvester scheduling problem.

Keywords: multi-type combine harvesters scheduling; whale optimization algorithm;
opposition-based learning; adaptive convergence factor; heuristic mutation

1. Introduction

As a modern agricultural machine, the combine harvester achieves harvesting at
a high speed, playing a significant role in the harvest season [1]. Combine harvesters
scheduling, which aims to obtain a reasonable scheduling scheme with the least cost while
satisfying various constraints, has attracted research interest across the world. For wheat
farms with high yield, harvesters with low capacity may not be suitable. Nik et al. adopted
multi-criteria decision-making to optimizing the feed rate in order to match harvesters
with farms [2]. In order to improve the harvesting efficiency, Zhang et al. proposed a path-
planning optimization scheme based on tabu search and proportion integral differential
(PID) control, which effectively shortens the harvesting path [3]. In order to obtain a corner
position from the global positioning system, a conventional AB point method is generally
adopted, but this is fairly time-consuming. In the light of this, Rahman et al. presented an
optimum harvesting area of a convex and concave polygon for the path planning of a robot
combine harvester, which reduces crop losses [4]. Due to changes in the location of fruit in
the picking process, locating fruits and path planning, which have to be performed on-line,
are computationally expensive operations, and hence Willigenburg et al. presented a new
method for near-minimum-time collision-free path planning for a fruit-picking robot [5].
Saito et al. developed a robot combine harvester for beans, and this robot can unload
harvested grain to an adjacent transport truck during the harvesting operation, improv-
ing the harvesting capacity by approximately 10% [6]. The minimization of harvesting
distance and the maximization of sugarcane yield, which are conflicting, are treated as
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optimization objectives. To solve the problem, Sethanan et al. devised a multi-objective
particle swarm optimization method, which provides planners with sufficient options for
trade-off solutions [7]. Zhang et al. investigated the emergency scheduling and allocation
problem of agricultural machinery and propose two corresponding algorithms, based on
the shortest distance and max-ability algorithms, respectively [8]. Cao et al. divided the
multi-machine cooperative operation problem into two parts: task allocation and task se-
quence planning. They established the problem model considering both path cost and task
execution ability, solving it using an ant colony algorithm [9]. Lu et al. proposed a working
environment modeling and coverage path planning method for combine harvesters that
precisely marks the boundaries of the farmland to be harvested and effectively realizes
the coverage path planning of combine harvesters [10]. Hameed considered that a large
proportion of farms have rolling terrains, which has a considerable influence on the design
of coverage paths [11].

Furthermore, terrain inclinations are also taken into account by energy consumption
models, in order to provide the optimal driving direction for agricultural robots and au-
tonomous machines. Cui et al. mainly investigated the path planning of autonomous
agricultural machineries in complex rural roads, employing a particle swarm optimization
algorithm to search for the optimal path [12]. In addition, to solve the problem of the
slip and roll of autonomous machinery caused by complex roads, a machinery dynamic
model considering road curvature and topographic inclination was established to track
the planned path. A route planning approach for robots was developed in [13], which was
used in orchard operations possessing the inherent structured operational environment that
arises from time-independent spatial tree configurations. In conclusion, the studies men-
tioned above mainly focused on single-type agricultural machinery and seldom involved
multi-type agricultural machinery. Combine harvesters scheduling problems, in particular,
have not been well studied. However, in view of the household contract responsibility
in China, it is essential that multi-type combine harvesters are used for harvesting. The
optimization task for combine harvesters is a mixed-integer optimization problem, similar
to job-shop scheduling problems [14–16], and calls for strong computational tools.

For decades, swarm intelligence heuristic techniques such as particle swarm opti-
mization (PSO) [7,12,17], grey wolf optimization (GWO) [18], ant colony optimization
(ACO) [19,20], genetic algorithms (GA) [21], artificial bee colony (ABC) [22–24], cuckoo
search (CS) [25] and meta-heuristic approaches [26], have been a focus of attention. How-
ever, conventional intelligence algorithms may suffer from premature convergence, which
significantly affects their solving performance. It is essential to develop an efficient al-
gorithm to address the multi-type combine harvesters scheduling problem. The whale
optimization algorithm (WOA) is a meta-heuristic algorithm inspired by whales, proposed
by Seyedali et al. in 2016 [27], which mimics the foraging behavior of humpback whales to
successfully solve some real-world optimization problems [28–34]. However, WOA is a
swarm-based search algorithm and is easily trapped into local optimal solutions. Consid-
ering these shortcomings, some improvement to the WOA is made as follows. Firstly, an
adaptive convergence factor is introduced into the WOA, which gives the algorithm strong
global exploration ability with a larger step in the early stages of the search and enables it
to carry out deep exploitation with a shorter step in the later evolution stages. Secondly,
when the algorithm runs into prematurity, a mutation strategy is adopted for individuals
where the fitness values have not been improved over a series of 10 iterations, to help them
escape from local minima. These improvements help to enhance the convergence speed
and the solution quality. The improvements are described in more detail in Section 4.

The major contributions of the paper are listed below:

(1) A novel multi-type combine harvesters scheduling problem is formulated, generation
a complex mixed-integer NP hard optimization problem.

(2) A new modified whale optimization algorithm, namely MWOA, is proposed. The new
variant includes an opposition-based learning search operator, adaptive convergence
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factor and heuristic mutation. The new method is evaluated based on benchmark
functions and comprehensive computational studies.

(3) The proposed intelligent approach is used to solve the multi-type combine harvesters
scheduling problem.

The remainder of this paper is organized as follows. The multi-type harvesters schedul-
ing problem is introduced in Section 2. Section 3 expounds the standard whale optimization
algorithm (WOA). In Section 4, the design of the proposed MWOA is discussed in detail.
The overall performance of the proposed method is studied, and then it is applied to solve
the multi-type harvesters scheduling problem in Section 5. Finally, the conclusions are
presented, and further research opportunities are suggested.

2. Multi-Type Combine Harvesters Scheduling Problem
2.1. Problem Description

Due to the household contract responsibility system in China and taking into account
of the different personnel structure of each family, the amounts of rural land are allocated
to each family according to the proportion of family members. The amounts of rural land
belonging to each household are therefore different. When the grain in fields is mature
and ready for harvesting, multi-type harvesters are in great demand, and it is necessary
to make full use of the harvesters. Efficient use also saves fuel and reduces the emission
of greenhouse gases. Therefore, it is valuable to investigate how to properly schedule the
multi-type combine harvesters to quickly and fully finish the harvesting task. The principle
of multi-type combine harvesters scheduling is shown in Figure 1.
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2.2. Model Assumptions

The following assumptions are made in this study:

(I) A single scheduling center is assumed;
(II) The harvester drives at a constant speed;
(III) The harvesting demands are known in advance;
(IV) Harvester faults during harvesting are ignored;
(V) The time spent on refueling the harvesters is negligible;
(VI) The time for unloading the harvesters is ignored.
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2.3. Notation

The notations used in this paper are summarized as follows.
E: The set of agricultural cooperatives.
G: The set of combine harvesters.
Kg: The header width of the combine harvester g, g ∈ G.
Tgj: The time at which combine harvester g completes harvesting in field j, g ∈ G,

j ∈ D.
R: The set of routes which each harvester travels.
D: The set of the fields ready for harvesting.
Sir: A binary decision variable which indicates whether field i is included in route r or

not, i ∈ D, r ∈ R.
Ojr: A binary decision variable which denotes whether combine harvester g covers

route r or not, g ∈ G, r ∈ R.
Hijr: A binary decision variable which indicates whether a combine harvester operates

continuous harvesting from field i to field j in route r, i, j ∈ D, r ∈ R.
Dij: The distance between the harvester and the field, or between the field and the

next field, i, j ∈ D.
Li, Wi: The length and width of field i, respectively, i ∈ D.
vg1, vg2: The driving speed and the harvesting velocity, respectively, of harvester g,

g ∈ G.

Definition 1. If the combine harvester is responsible for field i in route r, then Sir = 1; otherwise,
Sir = 0.

Definition 2. If the combine harvester operates continuous harvesting from field i to the field j in
route r, then Hijr = 1; otherwise, Hijr = 0.

2.4. Problem Modeling

The aim of this paper is to minimize the time spent on harvesting. The mathematical
model, including the objective function and constraint conditions, is defined as follows.

min( ∑
g∈G

∑
r∈R

∑
i∈D

∑
j∈D

(
dij

vg1
+ min{

Lj

vg2
·
⌈Wj

kg

⌉
,

Wj

vg2
·
⌈ Lj

Kg

⌉
}) · Hijr · Sir · Sjr ·Ogr) (1)

s.t. ∑
r∈R

Sir = 1, ∀i ∈ D (2)

∑
i∈D\{j}

Hijr = ∑
j∈D\{i}

Hijr = 1, ∀i, j ∈ D, ∀r ∈ R (3)

Kg ≤ Li
∣∣∣∣Wi , g ∈ G, i ∈ D (4)

Tg1i = Tg2j, ∀g1, g2 ∈ G, i, j ∈ D (5)

|G| = |R| (6)

∑
{r∈R,e∈E,j∈D}

Hejr = |R| (7)

∑
{r∈R,e∈E,i∈D}

Hier = |R| (8)

Sir ∈ {0, 1}, ∀i ∈ D, ∀r ∈ R (9)

Hijr ∈ {0, 1}, ∀i, j ∈ D, i 6= j, ∀r ∈ R (10)
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where objective (1) is to minimize the total time for completing harvesting. Constraint (2)
ensures that each filed is visited only once by one combine harvester. Constraint (3)
guarantees that a circuit does not exist between field i and field j. Constraint (4) ensures that
combine harvester g can enter field i. Constraint (5) indicates that all harvesters complete
the harvesting task simultaneously. Constraint (6) means that the combine harvesters
continue harvesting. Constraints (7) and (8) require that the start and end points of each
route are both agricultural cooperatives. Constraints (9) and (10) are binary decision
variables, which only take values of 0 or 1.

3. Traditional Whale Optimization Algorithm (WOA)

To better understand the WOA, it is necessary to elaborate its operating principle.
In this algorithm, the positions of humpback whales represent the trial solutions of the
optimization problem. If the size of the population and the dimension are Np and d,
respectively, the position of the ith humpback whale is expressed as Xi = (xi1, xi2, · · · , xid),
where i ∈ {1, 2, · · ·N}. The humpback whales utilize a distinctive foraging method called
bubble-net feeding to hunt krill or schools of small fishes close to the surface by creating
special bubbles along a circle or “9-shaped” path, as shown in Figure 2. The following
subsections describe the principle of the WOA exhaustively.
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3.1. Encircling Prey

Here, the WOA assumes that the current best solution is the target prey, which provides
a referential basis for updating the positions of the other whales. This behavior is expressed
in terms of the following equations:

→
X(t + 1) =

→
Xp(t)−

→
A · D (11)

D =

∣∣∣∣→C ⊗→Xp(t)−
→
X(t)

∣∣∣∣ (12)

→
A = 2a

→
r − a (13)

→
C = 2

→
r (14)
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a = 2− 2
t

tmax
(15)

where t represents the current iteration,
→
Xp(t) is the position vector of the best solution

obtained so far,
→
X(t) is the position vector at iteration t, the symbol |·| expresses the

absolute value, the symbol is an element-by-element multiplication,
→
r is a random vector

in the interval [0,1], a is linearly decreased in the interval [2,0] with an increase in the
iteration t and tmax indicates the maximum number of iterations.

3.2. Spiral Bubble-Net Prey

In this phase, a shrinking encircling mechanism and a spiraling mechanism are
adopted to realize normal prey, i.e., humpback whales carrying out shrinking encircling
along with spiraling. In this case, the shrinking encircling behavior is still described by
Equation (11), while the spiraling behavior can be formulated as follows:

→
X(t + 1) = D′eblcos(2πl) +

→
Xp(t) (16)

D′ =
∣∣∣∣→Xp(t)−

→
X(t)

∣∣∣∣ (17)

where D′ represents the distance between the best solution and the ith whale at iteration t.
The parameter b is constant and can be used to control the shape of the logarithmic spiral.
The term l ∈ [−1, 1] is a random number.

To emulate spiral bubble-net prey, we suppose that the shrinking encircling and
spiraling have equal probabilities, which can be defined as follows:

→
X(t + 1) =


→
Xp(t)−

→
A · D, p < 0.5, |A| < 1

D′eblcos(2πl) +
→
Xp(t), p ≥ 0.5

(18)

where p ∈ [0, 1] is a random number.

3.3. Searching for the Prey Following a Whale Selected Randomly

When p < 0.5 and |A| ≥ 1, the current whale will swim toward any whale in the
whale population, selected randomly. This operation can be expressed as follows:

→
X(t + 1) =

→
Xrand(t)−

→
A · D, p < 0.5, |A| ≥ 1 (19)

D =

∣∣∣∣→C ⊗→Xrand(t)−
→
X(t)

∣∣∣∣ (20)

where
→
Xrand(t) is any position in the whole whale population. In this section, we mainly

introduce the basic principles of WOA; the flowchart of WOA is given in Figure 3. The
WOA algorithm starts with a random population. At each iteration, whale individuals
update their positions according to either a randomly chosen whale or the best whale
individuals obtained so far. The parameter α is decreased from 2 to 0, and is used to
provide exploration and exploitation, respectively. For updating the positions of the whale
individuals, a random whale individual is chosen when |A| ≥ 1, while the best whale
individual is selected when |A| < 1. Depending on the value of p, the WOA is able to
switch between either a spiral or an encircling movement. Finally, the WOA algorithm is
terminated when the termination criterion is satisfied. Here, the termination criterion is
that the maximal evolution generation MaxGen is reached.
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4. Modified Whale Optimization Algorithm (MWOA)
4.1. Opposition-Based Learning Search Operator

The opposition-based learning (OBL) strategy originally proposed by Tizhoosh [35] is
a novel technique in computation intelligence and can help to improve the optimization
performance of swarm intelligence heuristic algorithms. Specifically, OBL makes effective
use of the opposition of the current individuals to gain beneficial information, which may
increase the diversity of the population to some extent. With respect to Xij ∈

[
LBj, UBj

]
,

the jth decision variable of the ith individual, the opposite variable can be given by:

Xij = LBj + UBj − Xij (21)

where LBj and UBj are the lower and upper boundary of the variable Xij.
In view of the efficiency of OBL, the random search for prey of the WOA can be im-

proved by means of OBL. Therefore, Equations (19) and (20) are substituted by Equation (21):

→
Xij(t + 1) =LBj + UBj −

→
Xij(t) (22)

4.2. Operator Adaptive Convergence Factor α

By mean of the linear variation of convergence factor α, the WOA simulates the
encircling behavior of whales. However, in the course of encircling, fluctuation of the prey
population is hard to avoid. That is to say, a linear change of convergence factor seems
to affect the whales’ ability to hunt, i.e., the performance of the WOA. To overcome this
disadvantage, it is necessary to modify the way that the convergence factor α changes.
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In view of this, the strategy of a damped oscillation of a sine wave was proposed to guide
the change in convergence factor α. This is described in detail as follows. Such a strategy not
only ensures that the MWOA rapidly approaches the optimal or a suboptimal solution by a
large step in the previous period of the search but also searches around the optimum by a
small step in the later evolution stage. Furthermore, on the whole, it implements a decrease
in the step despite the oscillation. Meanwhile, the direction of encircling tends to change.
Due to these characteristics, the MWOA can achieve a trade-off between exploitation
and exploration. The adaptive convergence factor α can be mathematically formulated
as follows:

α = 2e(−2·tan(0.5π·t/tmax)) · sin(4.5π · (1− t
tmax

)) (23)

where t is the tth generation.

4.3. Heuristic Mutation

As for the WOA, encircling prey and spiral bubble-net prey approaches both direct
the whales to swim forward to particular places where the prey gathers, which likewise
makes the whales tend to cluster and lowers the diversity of the population. This results in
the loss of the global search ability, and then easily becoming trapped in a local optimal
solution. In the following, we introduce improvements to offset this weakness. Generally
speaking, the phenomenon of the optimum not being updated for several generations is
called a local optimum. With this in mind, we further present a novel heuristics mutation
operator, the principle of which is expressed as follows: the whales whose fitness has not
improved for 10 generations, and their parents, are selected for mutation. Here, the reason
the parents are also chosen is that they may approximate to the optimum, and thus they
may help to find the optimum quickly. Through mutation, if a better solution is obtained it
is accepted; otherwise, it is discarded. In order to avoid blindness in the mutation strategy,
it is reasonable that the mutation probabilities should vary among individuals in terms
of their fitness. Furthermore, these individuals, which are trapped in a local optimum,
may represent some valuable information; thus, a larger mutation probability pi for an
individual i with a smaller fitness not only improves the population diversity effectively but
further enhances the global search ability and convergence rate. The mutation probability
is defined as:

pi = 1− ( f iti/ f itmax) (24)

where f iti and f itmax are the fitness of the ith whale and the maximum fitness, respectively.
To fully excavate the potential information of such individuals, the mutation operator is
presented as follows:

→
Xi(t + 1) =N

→Xrand(t)+
→
Xi(t)

2
,
∣∣∣∣→Xrand(t)−

→
Xi(t)

∣∣∣∣) (25)

where
→
Xi(t) and

→
Xrand(t) are the position of the individual i falling into the local optimum

and that of the individual generated randomly, respectively. In addition, N(·) denotes a

Gaussian distribution where the mean and standard deviation are (
→
Xi(t) +

→
Xrand(t))/2

and
∣∣∣∣→Xi(t)−

→
Xrand(t)

∣∣∣∣, respectively.

The pseudocode of the MWOA is shown in Algorithm 1.
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Algorithm 1. The pseudocode of MWOA.

1. Initializing a population of N whales with random positions
2. Initializing of parameters
3. Evaluate each whale with the fitness function
4. Record the position of the best whale Xp and the corresponding objective value f (Xp)
5. while the terminating criterion is not satisfied do
6. for i = 1:N
7. Update a with Equation (23), A with Equation (13), C with Equation (14), l ∈ [−1, 1], and
p ∈ [0, 1]
8. if (p < 0.5)
9. if (|A| < 1)
10. Update the position of the current whale according to Equation (11)
11. else if (|A| ≥ 1)
12. Update the position of the current whale according to Equation (22)
13. end if
14. else if (p ≥ 0.5)
15. Update the position of the current whale according to Equation (16)
16. end if
17. end for
18. Evaluate each whale with the fitness function
19. Update Xp and f (Xp), if there is a better solution
20. Carry out heuristic mutation where mutation probability is computed with Equation (22)
21. end while
22. return the optimal solution Xp and the corresponding objective value f (Xp)

5. Experiments and Discussion
5.1. Benchmark Functions Test

In this subsection, to analyze and compare the accuracy and stability of the MWOA,
the MWOA is applied to solve eight classical benchmark functions with dimensions D = 30,
50 and 100, as listed in Table 1. These functions have the following characteristics: unimodal,
multimodal, separable and non-separable, marked as U, M, S and N, respectively, in Table 1.
As they have only one local optimum, unimodal functions are easily solved, and the local
optimum is also the global optimum. Therefore, the exploitation capability of optimization
algorithms is often tested on these types of functions. In contrast, multimodal functions
generally have more than one local optimum, and the number of local optima increases
with the dimension of the problem, which makes it difficult to obtain optimal solutions.
Thus, the exploration ability of optimization algorithms is always tested on multimodal
functions. Separable functions are those where a decision variable can be written as the
sum of n functions with a corresponding decision variable, and non-separable functions are
those where this is not the case. High-dimensional functions expand the solution space ex-
ponentially compared to low-dimensional functions, so the high-dimensional case is harder
to solve. Considering the above analysis, the selected benchmark functions can effectively
evaluate the performance of optimization algorithms in terms of escaping from local optima
and convergence speed. The results obtained by the MWOA were compared with nine
other optimization algorithms: the original whale optimization algorithm (WOA) [27] and
variants of other optimization approaches including HCLPSO [36], ETLBO [37], iqABC [38],
SBAIS [39], ECSA [40], ADFA [41], GWO-E [42] and MHS [43].

All experiments in this study were conducted using a PC with a Windows 10 system,
3.4 GHz Intel Core, 16 GB RAM and MATLAB R2014b. For a fair comparison, the number
of function evaluations (FES) was utilized to evaluate the performance of the algorithm,
i.e., all algorithms in the experiments had the same FES, for example, FES = 80,000 for
30 dimensions, FES = 100,000 for 50 dimensions and the FES = 300,000 for 100 dimensions.
The other parameters of the comparison algorithms were the same as those of the corre-
sponding references. For the MWOA, the parameter b was set to 1. Each algorithm had
30 independent runs for each trial.
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Table 1. Details of benchmark functions.

Name Function C Search Range Min

Sphere f1(x) = ∑D
i=1 x2

i US [−100, 100] 0

Sumsquare f2(x) = ∑D
i=1 ix2

i US [−10, 10] 0
Schwefel2.21 f3(x)= max{|xi|, 1 ≤ xi ≤ D} UN [−100, 100] 0

Schwefel2.22 f4(x) = ∑D
i=1|xi|+ ∏D

i=1|xi| UN [−10, 10] 0

Rosenbrock f5(x) = ∑D−1
i=1

{
100 ·

(
xi+1 − x2

i
)2

+ (1− xi)
2
}

UN [−5, 10] 0

Rastrigin f6(x) = ∑D
i=1 [x

2
i − 10cos(2 πxi)] + 10D MS [−5.12, 5.12] 0

Ackley
f7(x) =− 20 exp

(
−0.2

√
1
D ∑D

i=1 x2
i

)
−

exp
(

1
D ∑D

i=1 cos(2πxi)
)
+ 20 + e

MN [−32, 32] 0

Levy f8(x) = ∑D−1
i=1 (xi − 1)

2
[1 + sin2(3πxi+1)]+

sin2(3πx1) + |xD − 1|[1 + sin 2(3πxD)]
MN [−10, 10] 0

5.2. Performance Evaluation Compared with Other Algorithms

To test the solution ability of the MWOA, it was compared with the other algorithms
using 30-, 60- and 100-dimensional function optimizations. The corresponding results in
terms of the minimum “Min”, the mean “Mean” and the standard deviation “Std” of the
best-so-far solution, are given in Tables 2–4, respectively, where the best results are high-
lighted in boldface. The Wilcoxon signed-rank test was adopted with a 0.05 significance
level to identify the significant differences between algorithms, and the statistical results
“Sig” are marked as “+/=/−”, corresponding to cases where the MWOA is better than,
equal to or worse than the given algorithm, respectively. Additionally, the mean conver-
gence characteristics of the algorithms are shown in Figure 4 for different dimensional
benchmark functions.

Table 2. Comparison of results for 30-dimension benchmark functions.

Algorithm f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

MWOA
Mean 2.17 × 10−270 4.90 × 10−281 1.41 × 10−4 4.40 × 10−178 0 0 3.61 × 10−15 7.59 × 10−28

Std 0 0 6.98 × 10−4 0 0 0 2.41 × 10−15 2.33 × 10−27

WOA
Mean 6.69 × 10−112 1.12 × 10−121 2.03 × 10−1 4.62 × 10−89 2.59 × 101 1.89 × 10−15 3.97 × 10−15 1.17 × 10−1

Std 2.16 × 10−121 5.91 × 10−121 3.48 × 10−1 1.47 × 10−88 3.67 × 10−1 1.04 × 10−14 2.76 × 10−15 6.24 × 10−2

Sig + + + + + + = +

HCLPSO
Mean 4.47 × 10−26 5.96 × 10−28 1.15 × 10−1 3.29 × 10−14 2.10 × 101 2.24 3.93 × 10−13 5.78 × 10−1

Std 2.22 × 10−25 1.04 × 10−27 6.26 × 10−2 9.68 × 10−14 2.91 × 101 1.07 4.18 × 10−13 4.11 × 10−1

Sig + + + + + + + +

ETLBO
Mean 4.80 × 10−29 5.02 × 10−30 2.55 × 101 2.75 7.85 × 101 1.52 × 102 2.92 3.39 × 101

Std 4.83 × 10−29 3.64 × 10−30 2.81 2.32 9.07 × 101 1.19 × 102 2.00 3.20
Sig + + + + + + + +

iqABC
Mean 4.10 × 10−14 1.77 × 10−14 1.30 × 101 2.58 × 10−14 7.18 × 10−1 3.48 × 10−3 5.69 × 10−10 4.93 × 10−10

Std 4.18 × 10−14 1.69 × 10−14 2.02 2.20 × 10−14 4.67 × 10−1 1.32 × 10−2 8.30 × 10−10 7.84 × 10−10

Sig + + + + + + + +

SBAIS
Mean 1.75 × 101 5.80 × 10−1 1.02 4.15 × 10−1 1.25 × 10−2 4.04 × 10−1 2.18 5.95 × 10−1

Std 4.02 × 101 6.91 × 10−1 8.62 × 10−1 5.55 × 10−1 1.18 × 10−2 4.25 × 10−1 1.86 2.97 × 10−1

Sig + + + + + + + +

ECSA
Mean 2.10 × 104 1.62 × 103 5.23 × 101 2.48 × 109 7.68 × 104 1.70 × 102 1.54 × 101 1.58 × 102

Std 7.45 × 103 6.64 × 102 1.22 × 101 3.50 × 109 5.69 × 104 4.71 × 101 9.20 × 10−1 6.09 × 101

Sig + + + + + + + +

ADFA
Mean 2.52 4.25 × 101 4.26 8.74 1.94 × 102 1.10 × 102 2.90 6.90

Std 5.92 × 10−1 2.52 × 101 6.55 4.90 7.89 × 101 5.82 × 101 3.43 × 10−1 4.32
Sig + + + + + + + +

GWO-E
Mean 1.50 × 10−43 8.81 × 10−46 1.38 1.05 × 10−27 7.12 7.77 × 10−1 1.06 × 10−14 7.12

Std 8.20 × 10−43 4.55 × 10−45 1.91 3.38 × 10−27 1.06 × 101 3.31 3.95 × 10−15 2.93
Sig + + + + + + + +

MHS
Mean 3.45 × 104 4.63 × 103 6.63 × 101 2.09 × 106 3.15 × 105 3.21 × 102 1.95 × 101 5.12 × 102

Std 2.73 × 103 4.25 × 102 2.09 3.26 × 106 6.13 × 104 1.06 × 101 1.63 × 10−1 6.27 × 101

Sig + + + + + + + +

The best results are highlighted in boldface.
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Table 3. Comparison of results for 50-dimension benchmark functions.

Algorithm f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

MWOA
Mean 9.88 × 10−324 7.91 × 10−323 9.79 × 10−1 3.95 × 10−219 0 0 3.26 × 10−15 3.93 × 10−18

Std 0 0 1.16 0 0 0 2.35 × 10−15 1.36 × 10−17

WOA
Mean 8.09 × 10−152 6.44 × 10−153 1.73 1.55 × 10−106 4.59 × 101 3.79 × 10−15 3.38 × 10−15 2.53 × 10−1

Std 3.50 × 10−151 2.53 × 10−152 2.19 8.46 × 10−106 2.90 × 10−1 2.08 × 10−14 2.31 × 10−15 2.01 × 10−1

Sig + + = + + + = +

HCLPSO
Mean 2.52 × 10−17 5.45 × 10−19 1.85 4.64 × 10−10 4.13 × 101 1.00 × 101 2.79 × 10−9 4.45 × 10−1

Std 9.32 × 10−17 7.43 × 10−19 5.67 × 10−1 7.17 × 10−10 4.26 × 101 3.11 2.49 × 10−9 2.27 × 10−1

Sig + + + + + + + +

ETLBO
Mean 1.21 × 10−28 3.54 × 10−29 3.13 × 101 3.64 3.30 × 102 2.17 × 102 3.15 6.38 × 101

Std 8.70 × 10−29 4.27 × 10−29 9.75 3.90 9.45 × 102 2.12 × 102 2.63 1.54 × 101

Sig + + + + + + + +

iqABC
Mean 4.02 × 10−13 1.61 × 10−13 2.68 × 101 2.25 × 10−13 1.17 9.97 × 10−2 1.38 × 10−8 1.87 × 10−9

Std 4.41 × 10−13 1.78 × 10−13 3.17 4.46 × 10−13 8.91 × 10−1 1.66 × 10−1 3.22 × 10−8 2.86 × 10−9

Sig + + + + + + + +

SBAIS
Mean 4.47 1.39 × 10−1 3.19 3.07 × 10−1 2.36 × 10−2 1.16 3.04 1.41

Std 8.30 2.85 × 10−1 3.18 3.94 × 10−1 2.47 × 10−2 9.86 × 10−1 3.25 7.52 × 10−1

Sig + + + + + + + +

ECSA
Mean 2.00 × 104 6.59 × 103 5.67 × 101 6.39 × 109 3.61 × 105 3.19 × 102 1.62 × 101 3.39 × 102

Std 4.56 × 103 1.74 × 103 8.77 4.68 × 109 1.58 × 105 8.45 × 101 1.13 9.83 × 101

Sig + + + + + + + +

ADFA
Mean 7.59 1.54 × 102 1.28 × 101 1.49 × 101 4.73 × 102 1.87 × 102 4.16 1.00 × 101

Std 1.20 1.03 × 102 9.68 8.20 3.27 × 102 8.59 × 101 1.37 3.82
Sig + + + + + + + +

GWO-E
Mean 4.31 × 10−46 1.31 × 10−46 1.53 2.36 × 10−31 4.43 1.89 × 10−15 1.07 × 10−14 1.05 × 101

Std 1.76 × 10−45 5.95 × 10−46 4.51 7.28 × 10−31 8.97 1.04 × 10−14 3.19 × 10−15 5.89
Sig + + + + + + + +

MHS
Mean 8.45 × 104 1.82 × 104 7.93 × 101 2.62 × 1016 1.27 × 106 6.10 × 102 2.01 × 101 1.25 × 103

Std 4.56 × 103 1.22 × 103 2.64 5.22 × 1016 1.64 × 105 1.40 × 101 1.14 × 10−1 6.09 × 101

Sig + + + + + + + +

The best results are highlighted in boldface.

Table 4. Comparison of results for 100-dimension benchmark functions.

Algorithm f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

MWOA
Mean 0 0 1.34 0 0 0 2.90 × 10−15 6.81 × 10−21

Std 0 0 1.55 0 0 0 2.41 × 10−15 3.68 × 10−20

WOA
Mean 0 1.98 × 10−323 1.45 7.38 × 10−320 9.49 × 101 0 8.82 × 10−15 1.88 × 10−1

Std 0 0 1.79 0 2.80 × 10−1 0 3.58 × 10−15 1.64 × 10−1

Sig = + = + + = + +

HCLPSO
Mean 1.03 × 10−22 4.48 × 10−23 3.32 4.60 × 10−13 4.90 × 101 1.39 × 101 9.27 × 10−15 2.67 × 10−1

Std 1.07 × 10−22 4.42 × 10−23 4.79 × 10−1 5.13 × 10−13 4.93 × 101 3.32 6.82 × 10−12 1.44 × 10−1

Sig + + + + + + + +

ETLBO
Mean 2.47 × 10−28 1.93 × 10−28 5.51 × 101 5.89 2.54 × 102 1.19 × 102 2.30 1.12 × 102

Std 2.14 × 10−28 2.22 × 10−28 2.17 × 101 8.01 2.36 × 102 2.50 × 102 2.18 1.14 × 101

Sig + + + + + + + +

iqABC
Mean 1.68 × 10−11 1.02 × 10−11 3.86 × 101 5.98 × 10−12 1.90 9.33 × 10−2 3.76 × 10−7 6.95 × 10−9

Std 3.10 × 10−11 9.24 × 10−12 4.21 9.20 × 10−12 1.50 1.01 × 10−1 4.98 × 10−7 9.84 × 10−9

Sig + + + + + + + +

SBAIS
Mean 1.13 × 101 1.14 × 10−1 2.56 3.63 × 10−1 9.32 × 10−3 2.40 3.62 1.01

Std 1.62 × 101 7.11 × 10−3 1.80 4.65 × 10−1 9.56 × 10−3 1.23 2.18 7.67 × 10−1

Sig + + + + + + + +

ECSA
Mean 5.17 × 104 2.31 × 104 6.85 × 101 3.00 × 1018 1.03 × 106 7.34 × 102 1.73 × 101 8.61 × 102

Std 1.72 × 104 6.39 × 103 7.23 1.64 × 1019 2.68 × 105 1.32 × 102 7.06 × 10−1 2.03 × 102

Sig + + + + + + + +

ADFA
Mean 2.75 × 101 5.01 × 102 1.51 × 101 2.14 × 101 5.13 × 102 1.50 × 102 4.97 2.27 × 101

Std 2.67 4.87 × 102 7.72 1.70 × 101 6.63 × 102 1.15 × 102 2.09 1.32 × 101

Sig + + + + + + + +

GWO-E
Mean 1.37 × 10−132 1.19 × 10−132 4.88 3.00 × 10−85 1.31 0 4.56 × 10−15 1.72 × 101

Std 5.92 × 10−132 6.51 × 10−132 8.73 1.02 × 10−84 1.39 0 2.55 × 10−15 1.17 × 101

Sig + + + + + + + +

MHS
Mean 2.04 × 105 9.33 × 104 8.82 × 101 8.25 × 1038 4.59 × 106 1.39 × 103 2.05 × 101 2.94 × 103

Std 4.21 × 103 3.93 × 103 1.22 1.92 × 1039 3.18 × 105 2.35 × 101 5.35 × 10−2 7.14 × 101

Sig + + + + + + + +

The best results are highlighted in boldface.
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From Tables 2–4, it can be seen that the performance of the proposed MWOA is equal
to that of the conventional WOA for benchmark functions f1 and f6. However, for the rest of
the functions, regardless of dimension, the solution quality obtained by the MWOA exceeds
all the other algorithms in terms of mean results and standard deviation. Compared with
the standard WOA, it can be seen that the MWOA is significantly better. Furthermore,
based on the Wilcoxon signed-rank test results, the proposed MWOA demonstrates similar
performance. These results all reveal that the MWOA is robust against the dimensionality
of the problem to be solved. Furthermore, the results of the MWOA for unimodal functions
are better than those for multimodal functions irrespective of dimension, which indicates
that the MWOA has strong local search capability. Figure 4 shows the mean convergence
characteristics of different functions of various dimensions, reflecting the exploration and
exploitation performance of each of the algorithms. It is clear that the performances of
different algorithms are very different for different benchmark functions. The convergence
trends are also quite different for different functions. However, it can be seen that although
the convergence is different for different functions, the MWOA always converges to the best
solution at the highest speed, verifying the efficient global search ability of the MWOA. The
conclusion can be drawn that an opposition-based learning search operator, an adaptive
convergence factor and heuristic mutation are quite effective in enhancing the overall
performance of the MWOA. This also provides a reference for the improvement of other
swarm intelligent algorithms.

5.3. Application to Multi-Type Combine Harvesters Scheduling

In order to validate the performance of the MWOA, experimental research on multi-
type harvesters scheduling was undertaken based on a certain agricultural cooperative.
Here, six types of harvesters were chosen, because the household contract responsibility of
China means that the amount of farmland varies from family to family, which can heighten,
to a certain degree, the utility ratio of a harvester. The agricultural cooperative had six
types of harvesters, with only one of each type. The basic parameters of the harvesters
are shown in Table 5. A total of 60 fields of ripened wheat were ready for harvesting, and
the size “Size” and coordinates “Cdnt” of these fields are shown in Table 6. Furthermore,
120 fields of ripened wheat were also provided to test the performance of the MWOA in
larger scale problems. In this part of the study, apart from an FES of 200,000 for 60 fields
and an FES of 400,000 for 120 fields, all parameters of each algorithm remained the same
as in Section 5.1. Due to the limited space, the information relating to the 120 fields is not
described here.

Table 5. The basic parameters of various types of harvesters.

Parameter
Type of Harvester

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Travel speed 25 km/h 30 km/h 35 km/h 40 km/h 45 km/h 50 km/h
Harvesting speed 15 km/h 20 km/h 25 km/h 30 km/h 35 km/h 40 km/h

Header width 1.5 m 2 m 2.5 m 3 m 3.5 m 4 m

For two cases, namely, the 60-field and 120-field cases, Figures 5 and 6 demonstrate the
convergence property of the mean results obtained by ten different algorithms. In order to
understand the computation efficiency of different algorithms intuitively, a comparison of
computation times is depicted in Figures 7 and 8. The robustness is also compared between
algorithms in Figures 9 and 10. Considering the differences in the harvesting capacity
among various types of harvesters, the harvesting times are compared in Figures 11 and 12.
All algorithms ran 30 independent simulations. Tables 7 and 8 show the comparison results.
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Table 6. The detailed information for 60 fields.

No. Size (m) Cdnt (m) No. Size (m) Cdnt (m) No. Size (m) Cdnt (m)

1 (55,10) (75,31) 21 (9,28) (1193,874) 41 (75,64) (2429,1929)
2 (25,15) (130,41) 22 (126,81) (1202,902) 42 (106,314) (2504,1993)
3 (51,27) (155,56) 23 (50,29) (1328,983) 43 (56,19) (2610,2307)
4 (106,25) (206,83) 24 (69,55) (1378,1012) 44 (87,64) (2666,2326)
5 (95,23) (412,108) 25 (20,36) (1447,1067) 45 (49,39) (2753,2390)
6 (14,27) (507,131) 26 (111,77) (1467,1103) 46 (87,56) (2802,2429)
7 (19,20) (521,158) 27 (136,116) (1578,1180) 47 (24,15) (2889,2485)
8 (37,42) (540,178) 28 (55,34) (1714,1296) 48 (38,40) (2913,2500)
9 (44,31) (577,220) 29 (39,27) (1769,1330) 49 (128,99) (2951,2540)

10 (55,55) (621,251) 30 (18,83) (1808,1357) 50 (145,176) (3079,2639)
11 (33,87) (676,306) 31 (77,67) (1826,1440) 51 (141,120) (3224,2815)
12 (80,38) (709,393) 32 (27,33) (1903,1507) 52 (15,46) (3365,2935)
13 (62,38) (789,431) 33 (15,12) (1930,1540) 53 (78,39) (3380,2981)
14 (50,99) (851,469) 34 (71,42) (1945,1552) 54 (104,49) (3458,3020)
15 (16,54) (901,568) 35 (80,89) (2016,1594) 55 (74,21) (3562,3069)
16 (38,80) (917,622) 36 (37,16) (2096,1683) 56 (69,76) (3636,3090)
17 (67,48) (955,702) 37 (64,35) (2133,1699) 57 (89,61) (3705,3166)
18 (80,60) (1022,750) 38 (38,68) (2197,1734) 58 (94,37) (3794,3227)
19 (43,37) (1102,810) 39 (158,76) (2235,1802) 59 (98,77) (3888,3264)
20 (48,27) (1145,847) 40 (36,51) (2393,1878) 60 (99,97) (3986,3341)
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Table 7. Comparison of results for 60-field case.

Min Max Mean Std Sig

MWOA 1.00 × 101 1.08 × 101 1.03 × 101 2.00 × 10−1 /
WOA 6.59 × 101 8.69 × 101 7.65 × 101 5.64 +

HCLPSO 1.00 × 101 1.18 × 101 1.04 × 101 3.40 × 10−1 =
ETLBO 1.77 × 101 3.10 × 101 2.27 × 101 2.70 +
iqABC 8.37 × 101 1.01 × 102 9.25 × 101 4.44 +
SBAIS 1.20 × 101 1.85 × 101 1.71 × 101 1.50 +
ECSA 1.62 × 101 2.14 × 101 1.72 × 101 9.92 × 10−1 +
ADFA 1.71 × 101 6.31 × 101 3.43 × 101 1.19 × 101 +

GWO-E 1.00 × 101 1.10 × 101 1.05 × 101 2.23 × 10−1 +
MHS 8.08 × 101 1.02 × 102 9.54 × 101 4.76 +

The best results are highlighted in boldface.

Table 8. Comparison of results for 120-field case.

Min Max Mean Std Sig

MWOA 3.61 × 101 3.84 × 101 3.73 × 101 4.95 × 10−1 /
WOA 3.00 × 102 5.84 × 102 3.76 × 102 7.71 × 101 +

HCLPSO 5.01 × 102 9.91 × 102 7.49 × 102 1.44 × 102 +
ETLBO 4.35 × 101 9.68 × 101 6.45 × 101 1.51 × 101 +
iqABC 9.22 × 102 9.27 × 102 9.24 × 102 3.60 +
SBAIS 2.62 × 101 5.70 × 101 4.53 × 101 6.05 +
ECSA 8.36 × 101 1.16 × 102 1.00 × 102 9.81 +
ADFA 3.94 × 101 4.94 × 102 2.63 × 102 1.72 × 102 +

GWO-E 4.11 × 101 1.08 × 102 7.17 × 101 1.86 × 101 +
MHS 5.02 × 101 5.93 × 102 5.74 × 102 2.67 × 101 +

The best results are highlighted in boldface.

From Figures 4 and 8, it is clear that the proposed MWOA can converge to a better
solution at a faster convergence rate, as is also shown in Figures 5 and 9. Furthermore,
Figures 6 and 10 show, via the mean results obtained, that the MWOA outperforms the
other algorithms, and there are almost no changes between trials. Tables 7 and 8 show that
no method performed better than the proposed MWOA in terms of the simulation results.
Furthermore, the results for the above-mentioned cases, which represent both large-scale
and small-scale problems, suggest that the proposed MWOA has good robustness. MWOA
has a great advantage over the other algorithms, especially for the large-scale problem.
In summary, the conclusion can be drawn that the combination of an opposition-based
learning search operator, adaptive convergence factor and heuristic mutation with WOA
is promising for enhancing the performance and convergence characteristic of the WOA.
Further, it demonstrates that the MWOA is a competitive algorithm compared with other
methods and a better alternative for related optimization problems. Finally, as shown in
Figures 7 and 11, the harvesting time is generally proportional to the harvesting capacity.
However, the Type 6 harvester was very different from the other five types, which is why
the relative dispersion of small-sized fields resulted in the harvesters taking more traveling
time, thus reducing harvesting time.

6. Conclusions

This paper established a model for multi-type harvesters scheduling, and the problem
was solved by a proposed meta-heuristic method called the MWOA. The MWOA was
realized by making some improvements to the conventional WOA. An opposition-based
learning search operator and an adaptive convergence factor were added to the WOA to
improve the global convergence and the balance against local convergence. In addition,
by using heuristic mutation, the parents whose offspring were trapped in local optima
could provide helpful information leading to a promising search, and thus the variety in
the population and the ability of the MWOA algorithm to escape from a local optimum
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were effectively improved. Finally, the numerical simulation results showed that MWOA
had better performance in terms of solution quality and convergence speed compared with
other swarm-based algorithms for solving the multi-type harvesters scheduling problem.

With the fast development of agricultural collectives, intelligent scheduling of agricul-
tural machinery plays a very important role in maximizing user revenue. Furthermore, the
country’s increasing emphasis on environmental protection, energy saving and emission
reduction targets, promotes the ability of electric agricultural machinery to gradually enter
the market. Cooperation scheduling between diesel agricultural machinery and electric
agricultural machinery may lead to future work. Furthermore, to highlight the flexibility
and increase realism, complicated harvesters scheduling problems considering refueling,
recharging and breakdown should also be investigated.
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