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Abstract: The optical-mechanical system of a space camera is composed of several complex compo-
nents, and the effects of several factors (weight, gravity, modal frequency, temperature, etc.) on its
system performance need to be considered during ground tests, launch, and in-orbit operation. In
order to meet the system specifications of the optical camera system, the dimensional parameters of
the optical camera structure need to be optimized. There is a highly nonlinear functional relationship
between the dimensional parameters of the optical machine structure and the design indexes. The
traditional method takes a significant amount of time for finite element calculation and is less efficient.
In order to improve the optimization efficiency, a recurrent neural network prediction model based on
the Bayesian regularization algorithm is proposed in this paper, and the NSGA-II is used to globally
optimize multiple prediction objectives of the prediction model. The reflector of the space camera
is used as an example to predict the weight, first-order modal frequency, and gravitational mirror
deformation root mean square of the reflector, and to complete the lightweight design. The results
show that the prediction model established by BR-RNN-NSGA-II offers high prediction accuracy for
the design indexes of the reflector, which all reach over 99.6%, and BR-RNN-NSGA-II can complete
the multi-objective optimization search efficiently and accurately. This paper provides a new idea of
optimization of optical machine structure, which enriches the theory of complex structure design.

Keywords: reflector; recurrent neural network; NSGA-II; multi-objective optimization; optical ma-
chine structure; first-order modal frequency

1. Introduction

With the continuous development of remote sensing technology for Earth observation,
the requirements for lightweight space camera and imaging quality are increasing. As an
important part of the space camera optical system, the reflector greatly affects the imaging
quality of the space camera. The reflector design indexes considered in the design stage of
the reflector are the weight of the reflector, the mirror deformation of the reflector under
the influence of gravity, and the stiffness of the reflector.

The weight of the reflector has an impact on the launch cost of the rocket, considering
the launch capacity of the rocket. The reflector is affected by its own gravity during the
manufacturing and testing process on the ground, and when the reflector is launched into
the space operation orbit, the loss of gravity on the reflector will have an impact on the
imaging quality. In addition, the reflector is disturbed by the vibration of the external
environment during the rocket launch. In order to avoid the resonance phenomenon, the
designers need to ensure that the reflector features sufficient stiffness to resist external
disturbance. Therefore, it is a very important task to optimize the design of the reflector by
fully considering several design criteria of the reflector in the design phase.
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Researchers have carried out a significant amount of work on the optimal design of
the reflector of space cameras. Topology optimization methods have been widely used in
the optimal design of the reflector. Liu et al. completed a topology optimization design for
the lightweight primary mirror [1]. Liu et al. improved the imaging quality and reduced
the weight of the primary mirror through topology optimization [2]. Qu et al. integrate
topology optimization and parameter optimization methods for the lightweight design
of the reflector [3]. Shao et al. analyzed the effect of mirror dimension parameters on
mirror imaging and completed the lightweight optimization design of the mirror [4]. Liu
et al. used topology optimization and parameter optimization to optimize the mirror
surface deformation and weight of the reflection [5]. Li used topology optimization and
integration analysis for the lightweight design and mounting of a 760 mm diameter SiC
reflector [6]. In addition to the above-mentioned topology optimization methods, intelligent
algorithms and surrogate models have been applied to the optimal design of mechanical
structures in recent years [7–12]. Kihm et al. used genetic algorithm to optimize the
dimensional parameters of the mirror [13]. Wang et al. used the response surface method
to optimize the structure of the 2 m space reflector and reduced the mirror deformation
error [14]. Qin et al. developed a surrogate model with high prediction accuracy by
fusing particle swarm algorithm, genetic algorithm, and backpropagation neural network
for multi-aperture primary mirror [15]. Wang et al. used the neural network method to
establish the optimization objective prediction model of the primary mirror to optimize
the mirror deformation, stiffness, and mass of the primary mirror [16]. Ye et al. fused the
Kriging approximation model and multi-objective genetic algorithm to optimize the mass
and mirror accuracy of 2 m aperture SiC primary mirror [17].

The reflector itself is a complex mechanical structure (as shown in Figure 1), and there
are complex nonlinear functional relationships between multiple dimensional parameters
of the reflector and multiple optimization objectives. It is necessary to establish a prediction
model with high prediction accuracy for the optimization objectives of the reflector to
complete the optimal design of the reflector. The recurrent neural network (RNN) is suitable
for fitting the nonlinear relationship between input and output variables. To improve
the generalization ability of the recurrent neural network, the Bayesian regularization
algorithm can optimize the weights of the recurrent neural network, which improves the
generalization ability of the recurrent neural network [18–21]. In order to solve the multi-
objective optimization problem, Srinivas and Deb proposed the non-dominated sorting
genetic algorithm (NSGA) in 1995 [22]. Deb et al. proposed the non-dominated sorting
genetic algorithm-II (NSGA-II) in 2000, which improved on the shortcomings of NSGA
by adopting the fast non-dominated sorting approach, elitist approach, and parameter-
less sharing approach [23]. The NSGA-II method offers advantages of high efficiency
and accuracy in solving multi-objective optimization problems [23–25]. In this paper, we
propose a recurrent neural network based on the Bayesian regularization algorithm and
NSGA-II algorithm (BR-RNN-NSGA-II) to complete the optimal design of the reflector.
The rest of the paper is organized as follows. Section 2 discusses the theory of the recurrent
neural network based on the Bayesian regularization algorithm and the theory of the
NSGA-II method. Section 3 builds the prediction model of the optimization objective of the
reflector and then completes the multi-objective optimization design using the NSGA-II
method. Section 4 takes the reflector of a space camera as an example to complete the
optimization design of the reflector and verify the effectiveness of the method proposed in
this paper. Section 5 summarizes the research work of this paper and concludes.
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2. Fundamental Theory
2.1. RNN

RNN originated in the 1980s and 1990s [26–31]. RNN offers a strong nonlinear fitting
capability. RNN consists of an input layer, a hidden layer, and an output layer [32], where
the value of the hidden layer vector h is determined by the input layer x and the previous
moment hidden layer vector h, and the value of the output layer vector o is determined
by the hidden layer vector h. Figure 2 illustrates the basic structure of a recurrent neural
network. A schematic diagram of the recurrent neural network unfolding in chronological
order is shown in Figure 3. The computation process of the recurrent neural network from
the input layer to the output layer is shown in Equations (1)–(4).

at = U · xt+W· ht−1+b (1)

where at denotes the input matrix of the hidden layer at time t, U denotes the weight matrix
from the input layer to the hidden layer, xt denotes the input layer vector at time t, W
denotes the weight matrix from the hidden layer to the hidden layer, ht−1 denotes the
output vector of the hidden layer at moment t − 1, and b denotes the bias matrix from the
input layer to the hidden layer.

ht = f(a t) (2)

where ht denotes the output vector of the hidden layer at time t and f(·) denotes the
activation function from the input layer to the hidden layer.

ct = V ·ht+d (3)

where ct denotes the input matrix of the output layer, V denotes the weight matrix of the
hidden layer to the output layer, and d denotes the bias matrix of the output layer.

ot = g(c t) (4)

where ot denotes the output vector of the output layer at time t, and g(·) denotes the
activation function from the hidden layer to the output layer.
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2.2. BR

The loss function of RNN uses the mean squared difference function, as shown in
Equation (5). The Bayesian regularization algorithm [33] improves the generalization ability
of the RNN by adjusting the objective function of the RNN [34–36] so that the RNN avoids
overfitting. The loss function of RNN after the adjustment of the Bayesian regularization
algorithm is shown in Equation (6) [37,38].

Er =
1
m

m

∑
i=1

(
yi − oi

)2
(5)

where Er denotes the loss function of the RNN, m denotes the number of samples, yi

denotes the actual output of the ith sample, and oi denotes the predicted output of the ith
sample.

Eu = α·Er + β· Ep (6)

where Eu denotes the adjusted objective function, Ep denotes the squared and mean values
of each element in the weight matrix, and α and β denote the regularization parameters.

2.3. NSGA-II

Deb et al. proposed the NSGA method to solve multi-objective optimization prob-
lems [22], and it has been widely used in many problems. NSGA features disadvantages,
such as high computational complexity, lack of elite strategy, and the need to set shared
parameters. Therefore, Deb et al. proposed NSGA-II, which made some improvements to
NSGA and overcame its disadvantages [23]. NSGA-II computational process mainly in-
cludes the processes of population selection, crossover, variation, merging, non-dominated
ranking, and crowding degree calculation. The computational flow of NSGA-II is shown in
Figure 4.
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2.4. BR-RNN-NSGA-II

The structure of the reflector is complex, and it needs to optimize the multi-objective
optimal design of multiple reflector design indexes by combining multiple dimensional
parameters of itself. This paper proposes BR-RNN-NSGA-II to solve the reflector opti-
mization design problem. BR-RNN-NSGA-II can be divided into two steps. In the first
step, an RNN method based on the Bayesian regularization algorithm is used to train the
training samples to obtain a high-precision prediction model of reflector design indexes. In
the second step, NSGA-II is used to optimize the design of the main mirror indexes with
multiple objectives to obtain the best optimization results. BR-RNN-NSGA-II offers the
following advantages: (1) BR-RNN-NSGA-II can fit the nonlinear functional relationship
between the input and output variables of the reflector well; (2) the reflector design indexes
established by BR-RNN-NSGA-II offers high prediction accuracy; (3) BR-RNN-NSGA-II
avoids a large number of finite element calculations by establishing the prediction model
of reflector design indexes, which improves the optimization design efficiency and reduces
the time cost; (4) the introduction of the Bayesian regularization algorithm can improve the
generalization ability of RNN and avoid the phenomenon of RNN overfitting; (5) NSGA-II
offers the advantages of low computational complexity and low accuracy of optimization
results, low complexity, high accuracy of optimization results, and keeping the diversity of
populations. NSGA-II is very suitable for solving multi-objective optimization problems.

3. Optimal Design Model of Reflector

During the ground fabrication and test phase, the reflector image quality is affected by
the influence of gravity. In order to avoid resonance of the reflector during the launch, it is
necessary to ensure that the reflector features a certain stiffness to resist external interference.
In order to reduce the launch cost, the mass of the mirror needs to be reduced as much as
possible. In summary, the root mean square value of gravitational mirror deformation root
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mean square (GMDRMS) is selected to characterize the effect of gravity on the imaging
quality of the mirror, the first-order modal frequency (FMF) of the mirror is selected to
characterize the stiffness of the mirror, and mass is selected to characterize the mass of the
mirror. This paper uses GMDRMS, FMF, and mass as the optimization objectives of the
reflector.

3.1. Obtain Sample Data for the Reflector

The shape of the lightweight hole at the back of the reflector are triangular, quadri-
lateral, hexagonal, circular and scalloped. The triangular hole was chosen for this paper
because of its high stability compared to other shaped holes. There are five dimension
parameters to be optimized for the reflector, which are the height of the reflector (x1), the
spacing distance of the reinforcement (x2), the thickness of the reinforcement (x3), the wall
thickness of the outer ring of the reflector (x4) and the minimum thickness of the mirror
surface of the reflector (x5). The schematic diagram of the reflector structure is shown in
Figure 5.
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Firstly, five-dimension parameters of the reflector are extracted to build a parametric
3D model. Secondly, the GMDRMS, FMF, and mass of the reflector are calculated by the
finite element method. The schematic diagram of the reflector after dividing the grid is
shown in Figure 6. Thirdly, the Latin square sampling is used to sample the dimensional
parameters of the reflector to obtain several sets of sample input data. Finally, an integrated
analysis platform is built to calculate the output data corresponding to each set of sample
data of the reflector separately.
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3.2. Develop a Prediction Model for the Reflector Design Indexes

First, the sample data obtained in part 3.1 are randomly divided into training and
test sets according to a certain ratio. Next, the training set is trained using the first step
in BR-RNN-NSGA-II and validated with the test set to obtain a reflector design indexes
prediction model with high prediction accuracy.

3.3. Multi-Objective Optimization of the Reflector

First, the optimization objective of the reflector and the parameters to be optimized
are determined. Next, the boundary conditions and other constraints of the parameters to
be optimized are set. Finally, the second step of BR-RNN-NSGA-II is used to perform the
global optimization of the reflector design indexes and obtain the best optimization results.

3.4. Reflector Optimization Design Flow Chart

The flow chart of the optimized design of the reflector is shown in Figure 7.
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4. An Example of a Reflector

The reflector is an important part of the optical structure of the space camera, and it
is necessary to optimize the design of the reflector to meet the requirements of imaging
quality, stiffness, and light weight. BR-RNN-NSGA-II ensures that the reflector meets the
design requirements by optimizing the dimensional parameters of the reflector.

4.1. Preliminary Work for Reflector

The shape of the lightweight hole at the back of the reflector is adopted as a triangle,
and SiC is chosen as the reflector material. The finite element model of the reflector was
established using the parametric method. The design indexes of reflector are affected by
many independent dimensional parameters, which include the height of the reflector (x1),
the spacing distance of the reinforcement (x2), the thickness of the reinforcement (x3), the
wall thickness of the outer ring of the reflector (x4) and the minimum mirror thickness of
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the reflector (x5). The functional relationship between the input random variables and the
output response is shown in Equation (7)–(9).

F(x) = f(x 1, x2, x3, x4, x5) (7)

G(x) = g(x 1, x2, x3, x4, x5) (8)

M(x) = m(x 1, x2, x3, x4, x5) (9)

where F(x) denotes the objective function of the first-order modal frequency, G(x) de-
notes the objective function of the root mean square value of the gravitational specular
deformation and M(x) denotes the objective function of the mass.

4.2. Reflector Integration Analysis

The integrated analysis technique is mainly used to automate the process of performing
simulation calculations by interfacing the data flow between different design software,
which can save a significant amount of labor costs. In the process of obtaining samples
for the reflector, 587 sets of input data are first sampled by the Latin hypercube sampling
method for the five dimension parameters. Next, then the integrated analysis technique
is used to obtain the FMF and mass values for each set of samples. Finally, the GMDRMS
values are obtained by gravity field analysis for each set of samples. The cloud diagram of
the first-order modal frequency of the reflector and the cloud diagram of the gravity mirror
deformation are shown in Figures 8 and 9. Through the above steps, 587 sets of sample
data of the reflector regarding the input variables and output response can be reflected.
The range of dimensional parameter variations of the reflector mirror is shown in Table 1.
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Table 1. The range of variation of the dimensional parameters of the reflector.

Random Variables Max, 10−3 m Min, 10−3 m

x1 25 16
x2 70 20
x3 10 3
x4 15 5
x5 20 5



Machines 2022, 10, 63 9 of 15Machines 2022, 10, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 9. Cloud diagram of gravity mirror deformation. 

Table 1. The range of variation of the dimensional parameters of the reflector. 

Random Variables Max, 10−3 m Min, 10−3 m 
x1 25 16 
x2 70 20 
x3 10 3 
x4 15 5 
x5 20 5 

4.3. Build the Design Indexes Prediction Model 
First, the 587 sets of sample data of the reflector were randomly divided into 500 sets 

as the training set and the remaining 87 sets as the test set. Next, the training set was 
trained by BR-RNN-NSGA-II and validated with the data from the test set to obtain the 
prediction model of the reflector design indexes. The comparative effects of the prediction 
model on the predicted and real values of GMDRMS are shown in Figures 10 and 11. The 
results of the indexes for evaluating the prediction model on the prediction effect of 
GMDRMS are shown in Table 2. The evaluation indexes of the prediction model include 
mean absolute error (MAE), mean squared error (MSE), mean square root error (RMSE), 
and mean prediction accuracy (MPA). 

 
Figure 10. The comparison of the results of the GMDRMS training set. 

  

Figure 9. Cloud diagram of gravity mirror deformation.

4.3. Build the Design Indexes Prediction Model

First, the 587 sets of sample data of the reflector were randomly divided into 500 sets
as the training set and the remaining 87 sets as the test set. Next, the training set was
trained by BR-RNN-NSGA-II and validated with the data from the test set to obtain the
prediction model of the reflector design indexes. The comparative effects of the prediction
model on the predicted and real values of GMDRMS are shown in Figures 10 and 11.
The results of the indexes for evaluating the prediction model on the prediction effect of
GMDRMS are shown in Table 2. The evaluation indexes of the prediction model include
mean absolute error (MAE), mean squared error (MSE), mean square root error (RMSE),
and mean prediction accuracy (MPA).
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Table 2. Evaluation of the predictive effect of GMDRMS.

Evaluation Indicators MAE, 10−9 m MSE, 10−18 m2 RMSE, 10−9 m MPA

Training samples 0.0202 0.0007 0.0265 99.73%
Test samples 0.0291 0.0013 0.0367 99.60%
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Similarly, the comparison effects of the predicted and real values of the prediction
model on FMF are shown in Figures 12 and 13, and the results of the indexes for evaluating
the prediction effect of the prediction model on FMF are shown in Table 3. The comparative
effects of the prediction model on the predicted and real values of mass are shown in
Figures 14 and 15, and the results of the indexes for evaluating the prediction effect of the
prediction model on mass are shown in Table 4.
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Table 3. Evaluation of the predictive effect of FMF.

Evaluation Indicators MAE, Hz MSE, Hz2 RMSE, Hz MPA

Training samples 13.13 109.82 10.48 99.81%
Test samples 7.77 269.78 16.42 99.68%
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Figure 15. The comparison of the results of the Mass test set.

Table 4. Evaluation of the predictive effect of mass.

Evaluation Indicators MAE, Kg MSE, Kg2 RMSE, Kg MPA

Training samples 0.0058 5.5 × 10−5 0.0074 99.79%
Test samples 0.0095 1.4 × 10−4 0.0012 99.66%

4.4. Reflector Optimization

In order to ensure that the reflector is resistant to external interference, the reflector
needs to feature a certain degree of stiffness. The mass of the reflector needs to be as small
as possible in order to reduce the emission cost. In addition, the G(x) of the mirror needs
to be as small as possible. The mathematical model for the multi-objective optimal design
of the reflector is as follows.

Find x = (x1, x2, x3, x4, x5)
T

min − F(x), G(x), M(x)
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s.t.


16 × 10−3 m ≤ x1 ≤ 25 × 10−3 m
20 × 10−3 m ≤ x2 ≤ 70 × 10−3 m
3 × 10−3 m ≤ x3 ≤ 10 × 10−3 m
5 × 10−3 m ≤ x4 ≤ 15 × 10−3 m
5 × 10−3 m ≤ x5 ≤ 20 × 10−3 m

(10)

BR-RNN-NSGA-II is used to analyze the above mathematical model and obtain opti-
mal Pareto front solution sets, as shown in Figure 16. Combining with the actual require-
ments of the project, the set that satisfies G(x) ≤ λ/40 (λ = 6.32 × 10−7 m) and F(x) ≥
3000 Hz with the minimum M(x) is selected from the Pareto front solution set as the final
optimization result. The design solutions that meet the practical requirements are given in
Table 5.
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Table 5. Final optimized design results.

x1, m. x2, m x3, m x4, m x5, m GMDRMS, m FMF, Hz Mass, Kg

18.3 × 10−3 36.5 × 10−3 3.7 × 10−3 5.2 × 10−3 5.0 × 10−3 1.28 × 10−8 3142 1.85

4.5. Analysis of Optimization Results

The BR-RNN-NSGA-II proposed in this paper predicts the reflector design indexes well.
As shown in Figures 10 and 11 and in Table 2, the prediction performance of the training
and test sets of GMDRMS is excellent, with a mean absolute error of 2.02 × 10−11 m and
2.91 × 10−11 m, mean squared error of 7 × 10−22 m2 and 1.3 × 10−21 m2, root mean
squared error of 2.65 × 10−11 m and 3.67 × 10−11 m and mean prediction accuracy of
99.73% and 99.60%, respectively. As shown in Figures 12 and 13 and in Table 3, the
prediction performance of the training and test sets of FMF is excellent, with mean absolute
errors of 13.13 Hz and 7.77 Hz, mean square error of 109.82 Hz2 and 269.78 Hz2, root mean
square errors of 10.48 Hz and 16.42 Hz and mean prediction accuracy of 99.81% and 99.68%,
respectively. As shown in Figures 14 and 15 and in Table 4, the prediction performance of
the training and test sets of mass is excellent, with mean absolute error of 5.8 × 10−3 Kg
and 9.5 × 10−3 Kg, mean square error of 5.5 × 10−5 Kg2 and 1.4 × 10−4 Kg2, root mean
square error of 7.4 × 10−3 Kg and 1.2 × 10−3 Kg and mean prediction accuracy of 99.79%
and 99.66%, respectively. The mean prediction accuracy of both the training and test sets of
GMDRMS, FMF and mass is high, avoiding the overfitting phenomenon.

The mean prediction accuracy of the reflector design indexes prediction model estab-
lished in this paper was compared with other methods, as shown in Table 6. By comparing
the methods in Table 6, we found that the prediction performance of BR-RNN-NSGA-II is
better than other methods.
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Table 6. MPA comparison of reflector design indexes prediction methods.

Methods BR-RNN-NSGA-II GRNN SVM Random Forest

Training samples of GMDRMS 99.73% 82.02% 98.44% 96.04%
Test samples of GMDRMS 99.60% 81.76% 98.46% 94.76%
Training samples of FMF 99.81% 91.61% 99.31% 98.17%

Test samples of FMF 99.68% 91.34% 99.24% 97.35%
Training samples of mass 99.79% 88.43% 99.13% 97.74%

Test samples of mass 99.66% 88.51% 99.10% 96.96%

The results of the multi-objective optimal design of reflector by BR-RNN-NSGA-II
proposed in this paper are shown in Figure 16. BR-RNN-NSGA-II can complete multi-
objective optimization search efficiently and accurately, and we can see the distribution of
the optimal solution set, so as to provide a reference for the final selection of the design
solution. In addition, the comparison of the results and time spent between BR-RNN-NSGA-
II and the Monte Carlo method is shown in Table 7, which shows that BR-RNN-NSGA-II
outperforms the Monte Carlo method in terms of GMDRMS, FMF, mass and time spent.
Compared with [13,15], BR-RNN-NSGA-II offers higher prediction accuracy and better
search efficiency.

Table 7. Comparison of results and time spent between BR-RNN-NSGA-II and Monte Carlo method.

Optimization Methods GMDRMS, m FMF, Hz Mass, Kg Time Spent/h

Monte Carlo 1.29 × 10−8 3104 1.92 41.09
BR-RNN-NSGA-II 1.28 × 10−8 3142 1.85 0.04

5. Conclusions

This paper proposes BR-RNN-NSGA-II to optimize the design of the reflector structure
and verifies the effectiveness of the method by an example. The work reported in this paper
is summarized as follows.

(1) BR-RNN-NSGA-II uses the RNN method to fit the nonlinear function between the
dimensional parameters of the reflector structure and the design indexes.

(2) BR-RNN-NSGA-II incorporates the BR algorithm into the RNN method, which can
improve the generalization ability of the RNN method and avoid the phenomenon of
overfitting.

(3) By comparing with other methods, BR-RNN-NSGA-II offers the highest mean predic-
tion accuracy of 99.60% or more for the reflector design indexes.

(4) BR-RNN-NSGA-II applies NSGA-II to optimize the multi-objective design of multiple
design indexes of the reflector efficiently and accurately.

(5) BR-RNN-NSGA-II saves a significant amount of finite element calculation time and
improves the optimization efficiency by optimizing the design of the reflector.

This paper provides an applicable method for the optimal design of space camera
mirrors. In this paper, BR-RNN-NSGA-II is proposed for the optimal design of reflector
design indexes. BR-RNN-NSGA-II features high prediction accuracy, strong generalization
ability and efficient multi-objective optimization, which can avoid a large number of finite
element calculations. It is hoped that BR-RNN-NSGA-II can play a significant role in the
optimal design of reflectors for large-aperture multi-physical field analysis. In the future,
the influence of changes in reflector geometry parameters on the performance of optical
system will be explored in depth.
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