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Abstract: In order to recover and utilize the potential energy of mining trucks efficiently, this paper
proposes a nested optimization method of a novel energy storage system. By analyzing the multi-
objective optimization problem of the oil-circulating hydro-pneumatic energy storage system, a
nested optimization method based on the advanced adaptive Metamodel-based global optimization
algorithm is carried out. Research shows that this method only requires a short time to solve the
complex nonlinear hybrid optimization problem and achieves better results. The optimized energy
storage system has higher system efficiency, energy density, and volume utilization rate, thus ob-
taining a smaller system volume and weight. Verified by the bench experiment of its powertrain,
the hydro-pneumatic hybrid mining truck with the optimized energy storage system significantly
reduces its fuel consumption and CO; emission. Thus, it lays the foundation for the practical appli-
cation of hydro-pneumatic hybrid mining trucks.

Keywords: hybrid mining truck; hydro-pneumatic layout; energy storage system (EES); oil-circu-
lating layout; Metamodel-based algorithm; multi-objective optimization

1. Introduction

Electric-drive mining trucks have heavy loading capacity and high transportation
efficiencies [1], as shown in Figure 1. They are widely used in large-scale open-pit mines
and construction sites, as shown in Figure 2. Unlike on-road trucks, off-road mining
trucks work at fixed routes [2]. They are usually driven 4-5 km uphill along a slope of
9%-12% grade with a full load, and then driven downhill without load [3]. Since they
have enormous curb weight, the recoverable potential energy is substantial when going
downhill [4]. In the downhill process, the mechanical braking energy is transformed into
regenerative electricity by traction motors, and then fed into the braking resistance to gen-
erate heat, which dissipates in the air [5]. It is a waste of energy. Thus, it is important to
develop a feasible energy storage system (ESS) that could recover this energy in the down-
hill process, and then reuse it in the uphill process [6]. It could significantly reduce fuel
consumption and CO, emission in the mining industry.

There is already some research on hybrid mining trucks with battery ESSs aiming to
recover this energy. Ehsan et al. [7] summarize the current research and applications of
hybrid mining trucks. The study points out that the ESS for hybrid mining trucks requires
a large capacity. Thus, it could recover more potential energy, especially in cases of heavy
curb weight, long-distance and large slopes. Tim et al. [8] carry out a prototype test of a
modified hybrid mining truck. This experiment concludes that the current battery tech-
nology is the main obstacle for practical applications. It results from the high cost and
short lifespan of battery ESSs [9].

Machines 2022, 10, 22. https://doi.org/10.3390/machines10010022

www.mdpi.com/journal/machines



Machines 2022, 10, 22

2 of 33

Besides, open-pit mines in China are mainly distributed in high latitudes, where the
seasonal temperatures vary large [10]. In some of them, the temperatures in winter can
reach —30 °C or even —40 °C. The low temperature will reduce the battery performance
and affect the recovery of potential energy [11]. Meanwhile, high-power charging or dis-
charging at low temperatures will accelerate the degradation of the battery [12], resulting
in a high cost of the hybrid mining truck with a battery ESS [13].

Figure 2. Mining trucks working at an open-pit mine.

Considering the shortcomings of the current battery, Chun et al. [15] explore alterna-
tive technique routes beyond battery ESS. They propose a comparative study of hybrid
mining trucks with different ESSs. It includes battery ESS, hydraulic ESS, supercapacitor
ESS, and compressed-air ESS. The paper concludes that the hybrid mining trucks with
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hydraulic ESS and compressed-air ESS have better economic benefits than battery ESS.
Moreover, based on the current hydraulic and compressed-air ESS technologies, the oil-
circulating hydro-pneumatic energy storage system (OHESS) has been carried out in re-
cent studies [16,17]. The results show that the hybrid mining trucks with OHESS could
achieve a better performance for potential energy recovery than regular hydraulic or com-
pressed-air ESSs.

Despite OHESS’s advantages, its complex structure, discontinuous operation
method, and multiple dynamic heat transfer process, all lead to a complex nonlinear hy-
brid system [17]. For the optimal structural design to increase the system efficiency and
energy density, it results in a complex black-box optimization problem. So, an efficient
optimization method is needed. Furthermore, for most ESSs, the structure and energy
management strategy (EMS) are coupled together [18]. The structure optimization is
based on the corresponding optimal EMS, and the EMS optimization should be founded
on the corresponding optimal structure. So, the overall optimization should consider both
the optimal design and optimal control at the same time and optimize the two together to
obtain the optimal scheme of OHESS. Thus, a nested optimization method with the two
is required.

Aiming at the coupling optimization problem of the structure and EMS of ESS, some
scholars establish a multi-objective optimization analysis model and obtain the normal-
ized optimization objectives. A nested double-layer optimization method is adopted, with
the EMS in the inner layer, and the structure in the outer layer, to obtain the optimal
scheme of the ESS. Song et al. [19] carried out a multi-objective optimization framework
for the hybrid ESS of battery and supercapacitor, and obtained the trade-off solution of
two contradictory objectives on the Pareto front. Hung et al. [20] propose a nested optimi-
zation method for hybrid ESSs. It takes the maximum energy storage capacity and mini-
mum fuel consumption as the two optimization goals, through a nested optimization
method, obtains an optimal scheme. The results show that the scheme could effectively
reduce fuel consumption and CO, emission at a minimal system cost.

For complex nonlinear optimization problems, the appropriate optimization algo-
rithm that could search out the global optimal solution quickly and efficiently is the key
issue [21]. Genetic algorithm (GA), as a classical global optimization algorithm, has been
widely used in many applications [22]. GA simulates the natural evolution and selection
process [23]. It has the advantages of a simple process and strong scalability [24], and can
be applied to gray-box and even black-box problems [25]. However, GA iteratively
searches for the optimal solution by populations, which significantly increases the number
of function evaluations (NFE), resulting in slow convergence and large computation costs
[26]. Thus, the Metamodel-based global optimization method is proposed to solve the
complex nonlinear optimization problems [27]. By integrating the Metamodel into the
searching process, it significantly reduces the NFE of the complex nonlinear functions and
concentrates on the most promising region of the global optimum [28]. As an efficient
Metamodel-based algorithm, the adaptive Metamodel-based global optimization
(AMGO) has been developed in recent research [29]. It is designed for solving highly non-
linear hybrid black-box optimization problems like OHESS. Through the adaptive hybrid
Metamodel of kriging and augmented radial basis function, it could intelligently deter-
mine the most suitable Metamodel function, so as to solve the optimization problem effi-
ciently.

The traditional optimization methods for ESSs fail to solve the complex nonlinear
optimization problem of OHESS. In this paper, a nested optimization method of OHESS
based on the advanced AMGO algorithm is presented for the potential energy recovery
of hybrid mining trucks. This paper brings contributions in the field of mining trucks,
which are shown as follows:

1. The powertrain configuration of the hydro-pneumatic hybrid electric-drive mining
truck with OHESS is carried out and analyzed, as a way to recover the potential en-
ergy of mining trucks when going downbhill;
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2. The experimental platform of the mining truck’s powertrain is developed. By this
means, the actual recovery power in the downhill process and fuel consumption in
the uphill process could be accurately measured for further optimization and analy-
sis;

3. Anested optimization method is put forward for the OHESS of hybrid mining trucks.
Based on the advanced AMGO algorithm, the complex nonlinear hybrid optimiza-
tion problem is solved with a lower computation cost. Compared with the multi-
objective comprehensive scheme, better optimization results of OHESS are obtained
by the nested method, which could significantly reduce the fuel consumption and
the corresponding CO, emission of mining trucks.

The next sections are organized as follows: Section 2 introduces the powertrain con-
figuration of the hydro-pneumatic hybrid electric-drive mining truck, and the structure,
operation method, and characteristics of OHESS. Section 3 presents the working cycle test
of the mining truck and the bench experiment of its powertrain. Section 4 details the anal-
ysis of the multi-objective optimization problem of OHESS. Section 5 carries out the nested
optimization method of OHESS and analyzes the results. Section 6 draws conclusions.

2. Hydro-Pneumatic Hybrid Electric-Drive Mining Truck

This section introduces the powertrain configuration of the hydro-pneumatic hybrid
electric-drive mining truck, and the structure, operation method, and characteristics of
OHESS.

2.1. Powertrain of the Hybrid Electric-Drive Mining Truck

The powertrain of regular electric-drive mining trucks is composed of engine, gener-
ator, traction motors, braking resistance, and electric power converters, as shown in Fig-
ure 3. In the uphill process, the engine outputs mechanical power into the generator,
which is transformed into alternating electric power. After the rectification and inversion,
the retransformed alternating electric power drives the traction motors to provide the trac-
tion torque that the truck needs. While in the downbhill process, the traction motors pro-
vide regenerative brake torque. The braking resistance transforms the regenerative elec-
tricity into heat that dissipates in the air, while the engine is idling to keep the cooling and
hydraulic systems functioning.
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Figure 3. Powertrain of regular electric-drive mining trucks.

Different from the regular powertrain configuration shown in Figure 3, the power-
train of the hydro-pneumatic hybrid electric-drive mining truck adopts OHESS to recover
the downhill potential energy rather than dissipate it, as shown in Figure 4. Thus, most
braking resistance is omitted, leaving only some of it for special cases. In the downhill
process, the traction motors transform the mechanical braking power into alternating elec-
tric power. After the rectification and inversion, the retransformed alternating electric
power drives the generator (works at motor mode) and then is transformed to mechanical
power again. As the generator is mechanically connected with the engine that connects
the OHESS via a transfer case, part of the mechanical energy reversely drags the engine
without fuel injection to keep the auxiliary systems functioning, and the rest is recovered
by OHESS. Since the lifting pump is not working in this process and has a rated power
larger than the reverse dragging power, it can be used as an energy conversion device of
OHESS. While in the uphill process, the power flow is similar to that in the powertrain of
regular mining trucks. The difference lies in the power source. In the hybrid powertrain,
the engine and OHESS jointly output mechanical power rather than the sole engine. The
engine provides the main required traction power, and OHESS supplies the rest.
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Figure 4. Powertrain of the hydro-pneumatic hybrid electric-drive mining truck.

2.2. Oil-Circulating Hydro-Pneumatic Energy Storage System

This section presents the system structure of OHESS and details its operation
method. In addition, its energy storage characteristics are analyzed.

Different from regular hydraulic ESSs, the OHESS, combining the layouts of hydrau-
lic and compressed-air ESSs, is a novel compact hydro-pneumatic ESS that only needs a
small proportion of hydraulic oil [16]. As a special pressure ESS with the oil-circulating
layout, the OHESS has plural accumulators rather than a sole one and the accumulator
number could be arbitrary. The operation method of OHESS is shown in Figure 5, which
is a 3-accumulator one. Figure 5a presents the recovering stage I when the piston in the
No.1 cylinder is running right. The nitrogen is compressed into the nitrogen tank while
the hydraulic oil enters the No.1 cylinder. Figure 5b presents the recovering stage Il when
the piston in the No.2 cylinder is running right. The process within is similar to the No.1
cylinder in the recovering stage I, while now the air enters the No.1 cylinder and its piston
is running left. Figure 5c presents the recovering stage III, which is similar to stage II. After
the three recovering stages, all nitrogen is compressed into the nitrogen tank and vice
versa for the releasing stages.
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Figure 5. Operation method of OHESS: (a) Recovering stage I (Releasing stage III); (b) Recovering
II (Releasing stage II); (c) Recovering stage III (Releasing stage I) [17].

The regular hydraulic ESS and the OHESS with the same energy storage capacity
were compared in a previous work [17], which indicates that the OHESS requires a lower
amount of hydraulic oil and system installation space. Figure 6 presents the system and
oil volume ratios of OHESS to regular hydraulic ESS. It shows that the OHESS with ten
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accumulators accounts for only 10% of oil and 64.78% of installation space of the regular

counterpart’s. Therefore, it is an appropriate ESS for the potential energy recovery of hy-
brid mining trucks.

120 ~

100 - m Oil volume

m System volume

Volume ratio (%)

1 2 3 4 5 6 7 8 9 10
Cylinder Number

Figure 6. The system and oil volume ratio of OHESS to regular hydraulic ESS [17].

3. Working Cycle Test and Bench Experiment of the Mining Truck

Aiming at the hybrid electric-drive mining truck with OHESS introduced in Section
2, this section presents the working cycle test of the mining truck and the bench experi-
ment of its powertrain for further optimization research.

3.1. Working Cycle Test of the Mining Truck

Electric-drive mining trucks usually work at fixed routes. Their typical working cycle
is shown in Figure 7, including the following four stages:

1. A-B: The mining truck is started at the loading point with a full load, and driven
uphill to the unloading point;

2. B-C: The mining truck stops, and unloads the ores when the lifting pump is function-
ing;

3. C-D: After the unloading process, the mining truck is started without load, and is
driven downbhill to the loading point. In this stage, the traction motors provide re-
generative brake torque and the braking resistance transform the regenerative elec-
tricity into heat, when the engine is idling to keep the cooling and hydraulic systems
functioning;

4. D-A: The mining truck stops and waits for the ores to be loaded again.

B%El ol C

Figure 7. The transportation route of the mining truck [2].
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As shown in Figure 8, our team took the XDE110 of XCMG, a 110 t electric-drive
mining truck, as the experimental target vehicle, whose specifications are shown in Table
1[7]. Then they carried out its working cycle test on a route of an open-pit mine in Heihe,
China, whose results are presented in Figure 9. The parameters of the actual working cycle
are listed in Table 1.

(©

Figure 8. Working cycle test of the mining truck: (a) Loading process of the mining truck; (b) Uphill
process with full load; (¢) Downbhill process without load.

In the working cycle test, the DC bus voltage and current of the electric-drive mining
truck were measured. So that the electric braking and traction power could be calculated
for further simulation and experiments, as shown in Figure 10.
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Table 1. Parameters in Working Cycle Test of the Mining Truck.
Type Parameter Value  Unit Parameter Value  Unit
Rated power of engine 895 kW Rolling resistance coefficient 0.02 1
Reverse dragging power 40 kW Gravitational acceleration 9.8 m/s
Unloaded mas 80,000 kg Air resistance coefficient 1 1
Vehicle Loaded mass 190,000 kg Rated power of generator 865 kW
specifications Rolling radius 1.37 m Rated current of generator 1709 A
Front face area 34.8 m? Rated power of traction motor 345 kW
Air density 1.23 kg/m3 Rated current of traction motor 650 A
Reducer efficiency 95 % Rated voltage of DC bus 500 v
Total time 2480 s Total length 10.861 km
Working cycle Uphill time 1240 s Maximum speed 30 km/h
parameters Downbhill time 1070 s Average speed 8.822  km/h
Unloading time 170 s Maximum slope 0.039 1
30 T T
25 =1
g 20 ﬂ
g
< 151 4
< 15
2
A 10 =
5 —
0
0.04
0.02
&
o 0
n
-0.02
—0.04
120
100 - .
80 .
g 60 [ T
2
40 .
20 - .
0 1 1 1 1

500 1000

Time (s)

1500 2000

Figure 9. Actual working cycle of the target mining truck.
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Figure 10. The DC bus electric power of the electric-drive mining truck.

3.2. Bench Experiment of the Mining Truck’s Powertrain

To measure the actual recovery power of the OHESS of the mining truck in the down-
hill process and analyze the influence of the EMS on the vehicle fuel consumption in the
uphill process, our team built an experimental platform for the powertrain of the target
electric-drive mining truck. The structural diagram of the experiment is shown in Figure
11.

In this platform, the engine-generator set is the same model as the one in the target
vehicle XDE110 electric-drive mining truck of XCMG, as shown in Figure 12a. A 200 kW
load motor is adopted to simulate the lifting pump’s load and hydraulic motor’s traction
power. In order to realize the reversely drag control of the engine, our team developed
the generator driving control system for electric-drive mining trucks, as shown in Figure
12b. For the sensor signal acquisition and control signal output in the experiment, the
SCADAS signal acquisition system of LMS is adopted, as shown in Figure 12c.
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Figure 11. Bench experiment of the mining truck’s powertrain.

In the working cycle test of the electric-drive mining truck presented in the previous
section, the DC bus voltage and current were measured and the electric braking and trac-
tion power was calculated. Therefore, to meet the requirements of the actual working con-
ditions, the electric power in the bench experiment should be equal to the actual data

shown in Figure 10.
=]
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Figure 12. The powertrain experimental platform of the electric-drive mining truck: (a) The overall
powertrain experimental platform; (b) The generator driving control system; (c) The SCADAS signal
acquisition system of LMS.

In the downhill process, the engine is reversely dragged by the generator and the
surplus mechanical power is recovered and converted into pressure energy by OHESS.
While in the bench experiment, the actual electric braking power at the DC bus, as shown
in Figure 10 after 1410 s, is the input power of the self-developed generator driving control
system. Thus, the generator could reversely drag the engine, and the surplus mechanical
power inputs into the load motor that simulates the lifting pump load through the transfer
case. Meanwhile, the torque-speed sensor connected to the load motor measures the re-
covery power of OHESS and it is the exact input recovery power of the OHESS model for
the following optimization study.

In the uphill process, the engine and OHESS jointly output mechanical power, which
is then driving the wheel through the electric transmission system. Based on the following
optimization study in the next sections, the output traction power of OHESS is obtained.
Thus, in the bench experiment, the load motor controlled by the frequency converter out-
puts this traction power to simulate the hydraulic motor of OHESS. By this means, the
fuel consumption and the corresponding CO, emission under different optimization
schemes are obtained through the fuel gauge.

Considering that the actual joint output power of the engine and OHESS (simulated
by the load motor) in the bench experiment may not match the actual required electric
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traction power shown in Figure 10, closed-loop control is adopted based on the engine
governor signal under the corresponding optimized EMS presented in the next sections.

4. Analysis of the Multi-Objective Optimization Problem

Based on the working cycle test of the mining truck and the bench experiment of its
powertrain presented in Section 3, this section details the analysis of the multi-objective
optimization problem of OHESS and obtains the global normalized optimization objective
for further research.

4.1. Multi-Objective Optimization Problem

Energy density E and system efficiency 7, are the two main design objectives of
OHESS. However, according to previous research [17], the two objectives are negatively
correlated due to the heat effect of OHESS. Therefore, it is necessary to analyze the corre-
lation between the two and select the appropriate weight factors to normalize them as a
single objective for the subsequent structural optimization [30]. Meanwhile, considering
that the mining trucks work with large environmental temperature differences, the impact
of the seasonal temperature change on OHESS’s performance should be taken into ac-
count.

For the convenience of the following research, the storage volume per unit energy Jg
and the energy loss rate J. are adopted as the indicator of E and 7, respectively, as
shown in Equations (1) and (2):

Je= 1)

ST

Je=1-—nc. (2)

Although the two objectives are expected to be as small as possible, they are nega-
tively correlated. Thus, the appropriate weight factors (w;, w,) are needed to form a nor-
malized objective J shown in Equation (3).

J =wifg +wy/. 3)

The design space of OHESS 1 includes three optimization variables, which are listed
as follows:

X = (Pmins N Nat)T €, 4)

where X is the optimization vector, p,,, is the initial system pressure, N, is the num-
ber of accumulators, N, is the number of nitrogen tanks.

To make full use of the volume of OHESS and realize “fully charge” and “fully dis-
charge”, the pp;, in Q is set from 11 MPa to 17 MPa, which corresponds to the upper
limit of the compression ratio range (<2.45) of the containers with the maximum pressure
of 42 MPa and a certain redundancy; To achieve the complete recovery of the downhill
potential energy of mining trucks, the total internal volume of all accumulators is deter-
mined to be 1.7284 m?; as shown in Figure 6, with a certain total volume of accumulators,
more accumulators mean smaller volume and weight of the hydraulic oil and the corre-
sponding oil tank, which reduces the overall fuel consumption of the mining truck, thus
the number of accumulators is selected from 8 to 14. According to the above total internal
volume of all accumulators and the compression ratio range, the number of nitrogen tanks
can be set from 4 to 8, as shown in Equation (5).

Pmin € {11:12;13114,15.16,17}
Q=<{N, €{8910,11,12,13,14} . (5)
N, € {4,5,6,7,8}

The main research steps in this section are as follows:
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1. Selecta ¥ from the Q as the structural parameters;

The optimal EMS of the OHESS with the selected structural parameters is obtained
by using the Dynamic Programming (DP) algorithm;

3. Based on the model of OHESS established in the previous work [17], taking the
downhill recovery power measured in the bench experiment in Section 3.2 as the
charging power, and the output traction power of the OHESS under the correspond-
ing optimal EMS as the discharging power, the J; and J; of the OHESS are ob-
tained.;

4.  After calculating each X in Q, compare and analyze all the (J, J¢) in Pareto solution
set;

5. Combining the ambient temperature comprehensive model, the global storage vol-
ume per unitenergy J; and the global energy loss rate ] corresponding to different
% are obtained;

6. Consider the influence of different ambient temperatures on the Pareto optimal so-
lution, select the appropriate weight factors (w;, w,), and form the global normalized
objective J.

4.2. Energy Management Strategy

This section analyzes the EMS of the hybrid mining truck with OHESS and estab-
lishes the corresponding EMS optimization method based on the DP algorithm.

To reduce the fuel consumption and the corresponding CO, emission of the hybrid
mining truck, the energy of OHESS stored in the downhill process should be released
when going uphill to provide part of the required traction power, so as to reduce the out-
put power of the engine. Therefore, it is necessary to analyze the factors affecting the fuel
consumption of the truck and determine the output power distribution strategy of the
engine and OHESS in the uphill process.

Concerning the powertrain of the hybrid mining truck with OHESS, the main factors
affecting the fuel consumption are the fuel consumption rate of the engine, the efficiency
of the electric transmission system, and the system efficiency of OHESS.

Based on the bench experiment in Section 3.2, the fuel consumption rate of the engine
is obtained and shown in Figure 13. It shows that the engine has the highest efficiency at
intermediate speed and load. Thus, the engine should work in the high-efficiency area,
and avoid the low speed and load area, especially the idling area. Meanwhile, within the
whole working area of the engine, it shall be controlled on the curve of the lowest fuel
consumption rate. Considering that the engine and the generator are connected, the gen-
erator should also work in its high-efficiency area, whose driving efficiency curve is ob-
tained by the bench test and shown in Figure 14.
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Figure 14. Driving efficiency of the generator.

For the efficiency of the electric-drive system, besides the aforementioned generator
efficiency, the efficiency of the rectifier, inverter and traction motor should also be
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considered. In the working cycle test of the mining truck presented in Section 3.1, the
transfer efficiency of the electric power through the rectifier and inverter is measured and
about 95%. Based on the bench experiment in Section 3.2, the efficiency of the traction
motor is measured and shown in Figure 15.

0]
o
L

efficiency/%
(o]
o

40 |

4000
2000

0 0 s,peed'\"m\m

Figure 15. Efficiency of the traction motor.

For the system efficiency of OHESS, it can only be described as a black-box system
since there are many determinants and they are highly nonlinear. Therefore, based on the
model of OHESS [17], the system efficiency can be obtained through simulation analysis
under a certain ¥ and the corresponding optimal EMS. Moreover, to avoid heat accumu-
lation after working cycles, which leads to overheating, the OHESS only outputs the trac-
tion power but does not accept the input engine power during the uphill process in the
following study.

The DP is a discrete global optimization algorithm that is widely applied to solve the
problem of EMS of hybrid vehicles. In terms of the design stage of the hybrid mining
truck, we need to use this method to obtain the optimal solution for the OHESS optimiza-
tion problem, and to evaluate the other results based on this benchmark. DP algorithm
transforms a large optimization problem into a group of interrelated sub-problems of the
same type, so it can use one certain decision-making method to solve the sub-problems
more efficiently. The optimization results of the previously solved sub-problem are used
to calculate the next sub-problem in turn. When the last sub-problem obtains the optimal
solution, the one optimal solution of the whole problem is obtained. Its process is shown
in Figure 16.

Therefore, based on the above factor analysis, the DP algorithm is adopted to obtain
the optimal EMS of the hybrid mining truck. The fuel consumption of hybrid mining truck
Uma is the optimization objective, which can be expressed in Equation (6); the required
operation conditions of the powertrain are taken as constraints, namely the flow limit of
lifting pump and hydraulic motor ¢q,,q,, the pressure limit of the accumulators and nitro-
gen tanks ppqy, the temperature limit of the hydraulic system T,,,,, and the power limit
of the cooling system Py4teco01, @s shown in Equation (7); By superimposing the fuel con-
sumption of each time step, the total fuel consumption in the whole working cycle period
t is obtained [31], in which the scheme with the minimum value is taken as the optimal
EMS.
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t
MinUpg = " Alpa(K) (6)
k=1

(Pdem(k) = Pg(k) + P (k) kel1,t]

I max[T4, (k), T3, (K), TEY (k)] < Tax Kk € [1,¢]
t. 4 p(k) < Pmax k€ [1,t], )

I1q(k)] < Gmax k €[1,t]

Pcool(k) < Pratecool ke [1! t]

where Py, is the required input or output power of the power assembly, Py is the en-
gine output power or reverse dragging input power, P, is the input or output power of
OHESS, Ty, is the temperature of pressured hydraulic oil, T, is the temperature of non-
pressured hydraulic oil, Tar is the temperature of pipeline oil, p is the system pressure
of OHESS, q is the flow of hfting pump or hydraulic motor, P, is the cooling power.

Take the nitrogen volume of OHESS V., as the state variable of DP, and the flow of
lifting pump and hydraulic motor q as the decision variable. The relationship between
them can be expressed in Equation (8) [32].

Vea(k) = Vea(k — 1) + q(k — 1). (8)

Based on the working cycle test data of rectifier efficiency and the generator efficiency
shown in Figure 14, Py, (k) can be calculated by the demanded electric power on the DC
bus in the uphill process shown in Figure 10 and P,;,.(k) can be obtained by the OHESS
model [17] and the decision variable q of DP, thus Pg(k) shall be calculated by Equation
(7). Then, according to the engine fuel consumption rate shown in Figure 13, the U4 of
the power assembly can be obtained. The parameters of the DP algorithm are shown in

Table 2.

Table 2. Parameters of the DP algorithm.

Parameter Value Unit
t 2480 s
Tinax 56 °C
Pmax 42 MPa
Qmax 150 L/min

30 kW

Pratecool
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4.3. Pareto Optimal Solution

Based on the above analysis, this section compares and analyzes the Jz and J. cor-
responding to different X in Pareto solution set.

There are 245 ¥ in the design space Q. Each ¥ needs to go through the simulating
calculation of the DP and OHESS model. After calculating all the X, draw each (Jg, J¢)
together, as shown in Figure 17. It shows the relationship between energy density E and
system efficiency 7, of OHESS.

751
%  Solution
74+
g73 3
3
= 72+
wn
w2
S
>\71 r
on
g
* ** *
*
691 :E* **g:*e**

68 1 1 1 1 1
0.155 0.16 0.165 0.17 0.175 0.18 0.185
Storage Volume Per Unit Energy (L/Wh)

Figure 17. Scheme results of OHESS.

Figure 17 shows that the J; and j; are two contradictory objectives. When one
reaches the ideal value, the other will deteriorate, that is, the E is inversely proportional
tothe n, of OHESS. The reason is that E mainly depends on the number of accumulators
Ngc. As shown in Figure 6, more accumulators mean a smaller volume and weight of the
hydraulic oil and the corresponding oil tank, which reduces the overall fuel consumption
of the hybrid mining truck. However, according to previous research [17], increasing N,
will degrade the thermal process and reduce the 7, due to the heat effect of OHESS. Be-
sides, although more nitrogen tanks will reduce E, it will avoid system overheating and
improve the 7¢. In all the 245 schemes in (), J; ranges from 0.1577 L/Wh to 0.1840 L/Wh,
and J; ranges from 68.92% to 74.91%.

From the 245 schemes shown in Figure 17, 35 schemes close to the minimum values
of Jp and J; at the same time are selected to form the Pareto front, as shown in Figure 18.
To choose the optimal solution from the Pareto front, two schemes are selected: #1 with
the smallest J; And #2 with the smallest .. Table 3 lists the optimization variables, ob-
jectives, and other main parameters corresponding to the two schemes, where p,,;, of the
two schemes are the same and #1 has more accumulators, lesser nitrogen tanks, smaller
system volume Vs and weight mg, and lower 7,. Whereas #2 has lesser accumulators,
moderate nitrogen tanks, larger Vs and mg, and higher 7.
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Figure 18. Pareto optimal solution at 0 °C.
Table 3. Two schemes on the Pareto front.

Parameter Pmin N N JE Jc E ¢ Vs mg
#1 13 14 8 0.1577 74.90 0.8423 25.10 3894.07 2932.15
#2 12 4 6 0.1768 68.96 0.8232 31.04 4475.36 3469.75

Unit MPa 1 1 L/Wh % Wh/L % L kg

Since Jg and J; of the actual OHESS is between #1 and #2, the appropriate weight
factors (wy, w;) should be selected to normalize the two objectives. Considering that the
ambient temperature significantly affects E and n. of OHESS [17], it should also be
taken into account.

4.4. Ambient Temperature Comprehensive Model

In practical application, the performance of OHESS will be affected by ambient tem-
perature. It is because the density of high-pressure nitrogen with the same pressure has a
distinct density in different temperatures, thus having various stored pressure energy. An
optimal parameter scheme in one temperature may not be optimal in another. For open-
pit mines in high latitudes, the seasonal temperatures vary greatly. However, the mining
trucks need to work continuously for 365 days in the open-air environment. Therefore,
the influence of the ambient temperature on the performance of OHESS should be consid-
ered. The ambient temperature comprehensive model is established in this section.

An open-pit mine in Heihe, China with a large seasonal temperature difference is
selected as the application environment, whose temperature is shown in Figure 19 [33].
Due to the massive data of the daily average temperatures throughout the year, it is di-
vided into six intervals to simplify the optimization calculation, that is, below -25 °C, from
-25°C to -15 °C, from -15 °C to -5 °C, from -5 °C to 5 °C, from 5 °C to 15 °C, and from 15
°C to 25 °C. The numbers of the actual temperatures that fall in each interval are recorded
as the ambient temperature weight b, namely, b=3°, b=2°, b=1° b°, b° and b?°. There-
fore, the global storage volume per unit energy J; and the energy loss rate J; can be cal-
culated by Equations (9) and (10).
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Figure 19. Annual ambient temperature of Heihe, China in 2019 [33].

4.5. Transformed Single-Objective Optimization

Based on the above analysis, this section analyzes the two contradictory objectives,
selects the appropriate weight factors, and obtains the global normalized optimization
objective.

Figure 19 shows that the seasonal ambient temperature varies greatly for mining
trucks. The maximum daily average temperature in summer is about 25 °C, while the
minimum one in winter can even reach —-30 °C. To more comprehensively analyze the
OHESS performance in the annual working cycle of hybrid mining trucks, and hence ob-
tain the appropriate multi-objective normalized weight factors, the Pareto fronts at =30 °C
and 25 °C are compared with it at 0 °C, as shown in Figure 20.
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Figure 20. Pareto optimal solutions at different temperatures.

It can be seen that when the ambient temperature is 0 °C, scheme #1 with the mini-
mum Jg, and #2 with the minimum J., both have smaller J; than those at =30 °C and 25
°C. This is because the p,;, is calibrated at 0 °C. Whereas the nitrogen at -30 °C has the
same number of moles, which leads to a lower p,;;,. This p;;;;, does not match the opti-
mal volume of accumulator and nitrogen tanks, hence affecting the E. The situation is
similar when the ambient temperature is 25 °C. Due to the fact that the OHESS with a
selected scheme will work throughout the year, choose the p,,;, calibrated at 0 °C could
increase the E.

Since the J. at—30 °Cis significantly higher than that at 0 °C and 25 °C, which affects
the overall fuel consumption of hybrid mining trucks, it should be ensured that the se-
lected scheme has a reasonable 7, under low temperatures. Therefore, the weight factor
w, corresponding to J. is selected as 0.641, w; corresponding to J¢ is selected as 0.359.
The scheme of the normalized objective at different temperatures is shown in the intersec-
tion of the black dotted line and Pareto fronts in Figure 20. Combining with the ambient
temperature comprehensive model established in Section 4.4, the global normalized opti-
mization objective ], which is calculated by Equations (3), (9) and (10), can be expressed
as:

J = wijg + wa.. (11)

Since there are only 245 finite discrete schemes in Q, which do not include the one
corresponding to J. Thus, the one in Q, which is the closest to the scheme corresponding
to J, is selected as the multi-objective comprehensive scheme, whose Py, is 13 MPa, Ny,
is 12, N, is6, E is5.8173 Wh/L, 7¢ is 27.09%.

Based on the bench experiment described in Section 3.2, for the hybrid mining truck
with OHESS in this scheme, the reduced fuel consumption U, and CO, emission e, are
21.93 kg/day and 67.11 kg/day, respectively.
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5. Nested Optimization of the Energy Storage System

Based on the global normalized optimization objective | presented in Section 4, this
section obtains the optimal structure of OHESS under the corresponding optimal EMS
through nested optimization based on global optimization algorithms.

5.1. Nested Optimization Method

This section establishes a nested optimization method and solves the problem of the
OHESS structure and EMS optimization.

Consider the influence of the accumulator’s volume V. and nitrogen tank’s volume
Vae on E, the volume correction coefficients of accumulators and nitrogen tanks, that is,
bge. and bg, are introduced as the optimization variables. They are both range from 0.5 to
1.5, and satisfied:

Vae = Vac * bac (12)
Mac = Mac " bac (13)
Var = Vag * bae (14)
Mar = Mg * bay, (15)

*

where V. is the corrected volume of the accumulator, m,. is the original mass of accu-
mulator, my, is the corrected mass of accumulator, V;; is the corrected volume of nitro-
gen tank, mg, is the original mass of nitrogen tank, mg, is the corrected mass of the ni-
trogen tank.

The ppin is transformed from discrete variable to continuous one, hence a continu-
ous design space Q is formed, as shown in Equation (16).

(Ngc € {89,10,11,12,13,14}
I'N,, €{4,5,6,7,8}
0= prin € [11,17] (16)
| b, €[0.5,1.5]
by € [0.5,1.5]

The inner layer of nested optimization takes the fuel consumption of hybrid mining
trucks Up,4 as the optimization objective and obtains the optimal EMS through the DP
algorithm. The solution process is the same as that in Section 4.2. After each optimal EMS
corresponding to a scheme in Q is solved by DP, the power of OHESS and engine in the
working cycle can be calculated, thus the J,,,4 can be obtained.

The outer layer of nested optimization takes the global normalized objective | as the
optimization objective and obtains the optimal structural scheme by the global optimiza-
tion algorithm. Considering that in the process of global optimization search, each se-
lected X in Q needs to call the time-consuming DP algorithm, the global optimization
algorithm should have efficient search ability to solve this kind of complex black-box
problem.

Figure 21 is the nested optimization flow chart, and the main steps are as follows:

1. Based on the global optimization algorithms, a ¥ are selected from the Q as the in-
put to DP algorithm;

2. The DP algorithm is used to obtain the optimal EMS, which is the working condition
of OHESS;

3. Combine the simulation results of the OHESS and the ambient temperature compre-
hensive model to calculate J;

4. If the current solution satisfies the constraints, compare and update the optimal so-
lution, and then terminate the calculation when the stop criteria are met; otherwise,
repeat steps 1 to 3.
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Figure 21. Flow chart of the nested optimization.

5.2. Global Optimization Algorithms

To solve this complex nonlinear hybrid optimization problem, two global optimiza-
tion algorithms, GA and AMGO, are introduced in this section.

5.2.1. Genetic Algorithm

GA is a classical optimization algorithm. It simulates the evolution of an artificial
population with individuals containing genes (optimization variables) through the selec-
tion, crossover, and mutation process [34]. Finally, the genes of the optimal individual in
the last generation are decoded to obtain the optimal solution to the optimization problem
[35].

Figure 22 is the GA flow chart, and the main steps are as follows:

Initialize the population;

Evaluate the fitness of individuals in the population;

Select the reserved individuals by their fitness ranking, and eliminate the rest;
Generate the next generation by crossover and mutation operations on the reserved
individuals;

5. Repeat steps 2 to 4 until the stop criteria are met.

LS
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Figure 22. Flow chart of GA.

5.2.2. Adaptive Metamodel-Based Global Optimization

As an efficient Metamodel-based algorithm, AMGO is very effective for solving the

highly nonlinear hybrid optimization problem of OHESS. It adopts a hybrid Metamodel
of kriging and augmented radial basis function, and the adaptive weight factors of the
two. A sub-optimization problem is constructed during iterations to balance the local and
global search [36].

SRS S e

Figure 23 is the AMGO algorithm flow chart, and the main steps are as follows:

Generate the initial sample points by Latin hypercube sampling method;

Calculate the function value of each sample point and update the sample set;
Initialize the approximate optimal point and the corresponding value;

Construct the hybrid Metamodel according to the sample set;

Obtain the next sampling point by solving an optimization subproblem;

Calculate the actual function value of the next sampling point, and determine
whether to update the current optimal value by comparing them;

Evaluate the errors of the two Metamodels at the next sampling point, and then de-
termine the weight factors of the hybrid Metamodels in the next iteration;

Update the sample set;

Repeat steps 4 to 8 until the stop criteria are met.
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Figure 23. Flow chart of AMGO.

5.3. Optimization Results

To solve the complex black-box problem of the nested optimization of OHESS, this
section adopts GA and AMGO algorithms to search for the global optimal solution.

Since nested optimization is very time-consuming, it takes about 38 min for each
function evaluation. Therefore, the NFE that reflects the total computation cost is the key
indicator to evaluate the selected global optimization algorithms [37].

The optimization calculation is carried out on a workstation with a dual CPU of Intel
Xeon silver 4208 (2.10 GHz) and 96 GB RAM. For the parameters of GA, the population
size is set as 10, the genetic algebra is limited to 40. The crossover rate and mutation rate
are set as 1.0 and 0.01, respectively. After 224.19 h of calculation, the best result of 0.5235
is obtained within 40 generations, as shown in Figure 24. The corresponding scheme is
Pmin = 13.07 MPa, N, =13, Ny =5, b, = 0.9063, b, = 1.2512.
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Figure 24. Iterative results of GA.

With the same optimization objective, constraints, and variables, the iterative process
of the AMGO algorithm is shown in Figure 25. The first 25 points are training samples,
and the number of iterations is set to 100. After 65.37 h of calculation, the optimal solution
appears on the 52nd function call, the objective value is 0.5128, and the corresponding
optimal scheme is pp,;, = 13.15MPa, Ny, =12, Ny = 6, by, = 0.9257, b, = 1.0711. It
can be seen that after the 25 initial training sample points, the infeasible solutions become
less and less. Meanwhile, with the increase of NFE, the AMGO algorithm can quickly find
the optimal region and update the optimal solution set until the stop criteria are met.
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Figure 25. Iterative results of AMGO.
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To comprehensively compare the performance of GA and AMGO algorithms, the
solution results of the two are compared in Table 4. The optimal solution obtained by the
AMGO algorithm is 2.1% lower than that of GA. The AMGO'’s calculation time t, and
NFE are only 29.16% and 25.75% of GAs. This is attributed to AMGO'’s advantage of using
Metamodel, which significantly reduces the computation cost of complex black-box opti-
mization problems [38]. Although GA can get the feasible solution after 224.19 h of calcu-
lation, it needs more iterations to achieve the optimal solution. While the AMGO algo-
rithm based on an adaptive hybrid Metamodel reduces the NFE requirement, thus con-
verges to the optimal solution within 66 h.

Table 4. Solution results of GA and AMGO.

Parameter J E Nc t. NFE Pmin Ngc Na: b, ba:
GA 0.5235 6.249 27.29 224.19 400 13.07 13 5 0.9063 1.2512
AMGO 0.5128 6.135 29.12 65.37 103 13.15 12 6 0.9257 1.0711
Unit 1 Wh/L % h 1 MPa 1 1 1 1

5.4. Comparison Considering Different Annual Temperatures

Considering that the service life of mining trucks is about 10 years, the ambient tem-
peratures are different every year, which has a significant impact on OHESS performance.
Therefore, this section continues to use the AMGO algorithm but adopts ambient temper-
atures in 2013 (colder) and 2017 (hotter), as shown in Figures 26 and 27.

With the ambient temperatures in colder 2013, the optimal solution of AMGO is
0.5149. The corresponding optimal scheme is p.;, = 13.28 MPa, N, =12, N, =6,
bge = 0.9365, by = 1.0684. While for the hotter 2017, the optimal solution is 0.5121. The
corresponding optimal scheme is p;,;, = 13.06 MPa, N,. =12, N, =6, b,. = 0.9288,
bg: = 1.0754. To analyze the differences of the optimal schemes under three different an-
nual ambient temperatures, the relevant results are listed in Table 5.
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Figure 26. Annual ambient temperature of Heihe, China in 2013 [33].
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Table 5. Solution results of AMGO in different years.

Daily Temperature

Parameter ]_ E Nc Pmin Nac Nat bac bat U, er Lowest Highest Average Vs mg
2013  0.5149 6.097 28.85 1328 12 6 0.9365 1.0684 23.12  70.75 -30.8 25.9 -3.2 4036.19 3098.86
2017 05121 6.139 29.23 13.06 12 6 0.9288 1.0753 23.65  72.37 -28.5 294 1.8 3985.77 3071.02
2019 0.5128 6.135 29.12 13.15 12 6 0.9257 1.0711 23.57 7212 -30.1 24.5 -0.7 3997.52  3078.11
Unit 1 Wh/IL % MPa 1 1 1 1  kg/day kg/day °C L kg
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Figure 27. Annual ambient temperature of Heihe, China in 2017 [33].

The optimal scheme of OHESS in hotter 2017 has a lower system volume Vs, weight
mg, fuel consumption, and global normalization objectives. It has a smaller p,,;, and ac-
cumulator volume but a larger nitrogen tank volume. While in the older 2013, the results
are opposite. This is because the p,,;, calibrated at 0 °C has higher pressure potential at
higher ambient temperature.

In summary, similar to the situation under different seasonal temperatures, different
annual temperatures will also affect the optimal solution of OHESS.

5.5. Comparison with Multi-Objective Comprehensive Scheme

In the previous multi-objective optimization analysis, the multi-objective compre-
hensive scheme is pp,;, = 13, Ng. = 12, Ny = 6. This section compares it with the opti-
mal scheme of the nested optimization.

To make full use of the volume of OHESS, it should realize “fully charge” and “fully
discharge”. That means the total volume of the accumulators should be as close as possible
to the volume change of nitrogen in the energy recovery process, so that the former can
be fully utilized, and further reduce the redundant volume. It can lower the weight of the
accumulators and the volume of circulating hydraulic oil, so as to cut down the additional
vehicle load of OHESS, thus reducing the fuel consumption and CO, emission of the hy-
brid mining truck.

Because the multi-objective comprehensive scheme is based on a finite solution set,
it does not take infinite continuous variables of V. and V,; into account. Considering
that the numbers of the accumulators in the multi-objective comprehensive scheme and
the nested optimal scheme are both 12, to achieve “fully charge” and “fully discharge”,
the volume of hydraulic oil in the odd-number functioning accumulator should complete
6 full-empty cycles just before the end of the process, that is, there should be six complete
waveforms before the red line in Figure 28. Define the volume utilization rate as 100%
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when the system achieves “fully charge” and “fully discharge”. In this case, the volume
of hydraulic oil in the odd-number functioning accumulator should be reduced to 0 at the
red line in Figure 28 after 6 waveforms. For a case that it is not 0 at the red line, the ratio
of the volume of compressed nitrogen to the total volume of the accumulators is the vol-
ume utilization rate.

In Figure 28a, there are almost six completed waveforms before the red line for the
optimal scheme of the nested optimization at —30 °C. The corresponding volume utiliza-
tion rate reaches 99.27%, while the one for the multi-objective comprehensive scheme is
only 95.40%. Comparing Figures 28a—c, it can be found that although the volume utiliza-
tion rate decreases with the increase of the ambient temperature, the nested optimal
scheme still has a 90.63% one at the highest temperature. The relevant results are listed in
Table 6.
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Figure 28. Volume change of hydraulic oil at different temperatures: (a) =30 °C; (b) 0 °C; (c) 25 °C.

Table 6. Multi-objective comprehensive scheme and nested optimal scheme.

Parameter

J

E

Nc

Volume Utilization Rate
-30°C 0°C 25 °C

Pmin Nac Nat bac bat Ur e, VS mg

Multi.
Nested

0.5291 5.817 27.09 13.00 12 6 1 1 21.93 67.11 9540 8991  85.65 4127.15 3192.36
0.5128 6.135 29.12 13.15 12 6 0.9257 1.0711 23.57 72.12 99.27  95.04 90.63 3997.52 3078.11

Unit

1

Wh/L

%

MPa 1 1 1 1 kg/day kg/day % L kg

As shown in Table 6, compared with the multi-objective comprehensive scheme, the
nested optimal scheme has a lower optimization result, smaller volume Vs and weight
mg, and lesser fuel consumption and CO, emission. Moreover, the nested optimal scheme
also has a higher volume utilization rate under different ambient temperatures. Therefore,
taking b, and b, into account and using the advanced AMGO algorithm to solve the
complex nonlinear hybrid optimization problem of OHESS, can obtain better optimization
results with a lower computation cost.

6. Conclusions

In order to recover and utilize the potential energy of mining trucks efficiently, this
paper proposes a nested optimization method of its novel energy storage system. By ana-
lyzing the multi-objective optimization problem of the oil-circulating hydro-pneumatic
energy storage system, a nested optimization method based on the advanced adaptive
Metamodel-based global optimization algorithm is carried out. With the data from the
working cycle test and bench experiment of the mining truck, the optimization research
shows that this nested method only requires a short time to solve the complex optimiza-
tion problem, and achieves better results. The optimized scheme has higher system effi-
ciency, energy density, and volume utilization rate, thus obtaining a smaller system vol-
ume and weight. Verified by the bench experiment of its powertrain, the hydro-pneumatic
hybrid mining truck with the optimized scheme reduces its fuel consumption and CO,
emission by 23.57 kg/day and 72.12 kg/day compared with the reverse dragging one, re-
spectively. Considering the idling fuel consumption of regular mining trucks in the down-
hill process is 189.84 kg/day, the total fuel saving and CO, emission reduction are 213.42
kg/day and 652.83 kg/day, respectively.

The above conclusions carry out a feasible solution to the complex nonlinear hybrid
optimization problem of the oil-circulating hydro-pneumatic energy storage system.
Therefore, it lays the foundation for the practical application of hydro-pneumatic hybrid
mining trucks.
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