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Abstract: The manufacturing of a high-precision servo valve belongs to multi-variety, small-batch,
and customized production modes. In the process of assembly and commissioning, various charac-
teristic parameters are critical indicators to measure product performance. To meet the performance
requirements of a high-precision servo valve, the traditional method usually relies on the test bench
and manual experience for continuous trial and error commissioning, which significantly prolongs
the whole assembly-commissioning cycle. Therefore, this paper proposed a performance prediction
method for a high-precision servo valve supported by digital twin assembly-commissioning. Firstly,
the cloud-edge computing network is deployed in the digital twin assembly-commissioning system
to improve the efficiency and flexibility of data processing. Secondly, the method workflow of
performance prediction is described. In order to improve the accuracy of measurement data, a data
correction method based on model simulation and gross error processing is proposed. Aiming at
the problem of high input dimension of the prediction model, a key assembly feature parameters
(KAFPs) selection method, based on information entropy (IE), is proposed and given interpretability.
Additionally, to avoid the poor prediction accuracy caused by small sample data, a performance
prediction method based on TrAdaboost was utilized. Finally, the hysteresis characteristic commis-
sioning of a high-precision servo valve is taken as an example to verify the application. The results
indicate that the proposed method would enable accurate performance prediction and fast iteration
of commissioning decisions.

Keywords: digital twin; cloud-edge computing; performance prediction; assembly-commissioning;
high-precision servo valve

1. Introduction

With the rapid development of high-precision manufacturing technology, high-precision
servo valves are widely used in aerospace, watercraft, and automotive industries. In order
to meet the quality requirements of a high-precision servo valve, assembly and commis-
sioning are required. Among them, the geometric accuracy requirements are met through
the assembly process, and the performance accuracy requirements are met through com-
missioning, as shown in Figure 1. In the assembly-commissioning of a high-precision servo
valve, various characteristic parameters (such as hysteresis, nonlinearity, zero bias, etc.)
are important indicators to measure the product performance. The traditional assembly-
commissioning method is based on repeated tests and manual experience, resulting in poor
quality and low efficiency. Therefore, it is of great significance to study a fast and accurate
performance prediction method to assist commissioning decision-making in improving the
assembly-commissioning efficiency of a high-precision servo valve.

At present, the construction of the prediction model includes the physical method and
data-driven method [1]. Generally, there is an uncertain and nonlinear relationship between
the performance of a high-precision servo valve and assembly characteristic parameters.
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Physical methods are complicated to comprehensively describe the complex mapping
relationship, resulting in poor prediction accuracy. With the rapid development of digital
measurement technology and machine-learning algorithms in recent years, data-driven
prediction technology has become a research hotspot. Feng et al. proposed an integrated
prediction method of assembly quality based on edge computing [2]. Diao et al. proposed
a quality prediction method for purifier carrier products based on improved principal
component analysis and a modified support vector machine [3]. Wei et al. proposed a
kernel-based hybrid manifold learning and support vector machine algorithm for aero-
engine product quality prediction. The data-driven prediction method is based on the
algorithm model [4]. When the measurement data are insufficient or inaccurate, the
algorithm model only depends on the previously collected data, significantly affecting the
prediction results [5]. Although a data-driven prediction algorithm has been widely used in
product assembly, it has defects due to the lack of connection between prediction solution
and decision-making.
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In recent years, the digital twin has been widely promoted as a critical technology
to realize intelligent manufacturing [6]. Digital twin assembly-commissioning is a new
generation of intelligent assembly-commissioning technology [7,8]. Based on the digital
information model and driven by the twin data of the assembly-commissioning context,
digital twin assembly-commissioning uses intelligent prediction, monitoring and decision-
making to realize the quality control of the geometry and performance of high-precision
products. Digital twin not only relies on the measured data to predict the quality deviation
from the theoretical operation but also provides a comprehensive method to interpret and
integrate the collected data in the virtual space. Based on the continuous adaptation to
the changes of environment and operating conditions, the digital twin high-fidelity model
provides a solution for accurate performance prediction and commissioning decision-
making of complex assembly. In addition to establishing a high-fidelity model reflecting
physical products, the efficient processing and analysis of twin data is also an important
challenge. The existing high-precision servo valve assembly workshop usually only deploys
the cloud center to process and analyze the data. However, there are a large number of data
acquisition points and analysis models in the assembly process of high-precision products,
which makes it inefficient and economical to transmit all data to the cloud through the
network. In the edge computing architecture, all the data collected in the physical space no
longer need to be uploaded to the cloud center. Still, some data can be processed quickly
by deploying in the network edge nodes. In this way, the pressure of network broadband
can be greatly reduced. Therefore, to reduce the data transmission delay and retain the
high-performance computing of digital twin assembly, the use of edge computing is an
effective solution to realize fast processing and flexible computing of twin data [9].

This paper presents a digital twin system framework for predicting the assembly-
commissioning performance of a high-precision servo valve. In the framework, data storage,
geometric model construction (or reuse), and integrated algorithm model construction
are generated through the cloud center. Edge computing is used for data processing,
performance prediction, and commissioning decision guidance. In the prediction process
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of high-precision servo valves, the main problems solved in this paper are summarized
as follows:

(1) To improve the accuracy of measurement data, the measurement data are corrected
by high fidelity digital twin model simulation and gross error processing.

(2) To reduce the data dimension of the prediction model, the IE method is used
to select the KAFPs that affect the assembly performance index. Moreover, the KAFPs
selection process is interpretable.

(3) To avoid the model overfitting caused by small sample data, a TrAdaboost pre-
diction algorithm model is proposed. In addition, the commissioning decision is assisted
according to the prediction results.

The rest of this paper is organized as follows: Section 2 introduces the literature
review of digital twin assembly, cloud edge computing, and digital measurement. Section 3
proposes the performance prediction framework and method workflow supported by
digital twin assembly-commissioning technology in detail. In Section 4, the hysteresis
characteristic of a double-nozzle flapper servo valve is taken as an example to verify the
effectiveness of the prediction method in this paper. Finally, Section 5 concludes and
outlines future work.

2. Related Work

In this section, we mainly summarize the current digital twin assembly methods,
digital twin and cloud-edge computing, and digital measurement methods to support the
research of this paper.

2.1. Digital Twin-Based Assembly Method

The concept of the digital twin was first proposed by Grieves in a whole life cycle class
at the University of Michigan, and is defined as a “virtual digital expression equivalent
to physical products” [10,11]. To more precisely describe the concept of the digital twin,
Tao et al. believe that digital twin is a simulation process that makes full use of the physical
model, sensor update, operation history, and other data; integrates multi-disciplinary,
multi-physical quantity, multi-scale and multi probability; and completes mapping in a
virtual space, to reflect the whole life cycle process of corresponding physical equipment [6].
In recent years, digital twin technology has been widely used in various fields. At present,
the application of digital twin technology in product assembly has achieved experimental
research results.

In terms of system framework: Tao et al. introduced the product assembly method
based on digital twin and discussed the key technologies involved in the development of the
cyber-physical fusion system for complex product assembly processes [12]. Taking aviation
complex products as the research object, Liu et al. proposed an intelligent management and
control framework of assembly workshops based on digital twin [13]. Luis et al. present a
novel methodology for process automation design, enhanced implementation, and real-
time monitoring in operation based on creating a digital twin of the manufacturing process
with an immediate virtual-reality interface to be used as a virtual test before the physical
implementation [14]. Guo et al. proposed an assembly island manufacturing system based
on digital twin technology, which takes digital twin service as an enabling technology [15].
Yi et al. proposed a digital twin reference model for intelligent assembly process design
and built a three-tier intelligent assembly application framework based on digital twin [16].
In constructing the digital twin model: In order to realize the difficult transition of digital
twins from conceptual model to virtual representation, Gregorio et al. proposed a hybrid
representation of integrated digital twin, which uses the digital twin model to manage the
geometric deviation in the assembly process [17]. Polini et al. investigated a digital twin
tool to manage the geometric changes of parts from manufacturing to assembly [18]. A
digital twin derived from a digital product description will automatically perform assembly
planning and orchestrate the production resources in a manufacturing cell. Seppo et al.
proposed a digital twin model derived from digital products, which can automatically
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execute the assembly plan and coordinate the production resources in the manufacturing
unit [19]. Sun et al. [7] introduced a product digital twin model construction method
including all assembly elements.

In the design stage of the servo valve, virtual simulation technology is usually used to
plan and verify the assembly process. However, in the actual assembly stage, virtual space
and physical space are independent of each other. The determination of assembly process
parameters and commissioning decisions completely depends on manual experience (Brief
process: first, obtain the test data on the experimental bench. Then, the performance
index is calculated. Finally, trial and error commissioning are carried out according to
manual experience until the performance index is met), which leads to low assembly
efficiency. The application of digital twin technology in product assembly can quickly break
through the bottleneck of current virtual assembly technology and realize the iterative
interaction of virtual and real assembly spaces. The servo valve digital twin model can
evolve dynamically with the assembly process in establishing servo valve digital twin
assembly-commissioning systems. The analysis of the collected physical assembly process
data is helpful to assist the intelligent decision-making of the commissioning process.

2.2. Digital Twin and Cloud-Edge Computing

With the development of intelligent sensors and the industrial Internet of things, intel-
ligent assembly workshop needs to adopt high-performance methods to collect and process
a large amount of data collected from the field. As a remote data processing architecture,
cloud computing allows massive data processing in remote data centers [20]. However,
cloud computing technology has challenges in meeting the requirements of real-time re-
sponse and extensive data transmission. In the edge computing architecture, user data no
longer need to be uploaded to the cloud data center. However, it can be processed quickly
through the edge nodes deployed at the edge of the network, which dramatically reduces
the pressure of network bandwidth and the energy consumption of intelligent devices at
the edge of the network. To take the advantage of cloud computing and edge computing,
cloud edge collaboration, as a new computing model, has become a new research trend [21].
With the increase of data-intensive applications and computing-intensive applications, it is
necessary to use the mighty computing power of cloud computing, the response charac-
teristics of communication resources, and short-time transmission of edge computing to
realize and complete the corresponding application requests. Through cloud-edge collabo-
ration, the value of edge computing and cloud computing is maximized to improve the
performance of applications [22] effectively. For example, Xu et al. proposed a cloud-edge
collaborative computing framework that can be used in distributed neural networks, im-
proving task scheduling algorithms’ adaptive ability [23]. Aiming at the requirements of
cloud processing and analysis and real-time edge computing of massive manufacturing
data generated by a large number of IoT devices at the bottom of the intelligent factory,
a cloud-edge collaboration-based intelligent factory industrial IoT architecture and the
configuration method of edge nodes and cloud application services are proposed [24].
Song et al. proposed a cloud edge collaborative intelligent method for object detection. It
was applied to emulator string-recognition defect detection in power IoT [25].

In a digital twin system, edge computing complements cloud computing by allowing
dynamic storage, transmission, and processing of high-frequency physical system data
between edge and cloud. This system flexibility is suitable for industrial environments
that require high-speed synchronization and real-time response. Tao et al. proposed a
cell-level digital twin architecture based on cloud computing, fog computing and edge
computing [21]. Huang et al. provided a feasible method to ensure high-performance
anomaly detection by implementing digital twinning technology in dynamic industrial
edge/cloud networks [9]. However, the digital twin assembly technology based on edge
calculation lacks concrete implementation in the field of high-precision product assembly.
Therefore, we further introduce cloud-edge computing into the digital twin assembly-
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commissioning system of servo valves, to accelerate the data processing efficiency and
flexibility of the system.

2.3. Digital Measurement

The digital measurement is the technology based on the digitalized models, supported
by the digital measurement devices (i.e., laser scanners, radar scanners, etc.), which is
capable of automatic, rapid and precise measurement of assembly feature parameters.
Jafar et al. took the lead in applying digital measurement technology to aircraft flexible
docking [26,27]. Maropoulos et al. proposed measurement-assisted assembly (MAA)
technology, which realizes the flexibility measurement of crucial features in the assembly
process of complex products [28]. Compared with traditional measurement technology,
MAA significantly improves measurement accuracy and efficiency. In order to improve
the success rate of one-time assembly in the actual assembly scene, Cui et al. studied
the assemblability of large-scale parts by analyzing the assembly measurement data of
actual parts [29]. Bao et al. registered the key features of the MBD model and point cloud
model through digital measurement technology in the assembly process, to build a semi-
physical model containing actual geometric information [30]. To improve the assembly
efficiency of aircraft large-size components, Chen et al. proposed a new measurement-aided
assembly method to realize process integration and data fusion based on key measurement
features [31]. Wang et al. proposed an optimal pose calculation method using digital
measurement technology to obtain the assembly clearance of wing assembly [32].

With the continuous improvement of the accuracy and efficiency of digital mea-
surement equipment, digital measurement technology has become an essential auxiliary
assembly technology. In the digital twin assembly-commissioning system of servo valves,
digital measurement technology replaces the traditional manual measurement method to
realize the accurate and rapid collection of product assembly process data. For example,
the traditional assembly clearance methods usually use a feeler gauge or visual inspection.
This has poor measurement accuracy and low measurement efficiency and cannot obtain
the whole picture of assembly clearance. In this paper, the measurement is carried out
by a 3-dimensional (3D) laser scanner. Firstly, the measuring points of the two parts are
obtained as the pose reference of the assembly. Before assembly, the butt-joint surface of
the part is scanned by laser to get the point cloud data of the butt-joint surface and the
coordinates of its auxiliary measurement points. Then, in the assembly process, the parts
are driven for virtual assembly by the change of assembly pose of the measurement points.
Finally, the clearance measurement is completed.

3. Performance Prediction Supported by Digital Twin Assembly-Commissioning

This section constructs the performance prediction framework supported by digi-
tal twin assembly-commissioning technology and describes the task deployment of the
framework structure. In addition, this section briefly describes the method workflow for
implementing performance prediction.

3.1. The Performance Prediction Framework

In the digital twin white paper, GRIEVES proposed a digital twin three-dimensional
reference model including virtual space, physical space, and connection [10]. Based on
the three-dimensional reference model, this section introduces the cloud-edge network
deployment. We put forward the performance prediction framework of a high-precision
servo valve supported by digital twin assembly-commissioning technology, as shown in
Figure 2. The framework is divided into physical assembly-commissioning space, virtual-
physical connection, and virtual assembly-commissioning space. Among them, the virtual
assembly-commissioning space includes the edge layer and cloud layer.
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3.1.1. Physical Assembly-Commissioning Space

The physical assembly-commissioning space aims to perform the assembly tasks (in-
cluding assembly operations and commissioning operations) issued by the production plan.
Compared with the traditional assembly workshop, the digital twin assembly workshop is
equipped with the ability of interconnection and data fusion of multi-source heterogeneous
elements, such as real-time perceptual access and interworking of data between device
and device, or device and products [33]. Therefore, besides the original digital assembly
device, several types of digital measurement equipment are utilized for data acquisition,
i.e., binocular camera, 3D laser scanner, and torque sensor, etc. At the same time, the device
controller receives the commissioning control command issued by the edge layer.

3.1.2. Virtual–Physical Connection

Virtual–physical connection is the link between physical and virtual assembly-
commissioning spaces. Through virtual–physical connection, the data collected in the
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physical space is transmitted to the edge layer of the virtual space for processing and analy-
sis. In addition, the commissioning decision information of the edge layer can also be sent
to the physical space. The different assembly, commissioning, and measuring equipment
have different data transmission modes in the data transmission process. Generally, the
measuring equipment mainly includes Wi-Fi, Bluetooth, LAN, and other communication
modes. The device controller is used for data interaction with the edge layer through the
device network.

3.1.3. Virtual Assembly-Commissioning Space

The virtual assembly-commissioning space is the digital reconstruction and mapping
of the physical assembly space. The introduction of edge computing and cloud computing
technologies facilitates data processing and analysis processes.

(1) Cloud layer
The cloud has strong resource service capability. In this research, the cloud is used in

three aspects: (1) Historical data storage: historical data can be stored in the cloud layer
for a long time and can be recalled directly when in use. (2) Geometric model construction
or reuse: the cloud layer can generate or reuse the geometric model according to the
simulation requirements of the edge layer. (3) Integrated algorithm model construction: the
measurement data correction mechanism, KAFPs selection mechanism and performance
prediction model are generated. The mechanism established can participate in the training
of the prediction model and then be applied to the performance prediction task of the edge
layer. The optimal performance prediction model trained in the cloud layer can be directly
downloaded to the edge layer for use. In addition, when the network is idle, the cloud can
update the performance prediction model on a regular basis.

(2) Edge layer
Edge layer refers to the processing and analysis of data at the edge of the physical

device. The introduction of distributed edge computing reduces the pressure on the
network throughput of device and cloud, alleviates the data analysis load of cloud center,
and improves the data analysis response efficiency. The edge layer is used for measurement
data correction, online performance prediction, and commissioning decision. In addition,
the edge layer supports assembly process simulation and real-time visualization. Different
from the traditional ideal geometric model, the digital twin model established in the digital
twin assembly system has the characteristic of high fidelity.

3.2. The Performance Prediction Workflow

This section introduces the performance prediction process supported by digital twin
assembly-commissioning technology. As shown in Figure 3, the performance prediction
process includes five steps: (1) selection of KAFPs, (2) construction and optimization of the
performance prediction model, (3) measurement data acquisition and correction, (4) online
performance prediction, and (5) commissioning decision.

3.2.1. Selection of KAFPs

In the assembly-commissioning process of a high-precision servo valve, the assembly
feature parameters to be measured increase with the number of parts and components
involved in the assembly. However, most of the measured assembly feature parameters
have a weak relationship with a particular performance index. Therefore, to improve the
training accuracy and convergence speed of the model, it is necessary to select the KAFPs
when constructing the data set. The KAFPs selection mechanism established in the cloud
layer can not only be applied to the training process of the performance prediction model,
but also realize the rapid extraction of input factors of a prediction model in the online
prediction process of the edge layer. The KAFPs selection mechanism established in the
cloud layer can be applied for the training of the performance prediction model and the
rapid extraction of input factors for the prediction model in the edge layer.
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The method based on IE measures the correlation between features by quantifying the
uncertainty of the action law between features. It is suitable for the analysis of complex
correlation [34] and makes the selection of KAFPs interpretable. This research utilizes IE for
the selection of KAFPs. As shown in Figure 4, the entropy f E of KAFPs are designed based
on comprehensive consideration of correlation, complementarity, and redundancy. When
a performance index P and assembly feature parameters set are known, the correlation
between assembly feature parameters and performance index is measured. The calculation
method is shown in Equation (1). When the candidate parameters are the first assembly
feature parameters identified, that is, the KAFPs set D is an empty set, the candidate pa-
rameters are screened only by the correlation between the candidate parameters xi and the
performance index P. When the KAFPs set D is not empty, the assembly feature parameters
with maximum correlation, maximum complementarity and minimum redundancy are
selected by comprehensively considering three kinds of correlation relations.

f E(xi) = α× RP
xi
− β× RD

xi
+ (1− α− β)(Com(xi, P, D)) (1)

where RP
xi

represents the correlation between candidate assembly feature parameters xi and
P; RD

xi
represents the redundancy between candidate xi and D; Com(xi, P, D) represents the

complementarity of xi to the current D; α and β is a weight variable, which is determined
by the analysis of test results, and α, β, (α + β) ∈ [0, 1].

(1) Correlation
In the process of measuring the correlation between xi and P, the correlation between

xi and P refers to the ability of xi to explain the fluctuation of P accuracy. The correlation
measurement can be measured by calculating the mutual information value between xi
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and P. The definition of correlation RP
xi

between xi and P is shown in Equation (2), where
I(xi; P) represents the mutual information value of xi and P.

RP
xi
= I(xi; P) (2)
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Mutual information describes the degree of interdependence between two variables,
which measures the amount of standard information between two variables. It can be
regarded as the amount of information about another variable contained in one variable.
As shown in Equation (3), when xi and P are independent of each other, P is easy to get
I, which indicates that there is no same information between variables xi and P. On the
contrary, the stronger the correlation between variables xi and P, the higher the mutual
information I(xi; P), and the greater the amount of the same information contained between
the two parameters.

I(xi; P) = −
n

∑
i=1

p(xi; P) log2
p(xi; P)

p(xi)p(P)
(3)

(2) Redundancy
Based on the analysis of correlation, the redundancy between assembly features is

measured. In identifying performance and KAFPs, if there is self-similarity between xi
and D, and the addition of xi will increase the information redundancy in D. Therefore,
redundancy can be measured by the amount of common information between xi and D.
The definition of redundancy RD

xi
between xi and D is shown in Equation (4).

RD
xi
= I(xi; D) (4)

The mutual information I(xi; D) of xi and D refers to the mutual information of all
assembly features in xi and D. I(xi; D) is calculated by calculating the mutual information
of all assembly features in xi and D.

(3) Complementarity
Based on the analysis of correlation and redundancy, the complementarity between

assembly feature parameters is measured. In the recognition process of P and xi, in
addition to the information of D and P, if there is additional common information between
candidate xi and P, the assembly feature parameters are considered to be complementary.
The complementary definition of assembly feature parameters is shown in Equation (5).

Com(xi, P, G) = I(xi, P|D) (5)

It represents the correlation between parameters xi and P when D containing multiple
KAFPs is known.
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3.2.2. Construction and Optimization of Performance Prediction Model

In this paper, the performance prediction model is trained and optimized in clouds.
Since the production of the high precision servo valve is in small batches, the data sample
size of the single-type model is limited. Therefore, aiming at the performance prediction
task of a high-precision servo valve under small samples, a typical transfer learning al-
gorithm, TrAdaboost, is proposed to solve the regression problem. It assumes that the
source training data comes from different source domains. In each iteration, the source
domain most related to the target domain is selected to train the weak learner, and finally,
the strong learner is obtained.

Although the production batch of a single model of a high-precision servo valve is
small, there are many derivative models. This provides essential data support for the
optimization of the prediction model. With the increase of different derivative models of a
high-precision servo valve, the source domain data set of migration learning is expanding.
The continuous iterative optimization of the performance prediction model can be realized
by continuously developing the derivative models completed in production to the source
domain data set.

(1) Construction of data set
The data set of the performance prediction model is composed of D∗ = {x1, x2, · · · , xn, P}.

Suppose there are N high-precision servo valves of similar models to the target, and there
are source domain training data set Da = ∑N

i=1 Dai = Da1 + Da2 + · · ·+ DaN and one target
domain training data set Db. Da is used to improve the learning performance of the target
learner function: fb : X → y .

(2) Construction of TrAdaboost prediction model
In TrAdaboost, a weak learner is trained in each training set by calling the traditional

weak learner model. All weak learners are formed into a set of weak learners. The error
of each weak learner on the target training set is calculated and the corresponding weight
is increased. The weighted weak learners are integrated to obtain the candidate learners
of the current iteration. The process is: Calculate the error of the candidate learner on the
target training set and the training set in different source domains and update the weight
of the source domain samples. Retrain the samples after updating the weight and cycle
successively until the maximum number of iterations M.

The specific algorithm steps are as follows:
(i) Initialize the weight vector (wa1, wa2, · · · , waN , wb).
Where, wak =

(
w1

ak, w2
ak, · · · , wnak

ak
)

is the weight vector of the k-th source domain
training sample.

wb =
(
w1

b, w2
b, · · · , wnb

b
)

is the weight vector of training samples in the target domain.
(ii) Calculate the weak learner coefficient:

βa = 1/
(

1 +
√

2 ln(na)/M
)

(6)

where, na is the number of training samples in all source domains.
(iii) Normalize the weight vector:

Pt =
wt

∑nb
i=1 wt

i
, t = (1, 2, ···, M) (7)

(iv) In the merged dataset D = Dak + Db, the base learner is called to obtain the weak
candidate learner ( f t

b)
k. Calculate the error of ( f t

b)
k in target domain Db:

(εt
b)

k
=

nb

∑
j=1

wj
b ∑N

k=1

[
( f t

b)
k − yj

b

]
∑nb

i=1 wi
b

(8)
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At the same time, the weight of the weak learner ( f t
b)

k is updated until N source
domains are traversed.

(v) Acquire the learner of iteration t-th:

(εt
b)

k
=

nb

∑
j=1

wj
b ∑N

k=1

[
( f t

b)
k − yj

b

]
∑nb

i=1 wi
b

(9)

At the same time, the error of f t
b in Db is calculated:

(wt
b)

k
=

e1−(εt
b)

k

e(ε
t
b)

k (10)

(vi) Set βt
b =

εt
b

1−εt
b
, Ct = 2

(
1− εt

b
)
.

In order to meet
∣∣βt

b

∣∣ ≤ 1. When ε Over 0.5, set ε = 0.5. At the same time, adding
dynamic factor Ct to the source domain sample weight can prevent weight transfer and
obtain the source domain sample weight vector update mechanism.

(vii) Update the source domain sample weight vector w(t+1)·i
ak = Ctwt·i

ak(βa)
∑M

t=1 [ f t
b−yj

b ].
Where, i ∈ Dak;

Update the target domain sample weight vector w(t+1)·i
b = wt·i

b (βt
b)

∑M
t=1 [ f t

b−yj
b ]. Where

i ∈ Db.
(viii) When the maximum number of iterations M is reached, the final strong learner is

obtained:

fb =
M

∑
t=1

(
ln

1
βt

b

)
g(x) (11)

where, g(x) is all βt
b f t

b Median of.
(3) TrAdaboost evaluation index
This paper uses the target domain test sample data set to evaluate the strong learner

model. In the evaluation indicators of the model, different evaluation indicators focus on
different aspects. The evaluation of various models by the single index is lacking com-
prehensiveness, so it is necessary to carry out multi-index comprehensive evaluation of
different models. Therefore, after multiple cycle calculations, this paper selects explained
variance score (EVS), mean square error (MSE), mean absolute error (MAE) and deter-
mination coefficient R2 to evaluate the accuracy of the prediction model, as shown in
Table 1.

Table 1. Calculation Method of four indicators.

Indexes Calculation

EVS EVS = 1− Var{y−ŷ}
Var{y}

MSE MSE = 1
n

n
∑

i=1
(y− ŷ)2

MAE MAE = 1
n

n
∑

i=1
|y− ŷ|

R2 R2 = 1− ∑n
i=1 (y − ŷ)2

∑n
i=1 (y − y)2

Among the four indicators, EVS explains the variance score of the regression model,
and its value range is [0, 1]. The closer it is to 1, the more the independent variable can
explain the variance change of the dependent variable, and the smaller the value, the worse
the effect. MSE calculates the mean value of the square sum of the errors of the sample
points corresponding to the fitting data and the original data. The more prominent the
value, the better the fitting effect. MAE calculates the mean value of the square sum of the
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errors of the sample points corresponding to the fitting data and the original data. The
more obvious the value, the better the fitting effect. R2 is the standard for evaluating the
excellent fitting of the regression model. The closer R2 is to 1, the better the fitting effect of
this model on the data.

3.2.3. Measurement Data Acquisition and Correction

The premise of accurate performance prediction is to ensure the accuracy of mea-
surement data. The data sources are divided into equipment control data and external
measurement data in the physical assembly-commissioning space. The device control
data can be obtained directly through the device controller. External measurement data is
mainly obtained through measurement equipment. However, in the assembly process of a
high-precision servo valve, there are still the following challenges to the accuracy of mea-
surement equipment data: (1) affected by the equipment and environment, the one-time
measurement data of assembly feature parameters have a high probability of abnormality;
(2) some assembly feature parameters change greatly before and after assembly. Thus, the
secondary measurement cannot be carried out after assembly. For example, the stiffness of
the force feedback rod changes before and after assembly.

As shown in Figure 5, the measurement data are defined as type I and type II, respec-
tively, according to the above challenges. The two types of data are processed separately.
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(1) Gross error processing
For measurement type I, the gross error processing approach can be used to eliminate

abnormal data in multiple measurement data. Since the number of measurements is
relatively small (generally less than 10), the Romanowski test (t-test criterion) is utilized for
the calculation of the gross error. The rules are as follows:

Firstly, the equivalent accuracy measurement data are compared if xj is the suspicious
data in the measured value. Then the average value of the remaining measured data is
calculated after removing the data, as shown in Formula (12):

x =
1
n

n

∑
i = 1
i 6= j

xi (12)

The difference between each measured data point and the mean is called residual,
which is recorded as:

vi = xi − x (13)

Secondly, the estimation of the standard deviation of the measurement column after
deleting the suspected value is calculated. The calculation method is as follows:

e =
1

n− 1

(
n

∑
i=1

v2
i

)
(14)
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Thirdly, the residual vj = xj − x of suspicious data is obtained. Then, the deleted
measured value xj is judged according to the discriminant whether there is the gross error:∣∣vj

∣∣ = Ke (15)

where, K is the detection coefficient. The value of K is determined by the tested coefficient
of confidence and measurement times check t distribution.

Equation (15) indicates that x contains a gross error and should be deleted.
(2) Simulation analysis
For measurement type II, the digital twin model of the subassembly is used to modify

the parameters through finite element simulation. The digital twin geometric model of a
high-precision servo valve adopts the MBD model and point cloud reverse model [7]. To
improve the high fidelity of the model, the reverse modeling technology based on the point
cloud is used to correct the machining deviation. Among them, parts with high surface
morphology requirements (such as valve core, valve sleeve, etc.) can be constructed by
skin model [35]. In addition, a simulation environment with the same or as similar as the
measurement conditions must be established in the virtual space. Finally, the measured
data are corrected according to the simulation results.

3.2.4. Online Performance Prediction

The optimal performance prediction model trained in the cloud is deployed in the
edge layer for online performance prediction. The traditional performance prediction
method usually adopts the offline method. With the support of digital twin technology, this
paper realizes the rapid online prediction of product performance through the real-time
access of measurement data. In the edge layer, on the one hand, it can provide a cache
of prediction results. On the other hand, the prediction results can be compared with the
practical test results to identify whether the performance prediction model needs to be
optimized and updated.

3.2.5. Commissioning Decision

Commissioning refers to fine-tuning various assembly feature parameters to meet
product performance indicators. The traditional commissioning method is to judge whether
fine-tuning is needed according to the test results. In this research, the commissioning is con-
ducted based on the data-driven performance prediction results. This approach provides
the rapid iteration of prediction and commissioning and a more accurate commissioning
scheme given the correlation between performance and KAFPs.

4. Case Study

In this paper, the servo valve assembly-commissioning of a specific type of nozzle
baffle is taken as an example, and the hysteresis characteristics are used to verify the
effectiveness of the method proposed. Figure 6 shows the key internal structure of the
servo valve.
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4.1. Servo Valve Assembly-Commissioning Process Description

The assembly process of servo valves is complex, and a number of performance
indexes need to be commissioned at the same time, as shown in Table 2. Hysteresis refers
to the percentage of the maximum difference between the two currents that produce the
output flow of the system and the rated current when circulating between the positive and
negative rated currents at a speed less than the speed at which the dynamic characteristics
work. The hysteresis characteristic of a high-precision servo valve directly affects the
stability of the servo system. In the traditional method, firstly, the test environment is
configured for the servo valve, and the test bench is used to test the flow data and control
current of the servo valve. Then, the specific hysteresis value is obtained by manual
calculation. Finally, according to the obtained hysteresis value, it is commissioned by
manual experience. Traditional methods usually require a lot of test configuration time and
human experience.

Table 2. Assembly-commissioning process and control parameters.

Assembly Process Steps Control Parameters

Component
assembly

Assembly of valve sleeve component Return oil damper hole size
Assembly of throttle hole component Interference fit between throttle hole and oil filter
Blockage of pressure nozzle seal Sealing plugging and interference fit of nozzle tail hole

Assembly of torque motor component

Armature clearance;
Median moment;
Pure steel degree;
Hysteresis band

Assembly-
commissioning

Pre-pressure nozzle Spacing between nozzle and baffle
Preinstall valve sleeve, spool, throttle hole
component, armature component, moment
motor on valve body

Geometric dimensions

Fine assembly and commissioning:
comprehensive commissioning of resolution,
hysteresis, static characteristics, phase
bandwidth, bias, non-linearity, degree of
asymmetry, zero position leakage, etc.

Geometric dimensions;
The performance of the front stage is stable;
Pre-stage pressure gain;
Remaining magnetism of shell;
Hydraulic zero position;
Mechanical zero position;
Electromagnetic zero position; etc.

4.2. Network Deployment of Digital Twin Prototype System

The network environment of the digital twin assembly-commissioning system is
deployed in this case, as shown in Figure 7. The physical environment includes a commis-
sioning platform, visual board, digital measuring equipment, assembly and commissioning
device and edge machine. As an edge layer device for performance prediction, the edge
machine is deployed around the assembly and commissioning device. In the data measure-
ment of the assembly process, we installed the measurement module on the experimental
platform. In addition to the ammeter and electromagnetic flowmeter, we mainly mea-
sure the assembly geometric feature parameters by a 3-D laser scanner (LMI Gocator).
The maximum assembly accuracy of the servo valve is 10 µm, while the maximum mea-
surement accuracy of the 3-D laser scanner is 1 µm, which can meet the measurement
accuracy requirements.

In the edge layer, firstly, the measured data are preprocessed. Then, the input parame-
ters of the hysteresis prediction model are selected through the KAFPs selection mechanism,
and the data are corrected. Finally, the commissioning decision is assisted according to the
hysteresis prediction results. When the network is idle, the edge layer will upload some
cached data to the cloud for storage as historical data. Alibaba Cloud ECS server is adopted
for the cloud platform. Among them, we use MySQL database for data storage; use object
storage service (OSS) to store algorithm models; and usually store geometric models in
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folders. In the cloud layer, the product high fidelity geometric model, KAFPs selection
mechanism and optimal hysteresis prediction model can be provided for the edge layer.
When the network is idle, the cloud optimizes the prediction model according to the newly
uploaded historical data, and the edge layer prediction model is updated.
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4.3. Method Implementation

According to the workflow of the performance prediction method described in Section 3.2,
the hysteresis characteristic is predicted online, and the commissioning decision is made.

4.3.1. Selection of KAFPs

In a high-precision servo valve assembly process, there are 18 candidate assembly
feature parameters affecting hysteresis characteristics. To train and test the prediction
model, we collected historical data from the private cloud center as data samples for
hysteresis characteristic prediction. Table 3 shows the original data listed.

In this paper, the KAFPs are selected by the method of IE. Under the constraints of
maximum correlation, maximum complementarity and minimum redundancy, the entropy
obtained by each assembly feature parameter appears by polarization. According to entropy
f E, 11 KAFPs affecting hysteresis characteristics are selected. The specific selection results
are shown in Table 4.

4.3.2. Measurement Data Correction

Among the 11 KAFPs affecting hysteresis characteristics, x14 and x15 need to obtain
the assembled stiffness through simulation analysis. The remaining nine KAFPs need to be
corrected through gross error processing. As shown in Table 5, the comparison results of
parameter values before and after correction are shown, in which the parameters requiring
gross error processing are repeatedly measured seven times.

4.3.3. Prediction of Hysteresis Characteristic

In this case, 2200 groups of data of 11 similar models are selected as the data source.
Among them, 10 types of assembly process data are selected to construct the source domain
data set, and the total number of samples in the data set is 2000 groups. The target domain
data set is constructed from the assembly process data of the remaining one model, in
which 100 groups of data samples are randomly selected as the test set. In addition, the
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remaining 100 groups of data samples are set as the training set for training. In order
to verify the superiority of the prediction model, this case compares the error between
the prediction results of IE-TrAdaboost, IE-ANN, IE-SVR, and IE-RF models and the
actual value. Simultaneously, EVS, MSE, MAE, and R2 are used to evaluate the model’s
performance. In the construction of the model, we selected 11 KAFPs as inputs and one
output (hysteresis value). The parameters of each model are shown in Table 6.

Table 3. The original data of KAFPs affecting hysteresis characteristics.

Number Assembly Feature Parameters Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

x1
Clearance between valve core and valve

sleeve hole (mm) 0.0032 0.0035 0.0033 0.0030 0.0033

x2
Clearance between valve sleeve and

valve body (mm) 0.0012 0.0022 0.0017 0.0019 0.0016

x3
Interference between spring tube and

baffle (mm) 0.0141 0.0122 0.0131 0.0145 0.0134

x4
Parallelism between spring tube base

and armature pole shoe (mm) 0.0200 0.0180 0.0220 0.0270 0.0300

x5
Parallelism between spring tube base

and armature pole shoe (mm) 0.0127 0.0143 0.0129 0.0138 0.0121

x6 Clearance of bushing 1 (mm) 0.0050 0.0049 0.0057 0.0062 0.0055
x7 Clearance of bushing 2 (mm) 0.0060 0.0055 0.0058 0.0054 0.0048
x8 Clearance of bushing 3 (mm) 0.0053 0.0045 0.0067 0.0041 0.0066
x9 Clearance of bushing 4 (mm) 0.0066 0.0071 0.0054 0.0057 0.0072
x10 Shell left end face runout (mm) 0.0182 0.0128 0.0112 0.0145 0.0162
x11 Shell right end face runout (mm) 0.0119 0.0138 0.0123 0.0120 0.0155
x12 Thickness of left gasket (mm) 0.7710 0.7120 0.7910 0.7890 0.7540
x13 Thickness of right gasket (mm) 0.7740 0.7310 0.7720 0.7610 0.7580
x14 Spring tube stiffness (106 N/m) 0.557 0.507 0.593 0.482 0.524
x15 Stiffness of feedback rod (106 N/m) 3.667 3.642 3.779 3.841 3.476
x16 Left nozzle flow (L/min) 138 142 136 133 147
x17 Right nozzle flow (L/min) 134 139 141 133 135
x18 Demagnetization voltage (V) 39 42 37 40 41

P Hysteresis (%) 0.221 0.381 0.260 0.228 0.293

Note: the pressure difference between throttle and nozzle is 10 MPa.

Table 4. The KAFPs selection results.

Number KAFPs

x1 Clearance between the valve core and valve sleeve hole (mm)
x2 Clearance between valve sleeve and valve body (mm)
x3 Interference between spring tube and baffle (mm)
x4 The parallelism between spring tube base and armature pole shoe (mm)
x5 Interference between spring tube and armature (mm)
x8 Clearance of bushing 3 (mm)
x9 Clearance of bushing 4 (mm)
x14 Spring tube stiffness (106 N/m)
x15 Stiffness of feedback rod (106 N/m)
x16 Left nozzle flow (L/min)
x17 Right nozzle flow (L/min)

(1) Error comparison between predicted results and actual values
Each prediction model is trained with the set target domain sample set, and the

prediction results are obtained through the target domain test samples. Figure 8 shows the
prediction effect of each model when the target domain training samples are 100 groups.
It can be seen from the test results that the error fluctuation range of the IE-ANN model
and IE-RF model is extensive, the prediction error is significant; The error fluctuation range
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of the IE-TrAdaboost model and IE-SVR model is small, but the prediction results of the
IE-TrAdaboost model is closer to the actual value.

Table 5. Measurement data correction results.

Number 1 2 3 4 5 6 7 Correction Value

x1 0.0032 0.0033 0.0032 0.0035 0.0033 0.0034 0.0036 0.0033
x2 0.0022 0.0020 0.0017 0.0019 0.0018 0.0019 0.0017 0.0018
x3 0.0141 0.0142 0.0141 0.0142 0.0143 0.0146 0.0143 0.0142
x4 0.0209 0.0211 0.0210 0.0204 0.0208 0.0207 0.0208 0.0209
x5 0.0127 0.0133 0.0129 0.0128 0.0127 0.0128 0.0129 0.0128
x8 0.0061 0.0064 0.0063 0.0061 0.0065 0.0064 0.0063 0.0063
x9 0.0066 0.0070 0.0062 0.0067 0.0065 0.0069 0.0066 0.0067
x14 0.559 0.524
x15 3.669 3.641
x16 138 135 136 135 137 138 134 136
x17 136 142 135 137 137 138 131 137

Table 6. The parameters of algorithm model.

Algorithm Model Parameters

IE-TrAdaboost Weak learner: 4-layer neural network model; Hidden neuron:
21 × 2; α: 0.05; N: 10

IE-ANN 4-layer neural network model; Hidden neuron: 23 × 2; α: 0.05;
IE-SVR Kernel: rbf, C: 1e3; Gamma = 0.01

IE-RF Max_depth: 80; Max_features: 3; Min_samples_leaf: 4;
Min_samples_split: 10; N_eatimators: 200
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(2) Comparison of performance evaluation of different prediction models
As shown in Figure 9, each prediction model is trained with the data set selected from

the KAFPs to obtain the evaluation results, in which the evaluation results are normalized.
The evaluation results show that IE TrAdaboost performs best in the four evaluation indexes
and IE-ANN performs worst. At the same time, with the continuous increase of sample
data, the performance of various prediction models is improved. This means that when
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the sample data size reaches a certain degree, the accuracy of various prediction models
is excellent.
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Figure 9. The performances of prediction model with KAFPs selection. ((a) EVS; (b) R2; (c) MSE;
(d) MAE).

As shown in Figure 10, each model uses the data set without KAFPs selection to obtain
the evaluation results, in which the evaluation results are normalized. In the evaluation
results, the performance of each model is lower than that after training and extraction of
KAFPs. In particular, the fitting effect of the prediction model on the data is reduced to less
than 0.8. The experimental results indicate that the prediction model with the selection of
KAFPs has better performance.

4.3.4. Commissioning Decision

The hysteresis characteristic index of a high-precision servo valve selected in this case is
≤3%. When the predicted value of hysteresis characteristic is more than 3%, commissioning
is required. There are two ways to commission at present: the first is superimposed chatter
on the coil drive current, such as independent PWM flutter, parasitic PWM chatter, etc.
The second is to commission the assembly feature parameters, such as commissioning the
matching clearance of valve core and valve hole, nozzle flow, etc. When the hysteresis
characteristic value is out of range, the first scheme is usually adopted. When the hysteresis
characteristic value exceeds the capacity greatly, the second commissioning method is
generally adopted. Under the condition of hysteresis characteristic prediction results and
performance KAFPs correlation, the operator can quickly obtain the best commissioning
strategy. The intelligent commissioning strategy includes qualitative and quantitative
descriptions. This paper mainly studies the qualitative description (11 KAFPs). Under the
digital twin technology, the iterative interaction between virtual space (specifically includes
performance prediction and commissioning decisions) and physical space (specifically
includes commissioning and secondary assembly process) is realized until the performance
requirements are achieved.

4.4. Discussion

In this case, the cloud-edge collaborative network is utilized in the digital twin system
of a high-precision servo valve. The method proposed in this paper is implemented in
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hysteresis characteristic commissioning, while the experimental analysis results obtained
are shown in Table 7. The obtained result is the mean value of 100 groups of data.
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Table 7. The experimental analysis results.

Correction + IE +
TrAdaboost IE + TrAdaboost TrAdaboost

Relative error 0.35% 1.83% 5.26%

Traditional method Proposed method

Cycle 20 min 1.6 min

In summary, some conclusions can be drawn from the above results.
(1) From the perspective of measurement data accuracy, the modified assembly feature

data has higher prediction accuracy. For the performance of high-precision products, small
changes in assembly feature parameters would significantly impact the performance of
high-precision products.

(2) With regards to the data dimension, the model trained by the KAFPs selection data
set has better performance. There are many redundant assemblies features irrelevant to a
particular performance in the assembly process. Therefore, the selection of KAFPs is vital
for prediction models and commissioning decisions.

(3) In terms of the sample data, the prediction results of hysteresis characteristics of
small sample data by the TrAdaboost prediction algorithm proposed are closest to the
actual value. At the same time, the model evaluation results indicate the superiority of the
performance of the TrAdaboost model.

(4) The traditional performance commissioning method obtains the performance data
through the test bench and then obtains the commissioning decision-making scheme through
manual experience. The average time from obtaining the hysteresis characteristic value to
obtaining the commissioning scheme cycle is counted. The results show that the commis-
sioning cycle of the proposed method is 8% (E f f iciency = Proposed method/cycle

Tradition method/cycle × 100%) of that
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of the traditional method. This further proves the value of this method in improving the
assembly-commissioning efficiency of a high-precision servo valve.

5. Conclusions and Future Work

In the process of a high-precision servo valve assembly-commissioning, to solve the
problem of a long period of traditional performance index commissioning methods, a
performance prediction framework supported by digital twin assembly-commissioning
technology is proposed in this paper. Data analysis and decision-making tasks are carried
out by allocating supervised machine learning between the physical, edge, and cloud
layers. The network deployment method provides a feasible method for realizing digital
twin technology in dynamic industrial cloud-edge networks to ensure high-performance
prediction and commissioning decision-making. In the performance prediction process of
a high-precision servo valve, the accuracy of data samples is improved by measuring data
correction. Then, an IE-TrAdaboost prediction model is proposed for high-precision perfor-
mance prediction under high-dimensional and small sample data. Finally, the proposed
method is verified by hysteresis characteristics. The experimental results indicate that the
proposed method can greatly improve the assembly-commissioning efficiency.

In the digital twin assembly system, the performance control of a high-precision servo
valve needs to predict a variety of performance indicators and intelligently recommend
quantitative commissioning parameters. The main contribution of this paper is to investi-
gate the performance prediction of a high-precision servo valve to assist commissioning
decision-making. In the future, to apply the method proposed in practical projects, fur-
ther research would need to focus on multi-performance index-oriented optimization and
intelligent recommendation of global quantitative commissioning parameters.
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