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Abstract: A plethora of applications in non-linear analysis, including minimax problems,
mathematical programming, the fixed-point problems, saddle-point problems, penalization and
complementary problems, may be framed as a problem of equilibrium. Most of the methods
used to solve equilibrium problems involve iterative methods, which is why the aim of this
article is to establish a new iterative method by incorporating an inertial term with a subgradient
extragradient method to solve the problem of equilibrium, which includes a bifunction that is strongly
pseudomonotone and meets the Lipschitz-type condition in a real Hilbert space. Under certain mild
conditions, a strong convergence theorem is proved, and a required sequence is generated without
the information of the Lipschitz-type cost bifunction constants. Thus, the method operates with the
help of a slow-converging step size sequence. In numerical analysis, we consider various equilibrium
test problems to validate our proposed results.

Keywords: equilibrium problem; variational inequalities; strongly pseudomonotone bifunction;
Lipschitz-type conditions

1. Background

Assume that a bifunction f : H x H — R satisfying the conditions f(v,v) = 0 for each v € K.
A equilibrium problem [1,2] for f on K is said to be:

Find v* € K such that f(v*,v) >0, Vo € K. (1)

where K is a non-empty closed and convex subset of a Hilbert space H. Next, we present the definitions
of the important classification of the problems of equilibrium [1,3]. A function f : H x H — Ron K
for oy > 0is said to be

(i) strongly monotone if
f(o1,02) + f(02,01) < =7llor = 0a|?, V01,02 € K;

(i) monotone if
f(o1,02) + f(v2,01) <0, Voq,02 € K;
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(iii) 7y-strongly pseudo-monotone if
f(vl/UZ) 2 0= f(v2lvl) S _r)/”’vl - 02”2/ \V/vl/vz € ’C/

(iv) pseudo-monotone if
f(v1,02) > 0= f(va,v1) <0,Vvy, 02 €K;

and
(v) satisfy the Lipschitz-type conditions on K for L1, Ly > 0, such that

f(v1,v3) — Ly||vg — |2 = Ly|jvp — v3])* < f(v1,02) + f(v2,v3),Vv1,02,03 € K.

The above well-defined simple mathematical problem (1) includes many mathematical and
applied sciences problems as a special case, consisting of the fixed point problems, vector and scalar
minimization problems, problems of variational inequalities (VIP), the complementarity problems,
the Nash equilibrium problems in non-cooperative games, and inverse optimization problems [1,4,5].
This problem is also seen as a problem of Ky Fan inequality based on his initial contribution [2].
Several researchers have developed and generalized numerous findings on the nature of a solution
to an equilibrium problem. (e.g., see [2,4,6,7]). Due to the basic formulation of a problem (1) and its
application in both the theoretical and applied sciences, it has been extensively studied in recent times
by several authors [8,9] (see also [10-16]).

Many methods have been previously established and considered their convergence investigation
to deal with the problem (1). There is an impressive number of numerical methods have been designed
along with their well-defined convergence analysis and theoretical properties to solve the problem (1)
in different dimensional spaces [17-22]. Regularization is one of the most significant methods to figure
out various ill-posed problems in the many fields of pure and applied mathematics. The prominent
aspect of the regularization method is to employ it on monotone equilibrium problems and the initial
problem converts into strongly monotone equilibrium sub-problem. Therefore, each computationally
efficient sub-problem is strongly monotone and a unique solution exists.

A proximal method is another approach to deal with equilibrium problems that rely on numerical
minimization problems [23]. This method has also been identified as the extragradient method [24]
based on the initial contribution of the Korpelevich [25] method to solve the saddle point problems.
Hieu [26] established an algorithmic sequence {u, } as follows:

ug € K

vy = argmin{{, f (un,v) + %””n - UHZ}I @)
velkl

Upy1 = argmin{g, f (v, v) + %””n — 0|2},

vek

while {{,, } meet the following conditions:
. +w
Cr: nl—l>Tw {n =0 and C;: n;gn = 4-o00. 3)

Inertial-like methods are two-step iterative methods, where the next iteration is carried out by
employing the previous two iterations [27,28]. The inertial interpolation term is required to boost the
sequence and help to improve the convergence rate of the iterative sequence. Such inertial methods
are essentially used to speed up the iterative sequence to the appropriate solution and to improve
the convergence rate. Numerical descriptions demonstrate that inertial effects also enhance the
numerical performance. Such impressive attributes increase the curiosity of researchers in creating
inertial methods. Recently, various inertial methods have also been established for specific types of
equilibrium problems [29-32].
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In this paper, we use the projection method that is simple to carry out due to its low cost and
efficient numerical computations. Inspired by the works of Fan et al. [33], Thong and Hieu [34],
and Censor et al. [35], we set up an accelerated extragradient-like algorithm to solve the problem (1)
and other special class of equilibrium problem, such as variational inequalities. We prove a strong
convergence theorem corresponding to the sequence generated to solve the problem of equilibrium
under certain mild conditions. At the end, the computational tests show that the algorithm is more
efficient than the current ones [26,29,36-38].

The rest of the article has been organized as follows. Section 2 consists of some basic results which
are used throughout the article. Section 3 includes our proposed method and its convergence analysis.
Section 4 includes numerical experiments that demonstrate practical effectiveness.

2. Preliminaries
Assume that a convex function g : £ — R and subdifferential of g on v; € K is defined as follows:
9g(01) = {vs € H:g(v2) — g(v1) = (v3, 02 —v1), Vo2 € K}
A normal cone for K on v, € K is defined as follows:
Ni(v1) = {vs € H : (v3,v2 —v1) <0,Vov, € K}

Lemma 1 ([39]). Assume the three sequences ay, By and 7y, are in [0, +00) such that
—+o0
Qpi1 < &y + Bn(n — ay_1) + yn, for alln > 1, having Z Yn < +00,
n=1

where 0 < Bwith0 < B, < B < 1 foreach n € N. Thus, we have

—+00

i) Y [an —ay_1]4 < oo, with [g]4 := max{q,0};
n=1

(i) LMy soo ity = a* € [0, +00).

Lemma 2 ([40]). For each vy,v2 € H and r € R, the following equality holds
lror + (1 = oo || = rllo1 || + (1 =)oz ]|> = (1 = r)fJoy — 2|

Lemma 3 ([41]). Let {pn} and {q,} C [0, +-00) be two sequences such that
—+o0 —+oo
pn = +oo and Z Pnn < —+o00.
n=1 n=1

Then, liminf, 4 gy = 0.

Lemma 4 ([42]). Assume that a function h : K — R is subdifferentiable, convex, and lower semi-continuous
on K. Then, v1 € K is a function h minimizer if and only if 0 € oh(v1) + Ny (v1) while oh(v1) and Ny (v1)
stand for the subdifferential of h on vy € K and a normal cone of IC at vy, respectively.

Suppose that f : H x H — R satisfies the following conditions:

(C1) f(v1,v1) =0, forallv; € K and f is strongly pseudomonotone on £;
(C2) f meet the Lipschitz-type condition with two constants L; and Ly; and
(C3)  f(vy,.) is convex and sub-differentiable on H for fixed each v; € H.
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3. Main Results

The following is the main method (Algorithm 1) in more detail.

Algorithm 1. Modified subgradient extragradient method for equilibrium problems.

Step 0: Choose 1_1,uy € H arbitrarily. Let {,, satisfy the conditions (3). {6, } and {9, } are control
parameter sequences.

Step 1: Compute
. 1
vy = argmin{(, f (wy, v) + EHW - UHZ}/
vek

where wy, = uy, + 6, (uy — u,_1). If v, = wy, then STOP and w,, € EP(f, K).
Step 2: Compute a set

Hy={z € H: (wy — Lty — 0,z —vy) <0},

where t, € 0af (wy, vy).
Step 3: Compute
. 1
1w = argmin{Zy f (o, 0) + 5 wn — 0]%}.
vEH, 2
Step 4: Compute

Upt1 = (1 — Op)wn + Ontin,
where {9, } and {6, } are real sequences meet the conditions:
(i) {61} sequence is non-decreasing and 0 < 6, < 0 < 1 foreachn > 1;
(ii) there exists ¢, 6, 0 > 0 such that

40[0(1+0) + 0]

5
> -2 '

)
and
5 —460[0(1+06) + 0 + 160]

0<8<0,<
=T 48[6(1+0) + o+ 166]

©)

Set n := n 4 1 and switch to Step 1.

Lemma 5. Suppose that f : H x H — R satisfies the conditions (C1)-(C3). For v* € EP(f,K) # @, we have

10 = 01> < [wn — 0*[|* = (1 = 2L1Gn) [lwn — 0 ]|* = (1 = 2LaGn) 110 — va[1?
= 29Callon — 0|2

Proof. By value of 1, and Lemma 4, we have
1
0.€ 92{Guf (on,0) + 5 llwn — 02} (1) + N, ().
Thus, there exists w € 9f (v, 17,) and @ € Ny, (17,) such that
gnw+77n_w;1+wzo.
Thus, the above implies that

(Wn — N, 0 — ) = Cnw, v —1n) + (@0, 0 —1n), YU € Hy.
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Since w € Ny, (11n), it implies that (w, v — 17,) < 0, for all v € H,. This gives that
Cn{w, v —1n) > (Wy — 1y, 0 — 1), YU € Hy.
By w € df (v, 11n), we have
F(0n,0) = f(On, 1) > (w,0 — 1), Yo € H.
From (6) and (7), we obtain
Cnf(0n,0) = Cuf (On, n) = (Wn — 1,0 — 11n), Y0 € Ha.
By the use of v = v*, we get

Cnf(0n,*) = Cuf (On,n) = (Wn — 1, 0" — 1n).

50f 20

©)

@)

®)

©)

By given v* € EP(f,K), f(v*,v,) > 0, which implies that f(v,, v*) < —v||vy — v*||?. From the

expression (9), we obtain
(W = 1, Mn —0) > Cuf (Vn, 1n) + YCullvn — U*Hz-
Due to the Lipschitz-type continuity of a bifunction f,
F(wn, ) < f(wn,vn) + f(On, 1) + Lllwn — vl|* + Lo|on — 7a|*.

Expressions (10) and (11) gives that

(wn — MnsMn — v*) > gn{f(wn/ﬂn) _f(wn/vn)}
— LiZullwn — va|l* = LaZullon — yull* + ¥Znllon — o

By value 1, € Hy,
<wn - gntn — OnsMn — Un> <0.

The above implies that

(Wn = On, n — On) < Gultn, fn — Vn)-
ty € 9of (wn,vy) gives that

f(wn,0) = f(wn,vn) > (ty, 0 —vy), Vo € H.

Substituting v = 1, into the above expression,

f(wn, 11n) — f(wWn,0n) > (tn, 10 — On)-
Expressions (13) and (14) imply that

Cn {f(wn:’?n) *f(wnrvn)} > (W — Vn, fn — Vn)-

Combining expressions (12) and (15) implies that

(Wn — Y, i — 0*) > (W — U, Y — V)

— LiZnllwn — oull* = LoZullow — 1nll> + ¥Zullon — ©

*||2

*“2

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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We have the following facts:

2(wn — 1, = ") = [[wn =012 = ign = wal* = [l — 0|

2(0n — wp, 0p — 1u) = ||wn — Un”z + ll17n — Un||2 — flwn — 77nH2-
Thus, we finally obtain

70 = 0*[* < [leon =0 |> = (1 = 2LaZn) [wn — vnl|* = (1 = 2LoGn) |17 — vu|?
—29Gullon —v*||*.

O
Theorem 1. The sequences {wy}, {vn}, {nn} and {u,} generated by Algorithm 1 strongly converge to v*.
Proof. By the value of u,,;1, we have

w1 — 0% 1> = (1 = On)wn + Ouipn — 0*[|?
= [|(1 = 8,) (wn — 0*) + 8 (172 — 0*) >
= (1= 8wy — 0" > + Bullyn — 0*[|* = 8 (1 = 8n)||wn — 17a]®
< (1= 8n) [[ewn — 0|2 + Oullipn — "% (17)

From Lemma 5, we obtain

170 — " || < lwn — v*||* = (1 = 2L1Zn) |wn — val|* — (1 — 2LoZn) |10 — ©n|?
= 29Culvn — 0| (18)

By combining expressions (17) and (18), we get

ltn1 = "2 < (1= Ou)llewn — 0| + Bullwwn — v*[|* = 28uLnllon — 0*||?

= 0n(1 = 2L1Zn) [wn — vnl|* = O (1 = 2LoLn) [l — vu? (19)
— w0 = 0712 = 001 = ) [0n 0l + 115 — 012 20
= flwn — o)~ ) o, o2 42 — o
< fon — 012~ ), o 4 — 002
< g — o2 = 0By 2, @)

where b = max{2L;,2L,}. It continues from 1,1 such that
[ttnr1 — wull = [|(1 = Bn)wn + Buifn — wall = (90 (110 — wn)|- (22)

Combining (21) and (22), we have

1-b
1 =" 2 < oy =72 = S Py — 2 @)
Since {; — 0, thus there is 1y > 0 in order that ;, < 2177 for each n > ng. This implies 172%” > %
for every n > ng. The expression (23) for n > ny, turn as
* (12 * (12 1 2
Jttnga — "7 < fJwn —0*(|7 = o= [unga — wall”. (24)

41971
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By description of w,, we have

[y — 0 [|> = ||un + 0n (1n — 1y—1) — 0*|?
= [[(1 + 6,) (tn — 0*) = O (g — 0*)|1?

= (14 6y)|u, — v*||2 — Oy — v*||2 +60,(1460)||un — un_lHZ.

By value of w;, we have

| tns1 — wnHz = |[ups1 — tn — On(un — “n—l)Hz

= lluns1 — wnl* + 02N un — w1 [|* + 260 (tn — 1, n — Un_1)

60
> [lotnr1 = |+ 63 [[un — 1> = pubull 1 — unl|? — pl ot = w117
n

On

2 (1= ) a1 = a4+ (€5 = % ) = |

where p;, = m. Combining (24), (25), and (27) gives that

7

it = 01 < (14 00 1 — 07 |2 = Bty = 0 |2+ 00 (1 + 03 165 — 1,1 |2

— Pnbn) |ty 11 — “HHZ

— Pnbn) |ty 11 — ”nHz

1 2 5 By 2
= g (= o) tx = el (6 = 2 )l = 0]
% X 1
= (180 atn = 0" = Bty — 0|~ -(1
1 0
+ 001+ 00) = g5 (0 = 2) [l — s P
* X 1
= (14 0u)|lun — o ||2 — Onllup—1—0 ||2 - E(l

+ it — |,

where

1 0 1 /6
n = Ou(1+6,) — (95—;”):9”(1%”) (”

R
44, n 49, On

By the above expression and the choice of {p, }, we have

1 [0y

—9%) > 0.

1
Yu zon(1+9n)+<—e,%) <0(1+6)+ ;00.

41.9”

On

We substitute

Y = llun = plI = Oullin—1 — plI* + vanllutn — 10|

It follows (29) such that

Furt = ¥n = lnr1 = pI? = st llun = pI? + visa lttsr — un?
— llttw = pI? + Oulltn—1 = pl* = Yullttn — 11 ]?
< ltngr = plI? = (14 0n) [t = pI* + Oullin—1 — pI®

+ Ynglltngr — ”n”2 — Yulltn — un—lHZ

1
=~ (g 1= 28 = T )t = P

We claim that ,

49,

(1= pubn) — Yni1 > 0.

7 of 20

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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The above inequality implies that

1

m(l = Pnbn) = Y1 2 0
iff (1 —pnbn) — 48y 41 > 4040

iff (1 —pnbn) — 48 (vp41+0) >0

i 5t 4ty (i1 + ) > 0
iff  —4(yp41+0) (60 +60,) > —6 (33)
(31) and (5) give that
4(ys1 +0) (6O + 0y) > —4 [9(1 +0)+ iefs + a} (58, +8,) > —0. (34)
Expression (32) implies that
Y1 — ¥y < —0ljttpg1 — un||?> <0, foralln > ng. (35)

Thus, we obtain a non-increasing sequence {¥, } for n > ny. By the value of ¥,,;1, we have

i1 = [[uns1 — pI* = Onsallun — pI* + vasa 1 — un|?

(36)
> —Op1]|un — pl>.

By the value of ¥}, we have

Yu = [l —plI* = Oulltnr — plI* + vullun — 151 ]?

(37)
> [|un = plI* = Ou w1 — plI*.

Thus, expression (37) for n > ny is such that

[|un — PH2 < ¥y + Onlluy—1 — PHZ
< ¥y + 6]y 1 — p|?
Sy (0" 4+ 1) 6", — pl?
k4 .
T 0 g, — (38)

IN

IN

By (36) and (38) for all n > ny, we get

W1 < Oyt |lun — pl?
< 0|un — plf?

Y
<07+ 0"y, — 2 (39)

It follows from (35) and (39) that

k
0 Y N1 — unl* < ¥ny — Fria

n=ny
Yo
1-6

k4 2
< 1t llum =PI (40)

< ¥, +6 + 070 [, — pl|?
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Sending k — o0 implies that

+00
Y lngr = ta> < Foo. (41)
n=1
It continues from that
i i1 — 0| =0, 42)

Equations (26) and (42) provide that

nl_l)r}rloo |tty41 — wau| = 0. (43)
By the value of u, 1, we have
w1 — wall = (1 = On)wn + Onipn — wall = Onllnn — wall. (44)

By Equations (43) and (44), we obtain

lim ||, — wy| = 0. (45)

n—+o00

By the use of triangular inequality and (42) with (43), we obtain

) _ < ¥ B : _ _
it~ wall < e+t 2 =0 49
and

nl_i}}rlw [un — 1| < nhljfrlw l|un — wnll + ngr_{‘w |[wn — 11| = 0. (47)

Expressions (28) and (41) with Lemma 1 imply that

lim |u, —o*|>=b forsome b > 0. (48)
n——+0o

Expressions (46) and (47) imply that

. k2 — 1 %12 —
dim_fwy 0" 2= Tim_ g~ o"[2=b. (49)

Thus, Lemma 5 implies that
(1 —2Lo) [ — vull* < [fewn — 0" (> = 172 — 0*||%. (50)
The above expression with (48) and (49) gives that

lim ||w, —v,| =0 and lim |jv, —o*||> =b. (51)
n—+0o n—r+o00

The argument referred to above concludes that the sequences {wy}, {v.}, {#.}, and {5, } are
bounded for each v* € EP(f,K) the lim,_, . |1y — v*||? exists. It follows from (19) and (25) that
we have

290nZullon = 0*|* < = lluns1 — 0" |2 + (1 + 0n) un — 0" = Oul|n—1 — 0|2
< (lunw = 0" = lotw1 = 0°|[?) + 26|t — 111>

+ (Oullun — 0" ||* = 6y |un—1 —0"|?).

(52)
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The above expression for k > 1 gives that

k k
Y 290nlullon = 0|17 < (litng — 0% = llugsr = 0" 1%) +20 Y JJun — un—a|?

n=ny n=nop

+ (Bl — v = Ool|uny — 0"||?)

k
< lutng = 0% |12 + Ol = 0*|2 +20 Y- Jlun — a1, (53)

n=ny
letting k — +o0 in (53), we obtain
k
Y. 290uGnllvn — 0*|* < +oo. (54)
n=nop

From Lemma 3 and (54),
liminf v, — p|| = 0. (55)

By expressions (46), (47), (49), (51) and (55),

im oy —pll = lim |w,—p||= Um [, —p|= Um_[ju,—pll=0. (56)

n——+oo n—+o00 n—-+oo
This completes the proof. [

Next, we consider the application of our results to solve variational inequality problems.
A function G : H — H is said to be

(G1) strongly pseudo-monotone over K for v > 0 if
(G(v1),v2 —v1) >0 implies that (G(va),v1 — v2) < —v|v1 — 2|, Vo1, 02 € K;

and
(G2) L-Lipschitz continuity on C if

1G(01) = G(v2)[| < Loy — 02|, Vor, 02 € K.

Let a bifunction f(vy,v;) := (G(v1),v2 — v1) for all v1,v; € K then equilibrium problem turns
into problem of variational inequality with L = 2L; = 2L;. By the value of v,

. 1
Uy = argmm{énf(wn,v) + §||wn — UHZ}
vek

. 1
- argmln{€n<G(wn) v~ wy) + 5| wn —v|\2}
velkl
. 1 & RS 2
= argminy §u(G(wn), v — wy) + 5 |y — 0| + S| G (wn) > = |G (wn) |
518 { 2 2 2 J
(1 & 2
= argming 5 [|v — (wn — {aG(wn)|* = Z|G (wn)]|
&= {3 -5

= P (wy, — nG(wy)). (57)
Similar to above, the value of #,, turns into

T = Py, (wn — 0uG(vn)).
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Corollary 1. Assume that an operator G : K — H satisfies Conditions (G1)~(G2). Let {wy}, {va}, {n},
and {uy } be the sequences generated as follows:

(S1) Let u_q,ug € H arbitrarily.
(S2)  Choose {y, satisfying condition (3) and {6y}, {0, } are control parameters.
(S3)  Compute

on = Pic(wn — $uG(wn)),

where wy, = uy + 0y (Uy — Uy—_1). If vy = wy, then STOP.
(S4)  Determine a half space first H, = {z € H : (wn — {nG(wn) — vn, z — vy) < 0} and evaluate
n = Py, (wn — $nG(0n)).
(S5) Compute
Upt1l = (1 - ﬁn)wn + Oun,
where {0y, } and {8, } satisfies the following conditions:

(i) non-decreasing sequence {0, } through 0 < 6, <60 <1, foreachn > 1; and
(ii) there exists 8,6,0 > 0, thus that

46[6(1+6) + o]

6> 11— o2

(58)

and
5—40[0(1+6) + 0+ 160]

0<8<0, <
=T 45[0(1+0) + o+ 160]

(59)

Then, {wy}, {vn}, {n}, and {u,} strongly converge to v* € VI(G,K).

4. Numerical Illustration

Numerical findings are summarized in this section to demonstrate the effectiveness of the
proposed methods. The following control parameters are used in this section.

(1) For Hieu et al. [26] (Hieu-EgA), we use Dy, = ||uy, — v,
(2) For Hieu et al. [29] (Hieu-mEgA), we use 0 = 0.5 and D,, = max{||u,11 — vnl|%, [|tns1 — wa|*}.
(3) For Algorithm 1 (iEgA), we use a, = 0.50, B, = 0.80, and D, = ||w;,, — vy ||%.
Example 1. Let bifunction f have the following form
f(u,v) = (Au+Bv+c,v—u)

where ¢ € R® and A and B are

(@]
(O8]
Q1
N
W o O O O
o8]
I
(@]
—
a1
—
N © O O O
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and

12 of 20

where Lipschitz parameters Ly = Ly = %||A — B|| [26]. The feasible set K C R3 is

K::{u€R5:—5§ui§5}.

Table 1 and Figures 1-3 show the numerical results by u_1 = ug = vg = (1,--- ,1), and TOL = 1012,

Table 1. Example 1: Numerical values for Figures 1-3.

Hieu-EgA [26]

Hieu-mEgA [29] iEgA Algorithm 1

n TOL n Iter. Time Iter. Time Iter. Time
—12 T

5 10 Tog (i 3) (1) 320 5.8584 59 0.5979 64 0.2830

5 10712 =T 222 31116 43 04158 39 0.1696

5 10712 8035 15466 40 03732 33 01581

- - —iEgA
10° g 105+
S Q
10'10 b 4 10'10 b
0 1 2‘ C": 1‘1 5 6 0 0.‘1 O.‘2 O.‘3 014 0.‘5 0.6
Elapsed time [sec] Elapsed time [sec]
(a) CPU time in seconds (b) CPU time in seconds
Figure 1. Example 1: Numerical comparison for Algorithm 1 while {,, = WNW
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Figure 2. Example 1: Numerical comparison for Algorithm 1 while {;, =
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Figure 3. Example 1: Numerical comparison for Algorithm 1 while {,, = %.

Example 2. Let a bifunction f be defined on the convex set K as

f(u,v) = ((BBT + S+ D)u,v —u),
where B is a 50 x 50 matrix, S is a 50 x 50 skew-symmetric matrix, and D is a 50 x 50 diagonal matrix. The set
K C R is defined by

K:={uecR': Au<b}
with matrix A as 100 x 50 and vector b as a non-negative vector. Observe that f is monotone and Lipschitz-type
— ¢, — IBBT+5+D|
constants are ¢y = ¢y = 5

. We generate random matrices in our case [B = rand(n), C = rand(n),
S = 0.5C — 0.5CT, D = diag(rand(n,1))] and the numerical findings regarding Example 2 are shown in
Figures 4~7 withu_1 = ug = vg = (1,---,1) and TOL = 1012,

10* T 10%° T T
Hieu-EgA anm A = = =Hieu-mEgA
\ .
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5 !
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> i
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= = ~ ~ .~.~'~.~
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Number of iterations

Number of iterations
(a) Number of iterations

(b) Number of iterations
Figure 4. Example 2: Numerical comparison for Algorithm 1 while {,, =

1
n+1*
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Figure 5. Example 2: Numerical comparison for Algorithm 1 while {, = ;5.
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Example 3. Let G : R% — R be defined by
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where n X n symmetric semi-definite matrix A and B(u) is the function depends on the proximal operator [43]
through h(u) = % ||lu||* such that

4
B(u) = argmin{”u| + 1HZJ - u||2}.

veR! 4 2
The feasible set KC is considered as

K::{MERS:—ZguiSS}.

The entries of A and c are taken as follows:

31 0 1 2 1
15 -1 0 1 -2
A=|01 -4 2 =2 c=|-1
1 0 2 6 -1 2
21 -2 -1 4 -1

Figures 8-11 and Table 2 show the numerical results by using u_1 = uy = vy

= (1,---,1) and
TOL = 1012,

Table 2. Example 3: Numerical results for Figures 8-11.

Hieu-EgA [26] Hieu-mEgA [29] iEgA Algorithm 1

n TOL Cn Iter. Time Iter. Time Iter. Time
5 1010 WW 440 29.7625 190 162712 247 10.8531
5 10710 T 198 13.8482 104  11.8096 145 5.8483
5 10710 % 178 122979 98 7.8478 120 5.2870
5 10710 T 251 16.7337 110 9.6097 148 6.0004
_‘]_O2 T T T T T E
Hieu-EgA | |
. : Hieu-mEgA | |
10 i _____ ‘
i
I ]
102l
!

=5 1 ]
Q 107E}
i
'
108F %
\‘ 3
108 1

10710 :

0 5 10 15 20 25
Elapsed time [sec]

30

Figure 8. Example 3: Numerical comparison for Algorithm 1 while {,, = Wg(n%)’
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Elapsed time [sec]

Figure 9. Example 3: Numerical comparison for Algorithm 1 while ¢, = ;25.

Hieu-EgA
- — =Hieu-mEgA

0 2 4 6 8 10 12 14
Elapsed time [sec]
Figure 10. Example 3: Numerical comparison for Algorithm 1 while {;, = IOgn(if’)
Example 4. Suppose that K C G : R? — R? is defined by
G(U)=( 1ttt 5”7@1) , forall (vy,v;) € R2,
vy —v1 + vy + sin(vy)
where IC = [—5,5] x [—5,5]. It is easy that G is Lipschitz continuous and strongly pseudomonotone operator.

Figures 12—15 show the numerical results with u_1 = ug = vy and TOL = 10710,
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Figure 14. Example 4: Numerical comparison for Algorithm 1 while ug = (~1,—1) and {» = ;77
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Figure 15. Example 4: Numerical comparison for Algorithm 1 while ug = (-2, —2) and {, = %H

5. Conclusions

In this paper, we set up a new method by combining an inertial term with an extragradient
method for solving a family of strongly pseudomonotone equilibrium problems. The introduced
method involves a sequence of diminishing and non-summable step size rule and the method operates
without previous information of the Lipschitz-type constants. Four numerical examples are described
to show the computational performance of the proposed method in relation to other existing methods.

Numerical experiments clearly point out that the method with an inertial term performs better than
those without an inertial term.
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