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1. Introduction

In the study of various issues related to dynamic stability, with the properties of media with a
periodic structure, in the study of other applied problems, one has to deal with differential equations
with rapidly oscillating coefficients. Equations of this kind can describe some mechanical or electrical
systems that are under the influence of high-frequency external forces, automatic control systems
with a linear adjustable object, etc. As an example, we can cite the principle of operation of an
oscillator with a small mass and a nonlinear restoring force, in which a high-frequency periodic force
with a large amplitude acts. The presence of high-frequency terms creates serious problems for their
direct numerical solutions. Therefore, asymptotic methods are usually applied to such equations
first, the most famous of which are the Feshchenko–Shkil–Nikolenko splitting method [1–5] and the
Lomov’s regularization method [6–8]. It should also be noted that singularly perturbed equations are
the object of study by several Russian researchers, as well as other scientists (see, for example [9–22]).

In this paper, the Lomov’s regularization method is generalized to previously unexplored
integro-differential equations with rapidly oscillating coefficients and with rapidly decreasing kernels
of the form

ε
dz
dt
− a(t)z− εg(t) cos

β(t)
ε

z−
∫ t

t0

e
1
ε

∫ t
s µ(θ)dθK(t, s)z(s, ε)ds = h(t), z(t0, ε) = z0, t ∈ [t0, T] (1)

where z = z(t, ε), h(t), β′(t) > 0, a(t) > 0, µ(t) < 0, a(t) 6= µ(t) (∀t ∈ [t0, T]) , g(t) are scalar
functions, z0 is a constant, ε > 0 is a small parameter. In the case β (t) = 2γ (t) , and of the absence of
an integral term, such a system was considered in [6–8].
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The limit operator a(t) has a spectrum λ1 (t) = a(t), functions λ2 (t) = −iβ′ (t) and
λ3 (t) = +iβ′ (t) are associated with the presence in Equation (1) of a rapidly oscillating cos β(t)

ε ,
and the function λ4 (t) = µ(t) characterizes the rapid change in the kernel of the integral operator.

We introduce the following notations:
λ (t) = (λ1 (t) , ..., λ4 (t)) ,
m = (m1, ..., m4) is multi-index with non-negative components mj, j = 1, 4,
|m| = ∑4

j=1 mj is multi-index height m,

(m, λ (t)) = ∑4
j=1 mjλj (t) .

Assume that the following conditions are met:
(1) a(t), β(t), µ(t) ∈ C∞ ([t0, T] , R) , g(t), h(t) ∈ C∞ ([t0, T] , C) ,

K(t, s) ∈ C∞ {t0 ≤ s ≤ t ≤ T,C} ;
(2) the relations (m, λ (t)) = 0, (m, λ (t)) = λj (t) , j ∈ {1, ..., 4} for all multi-indices m with

|m| ≥ 2 or are not fulfilled for any t ∈ [t0, T] , or are fulfilled identically on the whole segment
t ∈ [t0, T] .

In other words, resonant multi-indices are exhausted by the following sets

Γ0 = {m : (m, λ (t)) ≡ 0, |m| ≥ 2, ∀t ∈ [t0, T]} ,
Γj =

{
m : (m, λ (t)) ≡ λj (t) , |m| ≥ 2, ∀t ∈ [t0, T]

}
, j = 1, 4.

Under these conditions, we will develop an algorithm for constructing a regularized [6] asymptotic
solution of the problem (1).

2. Regularization of the Problem (1)

Denote by σj = σj (ε) independent of the t quantities σ1 = e−
i
ε β(t0), σ2 = e+

i
ε β(t0), and rewrite

the Equation (1) in the form

L z(t, ε) ≡ ε dz
dt − a(t)z− ε

g(t)
2

(
e−

i
ε

∫ t
t0

β′(θ)dθ
σ1 + e+

i
ε

∫ t
t0

β′(θ)dθ
σ2

)
z−

−
∫ t

t0
e

1
ε

∫ t
s µ(θ)dθK(t, s)z(s, ε)ds = h(t), z(t0, ε) = z0, t ∈ [t0, T].

(2)

We introduce regularizing variables

τj =
1
ε

∫ t

t0

λj(θ)dθ ≡
ψj(t)

ε
, j = 1, 4 (3)

and instead of problem (2) we consider the problem

L z̃ (t, τ, ε) ≡ ε ∂z̃
∂t + ∑4

j=1 λj(t) ∂z̃
∂τj
− λ1(t)z̃− ε

g(t)
2 (eτ2 σ1 + eτ3 σ2) z̃−

−
∫ t

t0
e

1
ε

∫ t
s λ4(θ)dθK(t, s)z̃

(
s, ψ(s)

ε , ε
)

ds = h(t), z̃(t, τ, ε)|t=t0,τ=0 = z0, t ∈ [t0, T]
(4)

for the function z̃ = z̃ (t, τ, ε) , where it is indicated (according to (3)): τ = (τ1, ..., τ4) , ψ = (ψ1, ..., ψ4) .
It is clear that if z̃ = z̃ (t, τ, ε) is the solution of the problem (4), then the function z = z̃

(
t, ψ(t)

ε , ε
)

is an
exact solution of the problem (2), therefore, the problem (4) is an extension of the problem (2).

However, (4) cannot be considered completely regularized, since the integral term

Jz̃ =
∫ t

t0

e
1
ε

∫ t
s λ4(θ)dθK (t, s) z̃

(
s,

ψ(s)
ε

, ε

)
ds

has not been regularized in it. To regularize J, we introduce a class Mε, asymptotically invariant with
respect to the operator Jz̃ (see [6]; p. 62).
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We first consider the space U of functions z (t, τ) , representable by sums

z (t, τ, σ) = z0 (t, σ) + ∑4
i=1 zi (t, σ) eτi + ∑∗2≤|m|≤Nz

zm (t, σ) e(m,τ),
z0 (t, σ) , zi (t, σ) , zm (t, σ) ∈ C∞ ([t0, T] , C) , i = 1, 4, 2 ≤ |m| ≤ Nz

(5)

where the asterisk ∗ above the sum sign indicates that in it the summation for |m| ≥ 2 occurs only over
nonresonant multi-indices m = (m1, ..., m4) , i.e., over m /∈ ⋃4

i=0 Γi.
Note that in (5) the degree Nz of the polynomial z (t, τ, σ) to exponentials eτj depends on the

element z. The elements of the space U depend on bounded in ε > 0 constants σ1 = σ1 (ε) and
σ2 = σ2 (ε), which do not affect the development of the algorithm described below, therefore in the
notation of element (5) of this space U we omit the dependence on σ = (σ1, σ2) for brevity. We show
that the class Mε = U|τ=ψ(t)/ε is asymptotically invariant with respect to the operator J.

The image of the operator J on the element (5) of the space U has the form:

Jz (t, τ) =
∫ t

t0

e
1
ε

∫ t
s λ4(θ)dθK (t, s) z0 (s) ds +

4

∑
i=1

∫ t

t0

e
1
ε

∫ t
s λ4(θ)dθK (t, s) zi (s) e

1
ε

∫ s
t0

λi(θ)dθds+

+
∗
∑

2≤|m|≤Nz

∫ t

t0

e
1
ε

∫ t
s λ4(θ)dθK (t, s) zm (s) e

1
ε

∫ s
t0
(m,λ(θ))dθds =

=
∫ t

t0

e
1
ε

∫ t
s λ4(θ)dθK (t, s) z0 (s) ds + e

1
ε

∫ t
t0

λ4(θ)dθ
∫ t

t0

K (t, s) z4 (s) ds+

+
4

∑
i=1,i 6=4

e
1
ε

∫ t
t0

λ4(θ)dθ
∫ t

t0

K (t, s) zi (s) e
1
ε

∫ s
t0
(λi(θ)−λ4(θ))dθds+

+
∗
∑

2≤|m|≤Nz

e
1
ε

∫ t
t0

λ4(θ)dθ
∫ t

t0

K (t, s) zm (s) e
1
ε

∫ s
t0
(m−e4,λ(θ))dθds.

Integrating in parts, we have

J0 (t, ε) =
∫ t

t0

K (t, s) z0 (s) e
1
ε

∫ s
t0

λ4(θ)dθds = ε
∫ t

t0

K (t, s) z0 (s)
λ4 (s)

de
1
ε

∫ s
t0

λ4(θ)dθ
=

= ε
K (t, s) z0 (s)

λ4 (s)
e

1
ε

∫ s
t0

λ4(θ)dθ
∣∣∣∣s=t

s=t0

− ε
∫ t

t0

(
∂

∂s
K (t, s) z0 (s)

λ4 (s)

)
e

1
ε

∫ s
t0

λ4(θ)dθds =

= ε

[
K (t, t) z0 (t)

λ4 (t)
e

1
ε

∫ t
t0

λ4(θ)dθ − K (t, t0) z0 (t0)

λ4 (t0)

]
− ε

∫ t

t0

(
∂

∂s
K (t, s) z0 (s)

λ4 (s)

)
e

1
ε

∫ s
t0

λ4(θ)dθds.

Continuing this process further, we obtained the decomposition

J0 (t, ε) = ∑∞
ν=0(−1)νεν+1

[(
Iν
0 (K (t, s) z0 (s))

)
s=t e

1
ε

∫ t
t0

λ4(θ)dθ −
(

Iν
0 (K (t, s) z0 (s))

)
s=t0

]
,

I0
0 =

1
λ4 (s)

·, Iν
0 =

1
λ4 (s)

∂

∂s
Iν−1
0 (ν ≥ 1) .

Next, apply the same operation to the integrals:

J4,i (t, ε) = e
1
ε

∫ t
t0

λ4(θ)dθ ∫ t
t0

K (t, s) zi (s) e
1
ε

∫ s
t0
(λi(θ)−λ4(θ))dθds =

= εe
1
ε

∫ t
t0

λ4(θ)dθ ∫ t
t0

K(t,s)zi(s)
λi(s)−λ4(s)

de
1
ε

∫ s
t0
(λi(θ)−λ4(θ))dθ

=
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= εe
1
ε

∫ t
t0

λ4(θ)dθ

[
K (t, s) zi (s)

λi (s)− λ4 (s)
e

1
ε

∫ s
t0
(λi(θ)−λ4(θ))dθ

∣∣∣∣s=t

s=t0

−

− ε
∫ t

t0

(
∂

∂s
K (t, s) zi (s)

λi (s)− λ4 (s)

)
e

1
ε

∫ s
t0
(λi(θ)−λ4(θ))dθds

]
=

= ε

[
K(t,t)zi(t)

λi(t)−λ4(t)
e

1
ε

∫ t
t0

λi(θ)dθ − K(t,t0)zi(t0)
λi(t0)−λ4(t0)

e
1
ε

∫ t
t0

λ4(θ)dθ
]
−

−εe
1
ε

∫ t
t0

λ4(θ)dθ ∫ t
t0

(
∂
∂s

K(t,s)zi(s)
λi(s)−λ4(s)

)
e

1
ε

∫ s
t0
(λi(θ)−λ4(θ))dθds =

= ∑∞
ν=0(−1)νεν+1

[(
Iν
i (K (t, s) zi (s))

)
s=t e

1
ε

∫ t
t0

λi(θ)dθ −
(

Iν
i (K (t, s) zi (s))

)
s=t0

e
1
ε

∫ t
t0

λ4(θ)dθ
]

,

I0
i =

1
λi (s)− λ4 (s)

·, Iν
i =

1
λi (s)− λ4 (s)

∂

∂s
Iν−1
i , ν ≥ 1, i = 1, 3 .

Denote bay e4 = (0, 0, 0, 1). Then

Jm (t, ε) = e
1
ε

∫ t
t0

λ4(θ)dθ
∫ t

t0

K (t, s) zm (s) e
1
ε

∫ s
t0
(m−e4,λ(θ))dθds =

= εe
1
ε

∫ t
t0

λ4(θ)dθ
∫ t

t0

K (t, s) zm (s)
(m− e4, λ (s))

de
1
ε

∫ s
t0
(m−e4,λ(θ))dθ

=

= εe
1
ε

∫ t
t0

λ4(θ)dθ
[

K (t, s) zm (s)
(m− e4, λ (s))

e
1
ε

∫ s
t0
(m−e4,λ(θ))dθ

∣∣∣∣s=t

s=t0

−

−
∫ t

t0

(
∂

∂s
K (t, s) zm (s)
(m− e4, λ (s))

)
e

1
ε

∫ s
t0
(m−e4,λ(θ))dθds] =

=
∞

∑
ν=0

(−1)νεν+1[
(

Iν
4,m (K (t, s) zm (s))

)
s=te

1
ε

∫ t
t0
(m,λ(θ))dθ−

−
(

Iν
4,m (K (t, s) zm (s))

)
s=t0

e
1
ε

∫ t
t0

λ4(θ)dθ
],

I0
4,m =

1
(m− e4, λ (s))

·, Iν
4,m =

1
(m− e4, λ (s))

∂

∂s
Iν−1
4,m , ν ≥ 1,

2 ≤ |m| ≤ Nz.

Here it is taken into account that (m− e4, λ (s)) 6= 0, since by the definition of the space U
multi-indices m /∈ Γ4. The image of the operator J on the space U element (5) is represented as a series

Jz (t, τ) = e
1
ε

∫ t
t0

λ4(θ)dθ
∫ t

t0

K (t, s) z4 (s) ds +
∞

∑
ν=0

(−1)νεν+1
[
(Iν

0 (K (t, s) z0 (s)))s=t e
1
ε

∫ t
t0

λ4(θ)dθ−

− (Iν
0 (K (t, s) z0 (s)))s=t0

]
+

4

∑
i=1,i 6=4

∞

∑
ν=0

(−1)νεν+1
[
(Iν

i (K (t, s) zi (s)))s=t e
1
ε

∫ t
t0

λi(θ)dθ −

− (Iν
i (K (t, s) zi (s)))s=t0

e
1
ε

∫ t
t0

λ4(θ)dθ
]
+

+
∗
∑

2≤|m|≤Nz

∞

∑
ν=0

(−1)νεν+1
[(

Iν
4,m (K (t, s) zm (s))

)
s=t e

1
ε

∫ t
t0
(m,λ(θ))dθ−

−
(

Iν
4,m (K (t, s) zm (s))

)
s=t0

e
1
ε

∫ t
t0

λ4(θ)dθ
]

, τ = ψ (t) /ε.
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It is easy to show (see, for example, [23], pp. 291–294) that this series converges asymptotically for
ε→ +0 (uniformly in t ∈ [t0, T]). This means that the class Mε is asymptotically invariant (for ε→ +0)
with respect to the operator J.

Let as introduce the operators Rν: U → U, acting on each element z (t, τ) ∈ U of the form (5)
according to the law:

R0z (t, τ) = eτ4

∫ t

t0

K (t, s) z4 (s) ds, (60)

R1z (t, τ) =

[(
I0
0 (K (t, s) z0 (s))

)
s=t

eτ4 −
(

I0
0 (K (t, s) z0 (s))

)
s=t0

]
+

+
3

∑
i=1

[(
I0
i (K (t, s) zi (s))

)
s=t

eτi −
(

I0
i (K (t, s) zi (s))

)
s=t0

eτ4

]
+ (61)

+
∗
∑

2≤|m|≤Nz

[(
I0
4,m (K (t, s) zm (s))

)
s=t

e(m,τ) −
(

I0
4,m (K (t, s) zm (s))

)
s=t0

eτ4

]
,

Rν+1z (t, τ) =
[
(Iν

0 (K (t, s) z0 (s)))s=t eτ4 − (Iν
0 (K (t, s) z0 (s)))s=t0

]
+

+
3

∑
i=1

(−1)ν
[
(Iν

i (K (t, s) zi (s)))s=t eτi − (Iν
i (K (t, s) zi (s)))s=t0

eτ4
]
+ (6ν+1)

+
∗
∑

2≤|m|≤Nz

[(
Iν
4,m (K (t, s) zm (s))

)
s=t e(m,τ) −

(
Iν
4,m (K (t, s) zm (s))

)
s=t0

eτ4
]

, ν ≥ 1.

Let now z̃ (t, τ, ε) be an arbitrary continuous function in (t, τ) ∈ [t0, T]×
{

τ : Reτj ≤ 0, j = 1, 4
}

with the asymptotic expansion

z̃ (t, τ, ε) =
∞

∑
k=0

εkzk (t, τ) , zk (t, τ) ∈ U, (7)

converging as ε → +0 (uniformly in (t, τ) ∈ [t0, T] ×
{

τ : Reτj ≤ 0, j = 1, 4
}

). Then the image
Jz̃ (t, τ, ε) of this function is expanded in the asymptotic series

Jz̃ (t, τ, ε) =
∞

∑
k=0

εk Jzk (t, τ) =
∞

∑
r=0

εr
r

∑
s=0

Rr−szs (t, τ) |τ=ψ(t)/ε.

This equality is the basis for introducing the extension of the operator J on the series type (7):

J̃ z̃ (t, τ, ε) ≡ J̃

(
∞

∑
k=0

εkzk (t, τ)

)
de f
=

∞

∑
r=0

εr
r

∑
s=0

Rr−szs (t, τ) .

Although the operator J̃ is formally defined, its usefulness is obvious, since in practice they
usually construct the N-th approximation of the asymptotic solution of problem (2), in which only the
N-th partial sums of the series (7) will take part, which do not have a formal but true meaning. Now we
can write down a problem that is completely regularized with respect to the original problem (2):

L z̃ (t, τ, ε) ≡ ε ∂z̃
∂t + ∑4

j=1 λj (t) ∂z̃
∂τj
− λ1(t)z̃− ε

g(t)
2 (eτ2 σ1 + eτ3 σ2) z̃− J̃ z̃ = h(t),

z̃(t, τ, ε)|t=t0,τ=0 = z0, t ∈ [t0, T].
(8)
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3. Iterative Problems and Their Solvability in the Space U

Substituting series (7) into (8) and equating the coefficients for the same powers ε, we obtain the
following iterative problems:

L z0 (t, τ) ≡
4

∑
j=1

λj (t)
∂z0

∂τj
− λ1(t)z0 − R0z0 = h (t) , z0 (t0, 0) = z0; (90)

L z1 (t, τ) = −∂z0

∂t
+

g(t)
2

(eτ2 σ1 + eτ3 σ2) z0 + R1z0, z1 (t0, 0) = 0; (91)

L z2 (t, τ) = −∂z1

∂t
+

g(t)
2

(eτ2 σ1 + eτ3 σ2) z1 + R1z1 + R2z0, z0 (t0, 0) = 0; (92)

· · ·

L zk (t, τ) = −∂zk−1
∂t

+
g(t)

2
(eτ2 σ1 + eτ3 σ2) zk−1 + Rkz0 + ... + R1zk−1, zk (t0, 0) = 0, k ≥ 1. (9k)

Each of the iterative problems can be written as

L z (t, τ) ≡
4

∑
j=1

λj (t)
∂z
∂τj
− λ1(t)z− R0z = H (t, τ) , z (t0, 0) = z∗, (10)

where H (t, τ) = H0 (t) + ∑4
i=1 Hi (t) eτi + ∑∗2≤|m|≤NH

Hm (t) e(m,τ) is the known function of the space
U, z∗ is the known number of complex the space C, and the operator R0 has the form (see (60))

R0z ≡ R0

 z0 (t) +
4

∑
i=1

zi (t) eτi +
∗
∑

2≤|m|≤Nz

zm (t) e(m,τ)

 de f
= eτ4

∫ t

t0

K (t, s) z4 (s) ds.

We introduce the scalar product (for each t ∈ [t0, T]) in the space U :

< z, w >≡< z0 (t) +
4

∑
i=1

zi (t) eτi +
∗
∑

2≤|m|≤Nz

zm (t) e(m,τ),

w0 (t) +
4

∑
i=1

wi (t) eτi +
∗
∑

2≤|m|≤Nw

wm (t) e(m,τ) >
de f
=

de f
= (z0 (t) , w0 (t)) +

4

∑
i=1

(zi (t) , wi (t)) +
∗
∑

2≤|m|≤min(Nz ,Nw)

(zm (t) , wm (t)) ,

where (∗ , ∗) we denote the ordinary scalar product in the complex space C: (u, v) = u · v̄. We prove
the following statement.

Theorem 1. Suppose that conditions (1) and (2) are satisfied and the right-hand side H (t, τ) = H0 (t) +
+∑4

i=1 Hi (t) eτi + ∑∗2≤|m|≤NH
Hm (t) e(m,τ) of the Equation (10) belongs to the space U. Then for the

solvability of the Equation (10) in U it is necessary and sufficient that the identities

< H (t, τ) , eτ1 >≡ 0, ∀t ∈ [t0, T] (11)

hold true.
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Proof. We will determine the solution of the Equation (10) in the form of an element (5) of the space U:

z (t, τ) = z0 (t) +
4

∑
i=1

zi (t) eτi +
∗
∑

2≤|m|≤NH

zm (t) e(m,τ). (12)

Substituting (12) into the Equation (10), we have

−λ1 (t) z0 (t) +
4

∑
i=1

[λi (t)− λ1 (t)] zi (t) eτi +
∗
∑

2≤|m|≤NH

[(m, λ (t))− λ1 (t)] zm (t) e(m,τ)−

−eτ4

∫ t

t0

K (t, s) z4 (s) ds = H0 (t) +
4

∑
i=1

Hi (t) eτi +
∗
∑

2≤|m|≤NH

Hm (t) e(m,τ).

Equating here separately the free terms and coefficients at the same exponents, we obtained the
following equations:

−λ1 (t) z0 (t) = H0 (t) , (130)

[λi (t)− λ1 (t)] zi (t) = Hi (t) , i = 1, 3; (13i)

[λ4 (t)− λ1 (t)] z4 (t)−
∫ t

t0

K (t, s) z4 (s) ds = H4 (t) ; (134)

[(m, λ (t))− λ1 (t)] zm (t) = Hm (t) , m /∈ Γ1, 2 ≤ |m| ≤ NH . (13m)

Since the function λ1 (t) 6= 0 ∀t ∈ [t0, T], the Equation (130) has a unique solution
z0(t) = −λ−1

1 (t) H0(t). Since λ4 (t)− λ1 (t) 6= 0 ∀t ∈ [t0, T], then the Equation (134) can be written as

z4 (t) =
∫ t

t0

(
[λ4 (t)− λ1 (t)]

−1 K (t, s)
)

z4 (s) ds− [λ4 (t)− λ1 (t)]
−1 H4 (t) . (14)

Due to the smoothness of the kernel
(
[λ4 (t)− λ1 (t)]

−1 K (t, s)
)

and heterogeneity

− [λ4 (t)− λ1 (t)]
−1 H4 (t), this Volterra integral equation has a unique solution

z4 (t) ∈ C∞ ([t0, T] , C) . The Equations (132) and (133) also have unique solutions

zi (t) = [λi (t)− λ1 (t)]
−1 Hi (t) ∈ C∞ ([t0, T] , C) , i = 2, 3,

since λi (t) 6= λ1 (t) , i = 2, 3. The Equation (131) is solvable in the space C∞ ([t0, T] , C) if and only
if identities (H1 (t) , eτ1) ≡ 0 ∀t ∈ [t0, T] hold. It is easy to see that this identity coincides with
identity (11).

Further, since (m, λ (t)) 6= λ1 (t) , 2 ≤ |m| ≤ NH (∀m /∈ Γ1), then the Equation (13m) has a
unique solution

zm (t) = [(m, λ (t)) I − A (t)]−1 Hm (t) ∈ C∞ ([t0, T] , C) , 2 ≤ |m| ≤ NH .

Thus, condition (11) is necessary and sufficient for the solvability of the Equation (10) in the space
U. The Theorem 1 is proved.

Remark 1. If identity (11) holds, then under conditions (1) and (2), the Equation (10) has the following solution
in the space U :

z (t, τ) = z0 (t) + ∑4
i=1 zi (t) eτi + ∑∗2≤|m|≤NH

zm (t) e(m,τ) ≡ z0 (t) + α1 (t) eτ1+

+h21(t)eτ2 + h31(t)eτ3 + z4 (t) eτ4 + ∑∗2≤|m|≤NH
Pm (t) e(m,τ),

(15)
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where α1 (t) ∈ C∞ ([t0, T] , C) are arbitrary function, z0 (t) = −λ−1
1 (t)H0(t), z4 (t) is the solution of the

integral Equation (14), and introduced notations

h21(t) ≡
H2 (t)

λ2 (t)− λ1 (t)
, h31(t) ≡

H3 (t)
λ3 (t)− λ1 (t)

, Pm (t) ≡ [(m, λ (t))− λ1 (t)]
−1 Hm (t) .

4. The Remainder Term Theorem

Along with problem (10), we consider the equation

L w (t, τ) = −∂z
∂t

+
g (t)

2
(eτ2 σ1 + eτ3 σ2) z + R1z + Q (t, τ) , (16)

where z = z (t, τ) is the solution (15) of Equation (10), Q (t, τ) ∈ U is the known function of the space U
(this form will have problems (9k+1) after calculating the solution of the problem (9k) in U). The right
side of this equation:

G (t, τ) ≡ −∂z
∂t

+
g (t)

2
(eτ2 σ1 + eτ3 σ2) z + R1z + Q (t, τ) =

= − ∂

∂t

z0 (t) +
4

∑
i=1

zi (t) eτi +
∗
∑

2≤|m|≤NH

zm (t) e(m,τ)

+

+
g (t)

2
(eτ2 σ1 + eτ3 σ2)

z0 (t) +
4

∑
i=1

zi (t) eτi +
∗
∑

2≤|m|≤NH

zm (t) e(m,τ)

+ R1z + Q (t, τ) ,

may not belong to the space U, if z = z (t, τ) ∈ U. Indeed, taking into account the form (15) of function
z = z (t, τ) ∈ U, we consider in G (t, τ) , for example, the terms

Z (t, τ) ≡ g (t)
2

(eτ2 σ1 + eτ3 σ2)

[
z0 (t) +

4

∑
i=1

zi (t) eτi+
∗
∑

2≤|m|≤NH

zm (t) e(m,τ)

 =

=
g (t)

2
z0 (t) (eτ2 σ1 + eτ3 σ2) +

4

∑
i=1

g (t)
2

zi (t)
(
eτi+τ2 σ1 + eτi+τ3 σ2

)
+

+
g (t)

2
(eτ2 σ1 + eτ3 σ2)

∗
∑

2≤|m|≤NH

Pm (t) e(m,τ).

Function Z (t, τ) /∈ U, since it contains resonant exponentials
eτ2+τ3 = e(m,τ)|m=(0,1,1,0), eτ2+(m,τ) (m2 + 1 = m3) , eτ3+(m,τ) (m3 + 1 = m2) , and, therefore,
the right-hand side G (t, τ) = Z (t, τ) of the Equation (16) also does not belong to the U. Then, according
to the well-known theory (see [6], p. 234), we need to embed ∧: G (t, τ) → Ĝ (t, τ) the right-hand side
G (t, τ) of the Equation (16) into the space U. This operation is defined as follows.

Let the function G (t, τ) = ∑N
|m|=0 wm (t) e(m,τ) contain resonant exponentials, i.e., G (t, τ), it has

the form

G (t, τ) = w0 (t) +
4

∑
i=1

wi (t) eτi +
4

∑
j=0

N

∑
|mj|=2:mj∈Γj

wmj
(t) e(mj ,τ) +

N

∑
|m|=2,m 6=mj ,j=0,4

wm (t) e(m,τ).

Then

Ĝ (t, τ) = w0 (t) +
4

∑
i=1

wi (t) eτi +
4

∑
j=0

N

∑
|mj|=2: mj∈Γj

wmj
(t) eτj +

N

∑
|m|=2,m 6=mj ,j=0,4

wm (t) e(m,τ).
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Therefore, the embedding operation acts only on the resonant exponentials and replaces them
with a unit or exponents eτj of the first dimension according to the rule:(

e(m,τ)|m∈Γ0

)∧
= e0 = 1,

(
e(m,τ)|m∈Γj

)∧
= eτj , j = 1, 4.

Therefore, the right-hand sides of iterative problems (9k) (if they solve sequentially) may not
belong to the space U. Then, according to [6] (p. 234), the right-hand sides of these problems must be
embedded in U according to the above rule. As a result, we obtained the following problems:

Lz0 (t, τ) ≡
4

∑
j=1

λj (t)
∂z0

∂τj
− A(t)z0 − R0z0 = h (t) , z0 (t0, 0) = z0; (90)

Lz1 (t, τ) = −∂z0

∂t
+

[
g(t)

2
(eτ2 σ1 + eτ3 σ2) z0

]∧
+ R1z0, z1 (t0, 0) = 0; (91)

Lz2 (t, τ) = −∂z1

∂t
+

[
g(t)

2
(eτ2 σ1 + eτ3 σ2) z1

]∧
+ R1z1 + R2z0, z0 (t0, 0) = 0; (92)

· · ·

Lzk (t, τ) = − ∂zk−1
∂t +

[
g(t)

2 (eτ2 σ1 + eτ3 σ2) zk−1

]∧
+ Rkz0 + ... + R1zk−1,

zk (t0, 0) = 0, k ≥ 1
(9k)

(images of linear operators ∂
∂t and Rν do not need to be embedded in the space U, since these operators

act from U to U). Such a replacement will not affect the construction of an asymptotic solution to
the original problem (1) (or its equivalent problem (2)), since the narrowing τ = ψ(t)

ε of the series of
problems

(
9k
)

will coincide with the series of problems (9k) (see [6], pp. 234–235).
It is easy to show that applying Theorem 1 to iterative problems

(
9k
)
, we can find their solutions

uniquely in the space U. As a result, we can construct series (7) with coefficients zk(t, τ) ∈ U. As in [23]
(pp. 303–308), we proved the following statement.

Theorem 2. Suppose that conditions (1)–(2) are satisfied for the Equation (2). Then, when ε ∈ (0, ε0](ε0 > 0
is sufficiently small) the Equation (2) has a unique solution z(t, ε) ∈ C1([t0, T],C); at the same time there is
the estimate

||z(t, ε)− zεN(t)||C[t0,T] ≤ cNεN+1, ∀N = 0, 1, 2, . . . ,

where zεN(t) is the narrowing (for τ = ψ(t)
ε ) N-th partial sum of the series (7) (with coefficients zk (t, τ) ∈ U

satisfying the iterative problems (9k)), and the constant cN > 0 does not depend ε on ε ∈ (0, ε0].

5. Construction of the Solution of the First Iteration Problem in the Space U

Using Theorem 1, we will tried to find a solution to the first iterative problem
(
90
)
. Since the

right-hand side h (t) of the equation
(
90
)

satisfies condition (11), this equation has (according to (15)) a
solution in the space U in the form

z0 (t, τ) = z(0)0 (t) + α
(0)
1 (t) eτ1 , (17)

where α
(0)
1 (t) ∈ C∞ ([t0, T] , C) are arbitrary function, z(0)0 (t) = − h(t)

λ1(t)
. Subordinating (17) to the

initial condition z0 (t0, 0) = z0, we have

z(0)0 (t0) + α
(0)
1 (t0) = z0 ⇔ α

(0)
1 (t0) = z0 + λ−1

1 (t0) h (t0) .
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To fully calculate the function α
(0)
1 (t), we pass to the next iterative problem

(
91
)
. Substituting the

solution (17) of the equation
(
90
)

, into it, we arrived at the following equation:

L z1 (t, τ) = − d
dt

(
z(0)0 (t)

)
− d

dt

(
α
(0)
1 (t)

)
eτ1 +

K (t, t) z(0)0 (t)
λ4 (t)

eτ4−

−
K (t, t0) z(0)0 (t0)

λ4 (t0)
+

g(t)
2

(eτ2 σ1 + eτ3 σ2)
(

z(0)0 (t) + α
(0)
1 (t) eτ1

)
+ (18)

+
K (t, t) α

(0)
1 (t)

λ1 (t)
eτ1 −

K (t, t0) α
(0)
j (t0)

λ1 (t0)
,

(here we used the expression (61) for R1z (t, τ) and took into account that when z (t, τ) = z0 (t, τ) in
the sum (61) only terms with eτ1 and remain eτ4 ). Let us calculate

M =

[
g(t)

2
(eτ2 σ1 + eτ3 σ2)

(
z(0)0 (t) + α

(0)
1 (t) eτ1

)]∧
=

=
1
2

g (t)
[
σ1α

(0)
1 (t) eτ2+τ1 + σ2α

(0)
1 (t) eτ3+τ1 + σ1z(0)0 (t) eτ2 + σ2z(0)0 (t) eτ3

]∧
.

Let us analyze the exponents of the second dimension included here for their resonance:

eτ2+τ1 |τ=ψ(t)/ε = e
1
ε

∫ t
t0
(−iβ′(θ)+a(θ))dθ ,

−iβ′ + a =


0,

a,
−iβ′,
+iβ′,
µ,

⇔ ∅;

eτ3+τ1 |τ=ψ(t)/ε = e
1
ε

∫ t
t0
(+iβ′(θ)+a(θ))dθ ,

+iβ′ + a =


0,

a,
−iβ′,
+iβ′,
µ,

⇔ ∅.

Thus, exponents eτ2+τ1 ang eτ3+τ1 are not resonant. Then, for solvability the Equation (18) it is
necessary and sufficient that the condition

− d
dt

(
α
(0)
1 (t)

)
+

K (t, t) α
(0)
1 (t)

λ1 (t)
= 0

is satisfied. Attaching the initial condition α
(0)
1 (t0) = z0 + λ−1

1 (t0) h (t0) , to this equation, we found
uniquely the function

α
(0)
1 (t) = α

(0)
1 (t0) exp

{∫ t

t0

K (s, s)
λ1 (s)

ds
}

,

and therefore, we uniquely calculate the solution (17) of the problem
(
90
)

in the space U. In this case,
the leading term of the asymptotics of the solution to the problem (2) has the form

zε0 (t) = z(0)0 (t) + α
(0)
1 (t0) exp

{∫ t

t0

K (s, s)
λ1 (s)

ds
}

e
1
ε

∫ t
t0

λ1(θ)dθ ,

where α
(0)
1 (t0) = z0 + A−1 (t0) h (t0) , z(0)0 (t) = −λ−1

1 (t0) h (t) .

Example. Consider a model problem

ε
dz
dt

= −z− ε cos
t2 + t

ε
z−

∫ t

t0

e
−2(t−s)

ε · t · s · z(s, ε)ds + h(t), z(t0, ε) = z0, t ∈ [t0, T](t0 ≥ 0), (19)
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were a(t) ≡ 1, µ(t) ≡ −2, β(t) ≡ t2 + t, K(t, s) ≡ t · s. The main term of the asymptotic solution of this
problem has the form

zε0 (t) = h(t) + [z0 − h(t0)] exp [
t3
0 − t3

3
]exp[

t− t0

ε
]. (20)

For ε → +0 the function zε0 (t) tends to the solution of the degenerate equation −z + h(t) = 0
uniformly on any interval [t0 + δ, T](0 < δ ≤ T − t0) and at the point t = t0 takes on the value
zε0 (t0) = z0. It is seen from (20) that the leading term of the asymptotics of the solution to problem (19)
does not depend on cos t2+t

ε and spectral value µ(t) ≡ −2, but depends on the kernel K(t, s) ≡ t · s .

Further calculations show that already the asymptotic solution zε1 (t) = zε0 (t)+ εz1

(
t, ψ(t)

ε

)
of the first

order will depend on both µ(t) ≡ −2, and the frequency β′(t) = 2t + 1 of the rapidly oscillating cosine.

6. Conclusions

The function zε0 (t) shows that when passing from a differential equation of type (1) (K(t, s) ≡ 0)
to an integro-differential one (K(t, s) 6= 0 ), the main term of the asymptotic is influenced by the
kernel K(t, s) of the integral operator. However, the main term of the asymptotics is not affected by
the spectral values of the integral operator µ(t) and rapidly oscillating coefficients. Their effects are
detected when constructing the next approximation zε1 (t).
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