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Abstract: This study investigated the performance of a trading agent based on a convolutional neural
network model in portfolio management. The results showed that with real-world data the agent
could produce relevant trading results, while the agent’s behavior corresponded to that of a high-risk
taker. The data used were wide in comparison with earlier reported research and was based on the
full set of the S&P 500 stock data for twenty-one years supplemented with selected financial ratios.
The results presented are new in terms of the size of the data set used and with regards to the model
used. The results provide direction and offer insight into how deep learning methods may be used in
constructing automatic trading systems.

Keywords: deep reinforcement learning; portfolio selection; convolutional neural network; feature
selection; trading agent

1. Introduction

Efficient and profitable portfolio management is one of the key functions of the financial industry
and is on the top of the list of things that investors are looking for when making investments. This study
was based on previous observation of modern portfolio theory developed by Markowitz [1], which is
based on using historical returns, which may not, after all, be a fully efficient way to make portfolio
selections (see e.g., [2,3]) or at least there exist complements to the selection process that offer new
insights [3]. These new insights may be in the form of finding alternative ways to uncover abnormal
returns with active asset allocation and stock selection [2,4,5]. Market anomalies are discrepancies
between what is taking place in real-world markets and the theory of efficient markets. If market
anomalies can be identified before they disappear, they can typically be turned into excess returns.
Therefore, within the context of profitable portfolio management, the constant search for and the ability
to utilize new market anomalies is of the essence. In this paper, we attempted to use an automated deep
reinforcement learning based trading agent to create and put into action an arbitrage trading scheme
in the context of historical S&P 500 data. Some of the more widely cited studies on market anomalies
include Titman and Jegadeesh [6] on the existence of “momentum”, Banz [7] on “small-capitalization
firms”, Basu [8] on the “earnings-to-price ratio” (E/P), and Fama and French [9] on “dividend yields”.
It has been observed that reported market anomalies tend to vanish after they are made public [10].

The previous literature has already shown that classical mean-variance optimization of portfolios
leads to poor results. In vein with the above, the key idea of this research is to concentrate on how
portfolio management can be aided by the use of modern business analytics, namely, by using an
artificial neural network (ANN)-based system to automatically detect market anomalies by technical
analysis and to exploit them to maximize portfolio returns by realizing excess returns. An artificial
neural network is a tool that is based on machine learning (ML), which is a field of scientific study that
focuses on algorithms that learn from data. Machine learning has become popular also in the context
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of applied and mathematical finance, where credit scoring [11] and credit card fraud detection [12]
are good examples of real-world use of ML-based systems from outside of portfolio management.
Machine-learning based trading and trading systems have previously been studied in a number of
works, (e.g., [13–16]).

Previous academic literature on portfolio management with specifically ANN-based
systems [17–20] have shown promising results, but the reported research has so far used relatively
small data sets and the focus has primarily been on comparatively demonstrating the abilities of
different system and/or algorithm architectures. Kim and Kim [21] studied index tracking by creating
a tracking portfolio (with S&P 500 stocks) with deep latent representation learning, and Lee and
Kang [22] tried to predict the S&P 500 Index with an ANN.

In this study, we used the Ensemble of Identical Independent Evaluators (EIIE) architecture
proposed by Jiang, Xu, and Liang [19] and apply it to a sample of 415 stocks (a larger sample than
ever previously used) from the S&P 500 Index and, as a novelty, included selected performance
indicators for stock performance in the analysis. For this research, we constructed an ANN-based
deep-learning (multi-layer ANN) agent model for portfolio management (trading model) that was
based on reinforcement learning. The agent model was guided by a reward function and the goal was
to maximize the expected rewards over time. For a technical introduction to reinforcement learning
and artificial neural networks, we refer the reader to [23].

A Short Literature Review of Using Reinforcement Learning Based Methods

Several studies have suggested that reinforcement learning methods can be used to tackle problems
identified by the use of traditional optimization methods in portfolio management. Moody and
others [24] used recurrent reinforcement learning for asset allocation to maximize risk-adjusted returns
for a portfolio. They applied a differential Sharpe ratio as the reward function, and their method was
found to outperform methods based on running- and moving-average Sharpe ratios in out-of-sample
performance. Optimization of a differential Sharpe ratio was possible with a policy gradient algorithm
thus being computationally less expensive while also enabling online optimization.

Moody and Saffel [17] studied a direct policy optimization method that used a differential
downside ratio to better separate the undesirable downside risk from the preferred upside risk.
The optimization method used in their research, referred to as “direct reinforcement”, has provided
to be the basis for further studies [25,26]. Lu [25] tackled the portfolio optimization problem with
direct reinforcement and used a policy gradient algorithm to maximize the differential Sharpe ratio
and downside-deviation ratios with long short-term memory (LSTM) neural networks to implement
forex trading. Almahdi and Yang [26] extended the use of direct reinforcement to a five-asset allocation
problem and used the Calmar ratio as the to-be-optimized performance function of an exchange-traded
fund (ETF) portfolio.

Lee and others [18] used a multi-agent approach with a cooperative Q-learning agent framework
to carry out stock selection that consisted of two signal agents and two order agents that were in
charge of executing the buy and sell actions. The system was able to efficiently exploit the historical
intraday price information in stock selection and order executions. Ding and others [27] used deep
convolutional networks to extract events from financial news to predict the long- and short-term
movements of the S&P 500 Index.

Jiang, Xu, and Liang [19] successfully applied deep reinforcement learning to crypto-currency
portfolio management. In their work, they proposed the “Ensemble of Identical Independent
Evaluators” method. This method uses shared parameters that allow scalability to large data sets
without a significant effect on computational requirements; this is an advantage over several other
methods. Their method was later applied by Liang and others [20] to Chinese stock market data with
improvements to the method; they achieved improved results with a small data set. Aboussalah
and Lee [28] tested real-time portfolio optimization using the Sharpe ratio as the performance metric
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with a stacked deep dynamic recurrent reinforcement learning with an hour-glass-shaped network.
They used ten stocks from the S&P500.

While the previous literature suggests that deep reinforcement learning has the potential as a
tool for portfolio management, a recent paper by Liang and others [20] showed that the performance
of studied deep reinforcement learning models was significantly lower than what was reported in
previous studies. This suggests that the use of reinforcement learning and other machine learning
models in stock trading and portfolio management has possibly already found its way to the practice
of trading, and the anomalies exploited by their use disappear very fast and leave very little room for
extraordinary returns.

With respect to the existing literature, the contribution of this paper is two-fold, first, the results of
this research show that reinforcement learning-based methods, backed up with stock performance
indicator data, are a relevant option for large-scale portfolio optimization. This extends the scientific
knowledge from the great majority of the previous works, where only small portfolios were built from
a limited set of available stocks that were optimized and constructed. Second, the agent developed in
the study was proven to improve the performance of the stock portfolio in a way that is statistically
significant, and its self-generated trading policy led to an impressive 328.9% return over the five-year
test period. These findings are new and relevant both academically and for practitioners.

This paper is organized as follows: The following sections introduces the theoretical background,
the data used, and then the model used for the trading agent and the environment are explained. Next,
the feature and hyper-parameter selection and model training are presented, and the obtained results
and the analyses of the model’s behavior are provided. The final section draws the findings together
and describes some ideas for future research.

2. Theoretical Background

This section briefly describes the central methods underlying this research including convolutional
neural networks, recurrent neural networks, reinforcement learning, and Markov decision processes.

Artificial neural networks (ANNs) are inspired by physical neural systems and are composed
of interconnected neurons. A convolutional neural network (CNN) is an artificial neural network
with a specific type of network architecture that combines information with a mathematical operation
called convolution. The architecture is based on allowing parts of the network to focus on parts of the
data (typically a picture) and the detection of the “whole picture” is a combination of the parts using
convolution. Convolutional neural networks have been found to work well with pattern recognition
and, consequently, they are primarily used to detect patterns from images. Krizhevsky and others [29]
released a system called ImageNet, based on CNNs that revolutionized image classification. ImageNet
contains five convolutional layers and millions of parameters, where the features in the lower-level
layers capture primitive shapes, such as lines, while the higher-level layers integrate them to detect
more complex patterns [23]. This allows ImageNet to detect highly complex features from raw pixels
and separate them into different classes. Convolutional layers can be stacked on top of each other to
detect more complex patterns from the data. Convolutional neural networks also have applications in
areas such as natural language processing [30], and they have also been used in recognizing patterns
from financial time series data [19].

Recurrent neural networks (RNNs) are a class of artificial neural networks designed to model
sequential data structures like text sentences and time series data [23]. The idea behind recurrent
networks is that the sequent observations are dependent on each other and, thus, the following value
in a series depends on (several) previous observations. Sequential data are being fed to the network,
and, for every observation, the network generates an output and an initial state that affects the next
output. Recurrent neural networks have been used effectively, for example, in speech recognition [31]
as well as in time series prediction [32].

In reinforcement learning (RL), the process of learning happens through trial and error without
pre-existing information about behavior that leads to the maximization of a reward function [33] (1-2).
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Complex Markov decision processes (MDPs) can be optimized with different reinforcement learning
algorithms that exploit function approximation, in which case the full model of the “environment”
surrounding the problem is not necessary. Deep reinforcement learning (DRL) exploits ANNs in
function approximation, and it has already been successfully applied to several areas such as robotics,
video games [34–36], and finance [19,20]. Recent studies by Liang et al. [20] also showed some
preliminary evidence about the ability of reinforcement learning models to learn useful factors from
market data that can be used in portfolio management.

Sutton and Barto (p. 47) [33] define the MDP as a classical formalization of decision making,
where performed actions influence, in addition to immediately reward, subsequent states, and through
them future provide rewards. A Markov decision process consists of a set of different states, between
which one can “travel” by taking action from a specific set of actions. By resolving the optimal action
for all possible states, the optimal solution for a whole problem (a combination of actions to take), the
optimal policy, can be reached [37]. The optimal behavior can be derived simply by estimating the
optimal value function, v∗, for existing states with the Bellman equation. A policy which satisfies the
Bellman optimality equation, v∗(s), (Equation (1)) is considered an optimal policy [33], p. 73).

v∗(s) = max
a

E[Rt+1 + γv∗(St+1)
∣∣∣ St = s, At = a] = max

a

∑
s′,r

p(s′, r
∣∣∣s, a)[r + γv∗(s′)], (1)

where s represents the current state, s’ represents the following state, and a represents the action in the
current state.

3. Data

The data used consisted of observations for 5283 days for 415 stocks that constitute the S&P 500
stock market index and covered a period of twenty-one years from 1998 to the end of the year 2018.
Eighty-five stocks were discarded from the original 500 due the fact of observed problems with the
quality of the data available. The data were mainly collected from Thomson Reuters Datastream and
supplemented with figures available from Nasdaq.com in the case of missing data points.

The data used contained values for the total return index, closing prices, trading volumes, quarterly
earnings per share, the out-paid dividends, and the declaration dates for dividends as well as the
publication dates for the quarterly reports. The total return index was used to calculate the daily total
return (TR) for each stock. The daily closing prices, quarterly earnings per share, and the publication
dates for the quarterly reports were used to form a daily EP (EP) ratio for each stock that represented the
stock’s profitability based on the latest reports. The quarterly dividends with the daily closing prices
and the declaration dates were used to construct the daily dividend yield (DY) for each stock. The S&P
500 constituents were selected due to the fact of their high liquidity in the markets. High liquidity
stocks suffer less from price slippage, and their price fluctuations are typically not caused by individual
trades. This choice was made to ensure that the used model cannot exploit unprofitable patterns that
might appear with less traded stocks due to the fact of low liquidity. The data set was remarkably
larger than the data sets used in previous studies and, as such, served also as a test of the scalability
of the (technology behind the) trader agent and allowed the discovery of whether a larger amount
of stocks (data) positively affected the model performance. The three performance indicators for
stocks—earnings to price, dividend yield, and trading volume—were selected as extra information
to complement the information contained within the daily prices. The choice was made based on
previous findings by [5,8,9] on the usefulness of these specific indicators in stock return prediction.

The data set was split into training, validation, and test sets such that the training data covered
14 years in total from 1998 to the end of 2011, the validation set two years from 2012 to 2013, and the
test set five years from 2014 to 2018. The training data were used for training the agent system, while
its performance was evaluated with the validation data. Test data were data that the agent system “has
not seen before”, and it was used to test the performance of the trained model. It should be noted that
the data set must be split in chronological in order to produce reliable results, since (in real-life) actual
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trading takes place with data that are new to the system. Splitting the data into training, validation,
and test sets in a non-chronological order likely creates a look-ahead bias and may lead to unrealistic
results. This is different to most typical algorithm tuning, where the data sets can be randomly split
into training, validation, and test sets.

4. The Trading Environment and Agent Model Used

The real-world stock-market environment in which the agent model operated was modeled as
an MDP. The MDP was defined with a four-tuple (S, A, P, R), where S is the set of states, A is the set
of actions, P is the transition probability between the states, and R is the reward for action A in the
state S. State S corresponds to the currently available market information and is represented with the
input tensor st, which is a tensor of rank 3 with shape (d, n, f ), where d is a fixed amount defining the
length of the observation in days, n is the number of stocks in the environment, and f is the number of
features for an individual stock.

The agent interacts with the environment by receiving the rank 3 tensor st that represents the
market state S and by outputting action A which is represented by the action-vector at = π(st), where π

is the current policy. In other words, the agent is “fed” st, based on which it outputs A that leads to
reward R with the probability P. Market-state tensor takes shape based on fifteen observation days, 415
stocks, and the three features (TR, EP, DY). The action-vector equals in length the amount of 415 stocks

and defines the (new) portfolio weights for the full set of stocks so that
n∑

i=0
ai,t = 1. The trader-agent

picks and manages a 20 stock portfolio with a cash asset among the 415 stocks and is trained to
maximize the Sharpe ratio for the portfolio. The effect of picking a 20 stock portfolio is constructed by
setting all the portfolio weights other than the 20 largest weights to zero. The next-day portfolio return,
following the action at, is constructed with the dot product at·yt, where yt is the stock return vector.

Transition probability P is the probability that the action at at state st leads to the state st+1.
The transition probability function remains unknown for the portfolio management problem, and
a model-free solution is used since market data are very noisy and the environment is too complex
and only partially observable. The reward R is defined with a future Sharpe ratio for a time interval
[t, t + T]. Motivated by [24], a differential Sharpe ratio was used as the reward function, which was
constructed in this study using Equation (2):

J[t,t+T](πθ) = R(st,πθ(st), . . . , st+T,πθ(st+T)) =
250

T ∗
√

250 ∗ σ[t,t+T]

t+T∑
t

at·yt (2)

where the term J[t,t+T](πθ) represents an expected finite-horizon reward for the period [t, t + T], when
following the policy π, with parameters θ. It is derived from the reward R, achieved from the
state–action pairs during the period. A differential Sharpe ratio is represented as a mean of the
daily portfolio returns at·yt divided by the standard deviation σ[t,t+T] of the portfolio during the time
interval [t, t + T].

The policy gradient algorithm was selected to optimize the differential Sharpe ratio for the model
based on the good performances observed in several previous studies [19,20,24]. The policy gradient
methods were found to outperform value-based methods with very noisy market data. The optimal
policy π∗ is achieved when the expected reward J(πθ) is maximized, which is done by computing the
gradient of the expected reward with respect to the policy parameters ∇θ J(πθ) and by updating the
policy parameters until the algorithm stops converging with Equation (3):

θk+1 = θk + α∇θ J
(
πθk

)
(3)

where α is the learning rate. The ANN agent model consists of three convolutional layers and is
significantly inspired by the EIIE-method [19]. The structure used fits well for large-scale market data
analysis due to the scalability permitted by the shared parameters. The first network layer includes
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small filters for extracting very basic level patterns from the data. The second network layer contains
filters for matching shapes (exactly) with the first layer feature maps and produce feature maps of
shape (1). The third network layer combines the feature maps as scalars to a vector of length n_stocks,
which is placed into a softmax activation function to define the weight for each stock. Softmax is used
for the final layer to produce a vector, which has a sum of 1 so that the most attractive stock gets the
highest weight and all the wealth is always fully invested in assets. The basic structure of the model is
represented in Figure 1.
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The agent executes daily actions that determine the portfolio weights for the next day, to maximize
the future risk-adjusted returns. This arrangement suggests that the stock portfolio can always be
constructed with an exact set of weights. This is a simplification that is not fully realistic, since the
prices of stocks vary considerably and prevent the construction of exactly weighted portfolios. In our
model, this means that the agent can buy fractions of stocks to achieve precise weights. Transaction
costs are taken into consideration as a daily fee that reduces the daily return.

Transaction costs are defined based on the commissions used by the Interactive Brokers 2019
prices, which is a popular broker for active trading. A fixed commission fee of 0.005 USD per a single

traded stock is paid. On average the price of a stock in the data set was 60 USD, so 0.005
60

n∑
i=0

∣∣∣wi,t − ai,t
∣∣∣ a

transaction cost was charged after each trade, where wt is the current portfolio weight vector. Due to
the price movements affecting the portfolio weights, the portfolio weight vector wt was derived from
the action vector at−1 by Equation (4):

wt =
at−1 × yt−1

at−1·yt−1
(4)

where yt−1 is the stock return vector at time t− 1. The simplification of the transaction costs does not,
to the best of our understanding, cause a significant error in the analysis.

The Python programming language was used to construct the models using the
TensorFlow® library.

5. Training, Validation, and Results

This section presents the feature selection made to find the best-functioning model, the
hyper-parameter selection with selection-supporting test results, the training and testing phases
of the model with results, and an analysis of the model behavior.

5.1. Feature and Hyper-Parameter Selection

The first step in defining the final model used in the trading agent was to test the performance
effect of four different combinations of features in three selected ANN model architectures. This means
the testing of four different combinations of the financial ratios, already described above and including
the total return index (TR), trading volume (Vol), dividend yield (DY), and daily earnings ratio (EP) for
the stocks. The idea is to use TR and to include features that improve performance over TR alone; this
is why the combinations tested were TR alone, TR and EP, TR and DY, and TR and Vol.

All of the three tested ANN model architectures included three layers, where the number of
nodes in the first and the second layer was different for the three feature selection models, while the
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third layer used was identical. The models used in feature selection are designated A, B, and C, and
the details of their layer-by-layer structure (i.e., number of filters) and the hyper-parameter values
(i.e., shape of filters) used in the feature selection are visible in Table 1. We acknowledge that the choice
of using only three model architectures limits the reliability of the results; however, we feel that for the
purposes of this research (to determine whether a feature contributes or not to the performance) it
is sufficient.

Table 1. Feature selection results with the validation data set. Sharpe ratio and total return for the three
models, with four feature-combinations. Legend: TR = Total Return; EP = Earnings Per Share; DY =

Divided Yield; Vol = Volume

Model Layer 1 Layer 2 Layer 3 TR TR, EP TR, DY TR, Vol

Sharpe A 2, (2,1) 20, (14,1) 1, (1,1) 1.99 2.03 2.06 1.95
B 3, (2,1) 50, (14,1) 1, (1,1) 2.18 2.18 2.27 1.94
C 5, (2,1) 100, (14,1) 1, (1,1) 2.20 2.25 2.22 2.07

Total Return A 2, (2,1) 20, (14,1) 1, (1,1) 86.38% 88.76% 72.08% 66.73%
B 3, (2,1) 50, (14,1) 1, (1,1) 82.42% 82.11% 80.14% 68.87%
C 5, (2,1) 100, (14,1) 1, (1,1) 87.23% 114.14% 88.02% 74.46%

The agent model was trained using mini-batches (b = 50, d = 15, n = 20, f = 1 . . . 4), where b is the
batch length, d is the length of observation days, n is the amount of randomly selected stocks to the
single batch, and f is the number of features used to train the model. The training was done in epochs
of 500 mini-batches, and after each epoch, the model performance was evaluated with the validation
data. To improve the model’s performance, normally distributed noise, with a standard deviation of
0.001 was added to the training data before feeding each batch to the model; this was in the same vein
as Liang et al. (2018).

The feature selection model C had the most complex structure of the three models tested. It had
the best performance in all cases measured in total return and in two out of three cases measured with
the Sharpe ratio. The model B was best when measured with the Sharpe ratio and with the feature set
TR and DY. Model A was the least complex (lowest number of filters) and had a performance that was
inferior to model C across the board, while it outperformed model B and measured with total returns
with two combinations. We note that [19] used a model structure that corresponds in complexity to
that of Model A in their research on cryptocurrency trading. Table 1 shows the results received from
the three feature selection models obtained with the validation data set.

The highest performance in terms of Sharpe ratio was achieved using TR and DY, but also the
combination TR and EP improved the model’s performance slightly compared to using only TR.
The results indicate that the combination of TR and Vol returned lower performances than TR alone.
Based on the results, the features EP and DY were selected to be included in addition to TR in the
final model.

Hyper-Parameter Selection

Hyper-parameter selection in this context means choosing the number of convolutional layers, the
number of filters, and the shape of the filters used. To find a set of good hyper-parameters for a final
model, ten initial “hyper-parameter selection models” with different hyper-parameter combinations
were created based on the feature selection results and the fact that the most complex model (model
C) used outperformed the simpler models. This means that the hyper-parameters for the ten initial
models were selected semi-randomly using a higher complexity model structure as a starting point.
The performance results for the initial ten models are visible in Table 2 and indicated as models 1
through 10. Model 6 achieved the best validation performance in terms of the Sharpe ratio (2.40), while
Model 5 achieved the highest total return (115.84%).
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Table 2. Performance of the ten initial and five-second-round hyper-parameter selection models.
Model parameters given as number of filters, (filter shape). Model 14 (highlighted) had the best
performance and was selected to be the final model version.

Layer 1 Layer 2 Layer 3 Layer 4 Sharpe Total Return

Model 1 3, (2,1) 50, (14,1) 1, (1,1) - 2.15 80.85%
Model 2 4, (2,1) 100, (14,1) 1, (1,1) - 2.34 99.07%
Model 3 3, (3,1) 50, (13,1) 1, (1,1) - 2.25 105.44%
Model 4 5, (2,1) 100, (14,1) 1, (1,1) - 2.21 79.83%
Model 5 5, (3,1) 70, (13,1) 1, (1,1) - 2.11 115.84%
Model 6 10, (2,1) 100, (14,1) 1, (1,1) - 2.40 104.73%
Model 7 20, (2,1) 200, (14,1) 1, (1,1) - 2.26 88.84%
Model 8 3, (1,1) 3, (2,1) 50, (14,1) 1, (1,1) 2.15 84.02%
Model 9 3, (1,1) 4, (2,1) 100, (14,1) 1, (1,1) 2.14 69.54%
Model 10 3, (2,1) 5, (2,1) 100, (13,1) 1, (1,1) 2.19 88.62%

Model 11 8, (2,1) 80, (14,1) 1, (1,1) - 2.24 101.04%
Model 12 8, (3,1) 80, (13,1) 1, (1,1) - 2.25 83.89%
Model 13 5, (3,1) 100, (13,1) 1, (1,1) - 2.32 99.23%
Model 14 5, (3,1) 50, (13,1) 1, (1,1) - 2.43 118.06%
Model 15 10, (3,1) 100, (13,1) 1, (1,1) - 2.26 79.95%

After the results from testing the ten initial hyper-parameter selection models, another five models
were created based on the hyper-parameters from the best two initial round models. These five models
are nominated models 11 through 15, and their hyper-parameter details and test results are visible in
Table 2. Of the five second-round models, model 14 had the best performance measured with both
metrics. Based on this two-tier hyper-parameter selection, model 14’s architecture was chosen as the
final model architecture to be used in the trading agent.

The different models were trained for 300 epochs each. The results are presented as maximum 10
day rolling average Sharpe ratios and total returns. The rolling average was used to account for the
possible problems with the unbalanced performance that may return extremely good “outlier” results
that would nevertheless be non-representative of average model performance.

All models tested learned useful factors from the pure daily return data, which conflicts with the
efficient market hypothesis. This suggests that the stock prices might not follow a “pure” random
walk but, instead, may contain learnable patterns in them. The learning effect existed despite altering
the hyper-parameters. Another interesting finding is the level of complexity of the highest performing
models, which is not very high compared to what is known about the complexity of models used in
image recognition. The final model selected contained three convolutional layers (see Appendix A,
Figure A1 for illustration) and a few feature maps including “only” 3375 parameters. If this complexity
is compared with, for example, the complexity of the ImageNet by Krizhevsky et al. [29] that contains
five layers and 60 million parameters in total, the model is not very complex. We note that the tested
models with four layers (models 8–10) started to over-fit very early when they were tested with the
training data; this indicated that the three-layer architecture (with less complexity) is more suitable
and robust for the problem at hand.

5.2. Results and Performance

The final model performance was tested using a 20 stock portfolio throughout the test period
of 1255 days. In this part, transaction costs for the portfolio were included. The performance was
evaluated against three different portfolios: S&P 500 Index, an optimal Markowitz mean-variance
portfolio, and the best stock in terms of the Sharpe ratio indicated by the pre-test data. A Markowitz
mean-variance portfolio was created by selecting 20 stocks with the highest expected return, discovered
with the pre-test data, optimizing their (starting) weights by randomly generating 500,000 differently
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weighted portfolios, and selecting the one with the highest Sharpe ratio. The weights were then
changed based on the difference in the stock returns. The results are illustrated in Table 3.

Table 3. Model performance against selected benchmarks. Legend: SD = Standard Deviation

Total Return Sharpe Daily SD

Final model 328.9% 0.91 2.9%
S&P 500 Index 54.9% 0.73 0.8%

Optimal portfolio 83.3% 0.78 1.1%
Best stock (Monster) 114.2% 0.64 2.0%

Out of the tested benchmarks, the model achieved distinctly the highest total return (328.9%) for the
test period. Although the total return for the model was overwhelming, its risk-adjusted performance
measured with the Sharpe ratio suggests only a slight superiority of the model. Daily standard
deviation measures the riskiness of the portfolios, and it can be noted that the portfolio controlled by
the model possesses the highest risk of all the portfolios, exceeding even the single-stock portfolio. To
refine the insights further, the relative performances of the tested models are plotted as a function of
time in Figure 2, where the high volatility of the model’s performance can be clearly seen.
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Figure 2. Performance of the model and the selected benchmarks.

From Figure 2, it can be observed that during the first 21 months, the model failed to generate
excess returns and lost in performance to the benchmarks. However, during 22–28 months, the model
generated rapidly very high returns and was after that able to beat the market index until the general
market collapse appeared at the end and the model suffered a severe breakdown in returns.

Statistical Significance of the Results

The agent model performance was statistically tested by comparing the achieved Sharpe ratio
and total return to 5000 random portfolios with similar risk levels as the test portfolio. The test
was conducted with a full 415 stock portfolio to minimize the effect of randomness on the portfolio
performance. The random portfolios were generated to hold a similar risk profile than the trained
model by allocating approximately 95% of wealth to the 200 most attractive stocks of which 11% was
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allocated to the most attractive stock. Figure 3 shows the performance of random weight portfolios
with a full set of 415 stocks compared to the final model performance. The model achieves a Sharpe of
0.96 with the test set, and the performance exceeded the average random portfolio performance by
slightly more than two standard deviations (2*σ).
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The total return of the model during the test period was 370%, which exceeded the average of the
random portfolios by over 16 sigma. The model improved the portfolio’s performance in a statistically
significant way.
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Statistical significance of the generated alpha against the S&P 500 Index was tested with linear
regression and the results are displayed in Table 4. A regression to explain the model’s returns with
the market returns was executed on a daily and a monthly level. Both regressions suggest a low
alpha coefficient for the model which, however, was not statistically significant since the p-values
from the t-tests for both regressions exceeded the 5% risk level. Analyses indicated a high beta for the
agent model.

Table 4. Regression results: agent model versus S&P 500.

Daily Returns Monthly Returns

Coefficient Standard
Error t-Test p-Value Coefficient Standard

Error t-Test p-Value

Alpha 0.00117 0.00076 1.52936 0.12643 0.01747 0.02823 0.61898 0.53827
Beta 1.28613 0.09129 14.08837 0.00000 3.03349 0.80152 3.78466 0.00036

5.3. Analysis of the Model’s Behavior

By looking at the contents of the portfolios, it can be observed that the agent did not hold all of
the stocks equitably, but instead it favored certain stocks which it bought and held very frequently.
Furthermore, the position taken by the agent with these favored stocks was often very close to the
all-in position. To better understand this rather hazardous behavior of the agent, the states leading to
the most aggressive actions by the agent were further analyzed.

It was observed that the agent preferred very volatile stocks, in which both high positive and
negative returns were interpreted as a buy signal. Another and very surprising note from the states is
that the agent was taking high positions to stocks with unnaturally low EP ratios, occurring mostly
after an extraordinary collapse in the stock price. The performance of the agent is largely explained
by this bias towards extremely low EP stocks during the test period. Clearly, this adopted strategy
possessed a very high risk. The riskiness was confirmed, for example, by the fact that two of the three
highest positions led to very high negative returns and, in general, the selected portfolio experienced
very high positive and negative returns throughout the test period. The daily standard deviation of 3%
shows that the agent practically failed to manage the risk in the portfolio and mainly focused on the
very high returns while maximizing the Sharpe ratio.

During a six-month period from January 2016 to June 2016, the agent’s performance suddenly
increased vastly. During this period, the agent took several all-in positions to a few different low-EP and
highly volatile stocks and was able to benefit from these risky actions enormously. It was remarkable
that the agent generated a major part of its profits during this six-month period.

A key explanatory factor for this risky behavior seems to be the survival bias in the training set of
the S&P 500 stocks used in this study. Since the data set included companies belonging to the S&P 500
index in 2013, it excluded companies that went into bankruptcy or were excluded from the index due
to the fact of weak performance before 2013. Therefore, the agent only observed companies during the
training part that were able to get over the losses (of the previous crash) and to grow enough to be a
constituent of the S&P 500 Index in 2013. Thus, the agent did not consider the extremely low EP ratio
as a warning signal but instead as a chance for very high positive returns in the future.

In this study, the size of the portfolio picked by the agent was constrained to twenty stocks.
Managing a portfolio of this size might not be the optimal way to maximize future returns, since the
continuously changing portfolio was impairing the returns due to the transaction costs. The practicality
of the agent could be improved by reducing the portfolio size to, for example, one stock only, and
investing the rest of the wealth into the stock index.

6. Summary and Conclusions

This paper explored the applicability of machine learning models to active portfolio management
using models based on deep reinforcement learning. The agent developed in this study was able to
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self-generate a trading policy that led to an impressive 328.9% return and a 0.91 Sharpe ratio during
a five-year test period. The agent outperformed the benchmarks and was proven to improve the
Sharpe ratio and total return of the stock portfolio in a statistically significant way. However, the alpha
generated by the agent against the S&P 500 index was not shown to statistically differ from zero; thus,
it cannot be stated that the agent model used can surpass the market return statistically significantly.
The trading policy was found to possess high risks and to be very opportunistic by generating high
profits with individual trades rather than by beating the index daily (and consistently). The results
suggest the applicability of deep reinforcement learning models to portfolio management and thus are
in a line with the results of several previous studies [18–20,24] that indicate the usefulness of deep
learning models in this area of finance.

It was observed that a relatively simple convolutional neural network model can achieve good
performance in the case of automated investing based on historical financial data. This suggests that,
from a machine learning point of view, financial data are not impossible to handle, and the results of
this research indicate that the patterns in the data are not very complex, if compared to, for example,
image data. Financial data are noisy, and it may be the reason why using supervised learning methods
have not been very successful in the past.

The results of this study are limited by the survival bias of the applied S&P 500 data set, as the
companies that underwent bankruptcy during 1998–2012 were excluded from the data set and, thus,
encouraged the opportunistic behavior of the agent built. Another limitation and explanatory factor
for the results was the size limitation of the agents’ portfolio, which was defined in the range of zero to
twenty stocks. Other issues include the length of data—21 years in this study—and which might be
unnecessarily long for a single model. The importance of overall market behavior twenty years ago
may be questioned when considering the current market behavior. We point out and acknowledge
that the results attained in this research are tied to the market data the agent model was fitted with.
Generally speaking, the agent can be used on any market data, but the results depend on the data.

To deal with the specific issues of using long-term data, the model could be trained and tested
with multiple, shorter periods to determine if it benefits from more recent training data; this would
possibly give a different point-of-view with regards to the robustness of the model presented and
perhaps would give a different perspective about the abilities of the model as a whole. A need for
further testing with shorter periods was highlighted by the model’s behavior during the rather short
period during which the model was the most successful and during which the “gamble” the model
took payed off. It would be most interesting to find out the market circumstances in which the model
was able to produce the best results and, contrarily, where it failed to perform well.

Furthermore, future research should consider a more structured approach for both feature
selection and hyper-parameter selection. These were not done exhaustively in this research; exhaustive
optimization-oriented parameter selection demands a lot of computing power and requires the
construction of an automated system for running multiple parameter combinations to find the overall
best parameters.

As a final note, since the stock market is an extremely noisy environment, the trader agent
could benefit from a lower trading frequency that lengthens the holding period of a single stock and,
thus, protects the model from drawing wrong conclusions in the short term. Relaxing these above
assumptions and running a larger sensitivity analysis is left for future study.
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