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Abstract: Distributed-order fractional non-local operators were introduced and studied by Caputo at
the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that
such operators are defined by a weighted integral of different orders of differentiation over a certain
range. The subject of distributed-order non-local derivatives is currently under strong development
due to its applications in modeling some complex real world phenomena. Fractional optimal
control theory deals with the optimization of a performance index functional, subject to a fractional
control system. One of the most important results in classical and fractional optimal control is the
Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to
the optimization problem must verify. In our work, we extend the fractional optimal control theory
by considering dynamical system constraints depending on distributed-order fractional derivatives.
Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality
condition under appropriate convexity assumptions.
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1. Introduction

Distributed-order fractional operators were introduced and studied by Caputo at the end
of the previous century [1,2]. They can be seen as a kind of generalization of fractional order
derivatives/integrals in the sense that these operators are defined by a weighted integral of different
orders of differentiation over a certain range. This subject gained more interest at the beginning of
the current century by researchers from different mathematical disciplines, through attempts to solve
differential equations with distributed-order derivatives [3–6]. Moreover, at the same time, in the
domain of applied mathematics, those distributed-order fractional operators have started to be used,
in a satisfactory way, to describe some complex phenomena modeling real world problems—see,
for instance, works in viscoelasticity [7,8] and in diffusion [9]. Today, the study of distributed-order
systems with fractional derivatives is a hot subject—see, e.g., [10–12] and references therein.

Fractional optimal control deals with optimization problems involving fractional differential
equations, as well as a performance index functional. One of the most important results is the
Pontryagin Maximum Principle, which gives a first-order necessary optimality condition that
every solution to the dynamic optimization problem must verify. By applying such a result, it
is possible to find and identify candidate solutions to the optimal control problem. For the state
of the art on fractional optimal control, we refer the readers to [13–15] and references therein.
Recently, distributed-order fractional problems of the calculus of variations were introduced and
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investigated in [16]. Here, our main aim is to extend the distributed-order fractional Euler–Lagrange
equation of [16] to the Pontryagin setting (see Remark 2).

Regarding optimal control for problems with distributed-order fractional operators, the results are
rare and reduce to the following two papers: [17,18]. Both works develop numerical methods while,
in contrast, here we are interested in analytical results (not in numerical approaches). Moreover,
our results are new and bring new insights. Indeed, in [17], the problem is considered with
Riemann–Liouville distributed derivatives, while in our case we consider optimal control problems
with Caputo distributed derivatives. We must also note an inconsistency in [17]: when one defines the
control system with a Riemann–Liouville derivative, then in the adjoint system it should appear as a
Caputo derivative—when one considers optimal control problems with a control system with Caputo
derivatives, the adjoint equation should involve a Riemann–Liouville operator—as a consequence
of integration by parts (cf. Lemma 1). This inconsistency has been corrected in [18], where optimal
control problems with Caputo distributed derivatives (as in this paper) are considered. Unfortunately,
there is still an inconsistency in the necessary optimality conditions of both [17,18]: the transversality
conditions are written there exactly as in the classical case, with the multiplier vanishing at the end of
the interval, while the correct condition, as we prove in our Theorem 1, should involve a distributed
integral operator—see condition (3).

The text is organized as follows. We begin by recalling definitions and necessary results of the
literature in Section 2 of preliminaries. Our original results are then given in Section 3. More precisely,
we consider fractional optimal control problems where the dynamical system constraints depend
on distributed-order fractional derivatives. We prove a weak version of Pontryagin’s maximum
principle for the considered distributed-order fractional problems (see Theorem 1) and investigate
a Mangasarian-type sufficient optimality condition (see Theorem 2). An example, illustrating the
usefulness of the obtained results, is given (see Examples 1 and 2). We end with Section 4 of conclusions,
mentioning also some possibilities of future research.

2. Preliminaries

In this section, we recall necessary results and fix notations. We assume the reader to be familiar
with the standard Riemann–Liouville and Caputo fractional calculi [19,20].

Let α be a real number in [0, 1] and let ψ be a non-negative continuous function defined on [0, 1]
such that ∫ 1

0
ψ(α)dα > 0.

This function ψ will act as a distribution of the order of differentiation.

Definition 1 (See [1]). The left and right-sided Riemann–Liouville distributed-order fractional derivatives of a
function x : [a, b]→ R are defined, respectively, by

Dψ(·)
a+ x(t) =

∫ 1

0
ψ(α) · Dα

a+x(t)dα and Dψ(·)
b− x(t) =

∫ 1

0
ψ(α) · Dα

b−x(t)dα,

where Dα
a+ and Dα

b− are, respectively, the left and right-sided Riemann–Liouville fractional derivatives of order α.

Definition 2 (See [1]). The left and right-sided Caputo distributed-order fractional derivatives of a function
x : [a, b]→ R are defined, respectively, by

CDψ(·)
a+ x(t) =

∫ 1

0
ψ(α) ·C Dα

a+x(t)dα and CDψ(·)
b− x(t) =

∫ 1

0
ψ(α) ·C Dα

b−x(t)dα,

where CDα
a+ and CDα

b− are, respectively, the left and right-sided Caputo fractional derivatives of order α.
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As noted in [16], there is a relation between the Riemann–Liouville and the Caputo
distributed-order fractional derivatives:

CDψ(·)
a+ x(t) = Dψ(·)

a+ x(t)− x(a)
∫ 1

0

ψ(α)

Γ(1− α)
(t− a)−αdα

and
CDψ(·)

b− x(t) = Dψ(·)
b− x(t)− x(b)

∫ 1

0

ψ(α)

Γ(1− α)
(b− t)−αdα.

Along the text, we use the notation

I1−ψ(·)
b− x(t) =

∫ 1

0
ψ(α) · I1−α

b− x(t)dα,

where I1−α
b− represents the right Riemann–Liouville fractional integral of order 1− α.

The next result has an essential role in the proofs of our main results; that is, in the proofs of
Theorems 1 and 2.

Lemma 1 (Integration by parts formula [16]). Let x be a continuous function and y a continuously
differentiable function. Then,

∫ b

a
x(t) ·C Dψ(·)

a+ y(t)dt =
[
y(t) · I1−ψ(·)

b− x(t)
]b

a
+
∫ b

a
y(t) ·Dψ(·)

b− x(t)dt.

Next, we recall the standard notion of concave function, which will be used in Section 3.3.

Definition 3 (See [21]). A function h : Rn → R is concave if

h(βθ1 + (1− β)θ2) ≥ βh(θ1) + (1− β)h(θ2)

for all β ∈ [0, 1] and for all θ1, θ2 in Rn.

Lemma 2 (See [21]). Let h : Rn → R be a continuously differentiable function. Then h is a concave function if
and only if it satisfies the so called gradient inequality:

h(θ1)− h(θ2) ≥ ∇h(θ1)(θ1 − θ2)

for all θ1, θ2 ∈ Rn.

Finally, we recall a fractional version of Gronwall’s inequality, which will be useful to prove the
continuity of solutions in Section 3.1.

Lemma 3 (See [22]). Let α be a positive real number and let a(·), b(·), and u(·) be non-negative continuous
functions on [0, T] with b(·) monotonic increasing on [0, T). If

u(t) ≤ a(t) + b(t)
∫ t

0
(t− s)α−1u(s)ds,

then

u(t) ≤ a(t) +
∫ t

0

[
∞

∑
n=0

(b(t)Γ(α))n

Γ(nα)
(t− s)nα−1u(s)

]
ds

for all t ∈ [0, T).
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3. Main Results

The basic problem of optimal control we consider in this work, denoted by (BP), consists in
finding a piecewise continuous control u ∈ PC and the corresponding piecewise smooth state trajectory
x ∈ PC1 solution of the distributed-order non-local variational problem

J[x(·), u(·)] =
∫ b

a
L (t, x(t), u(t)) dt −→ max,

CDψ(·)
a+ x(t) = f (t, x(t), u(t)) , t ∈ [a, b],

x(·) ∈ PC1, u(·) ∈ PC,

x(a) = xa,

(BP)

where functions L and f , both defined on [a, b]×R×R, are assumed to be continuously differentiable
in all their three arguments: L ∈ C1, f ∈ C1. Our main contribution is to prove necessary (Section 3.2)
and sufficient (Section 3.3) optimality conditions.

3.1. Sensitivity Analysis

Before we can prove necessary optimality conditions to problem (BP), we need to establish
continuity and differentiability results on the state solutions for any control perturbation (Lemmas 4
and 5), which are then used in Section 3.2. The proof of Lemma 4 makes use of the following mean
value theorem for integration, that can be found in any textbook of calculus (see Lemma 1 of [23]): if
F : [0, 1]→ R is a continuous function and ψ is an integrable function that does not change the sign on
the interval, then there exists a number ᾱ, such that∫ 1

0
ψ(α)F(α)dα = F(ᾱ)

∫ 1

0
ψ(α)dα.

Lemma 4 (Continuity of solutions). Let uε be a control perturbation around the optimal control u∗, that is,
for all t ∈ [a, b], uε(t) = u∗(t) + εh(t), where h(·) ∈ PC is a variation and ε ∈ R. Denote by xε its
corresponding state trajectory, solution of

CDψ(·)
a+ xε(t) = f (t, xε(t), uε(t)) , xε(a) = xa.

Then, we have that xε converges to the optimal state trajectory x∗ when ε tends to zero.

Proof. Starting from the definition, we have, for all t ∈ [a, b], that∣∣∣CDψ(·)
a+ xε(t)−C Dψ(·)

a+ x∗(t)
∣∣∣ = | f (t, xε(t), uε(t))− f (t, x∗(t), u∗(t))| .

Then, by linearity,∣∣∣CDψ(·)
a+ xε(t)−C Dψ(·)

a+ x∗(t)
∣∣∣ = ∣∣∣CDψ(·)

a+ (xε(t)− x∗(t))
∣∣∣ = | f (t, xε(t), uε(t))− f (t, x∗(t), u∗(t))|

and it follows, by definition of the distributed operator, that∣∣∣∣∫ 1

0
ψ(α)CDα

a+ (xε(t)− x∗(t)) dα

∣∣∣∣ = | f (t, xε(t), uε(t))− f (t, x∗(t), u∗(t))| .

Now, using the mean value theorem for integration, and denoting m :=
∫ 1

0 ψ(α)dα, we obtain
that there exists an ᾱ such that∣∣∣CDᾱ

a+ (xε(t)− x∗(t))
∣∣∣ ≤ | f (t, xε(t), uε(t))− f (t, x∗(t), u∗(t))|

m
.
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Clearly, one has

CDᾱ
a+ (xε(t)− x∗(t)) ≤

∣∣∣CDᾱ
a+ (xε(t)− x∗(t))

∣∣∣ ≤ | f (t, xε(t), uε(t))− f (t, x∗(t), u∗(t))|
m

,

which leads to

xε(t)− x∗(t) ≤ I ᾱ
a+

[
| f (t, xε(t), uε(t))− f (t, x∗(t), u∗(t))|

m

]
.

Moreover, because f is Lipschitz-continuous, we have∣∣∣ f (t, xε, uε)− f (t, x∗, u∗)
∣∣∣ ≤ K1

∣∣∣xε − x∗
∣∣∣+ K2

∣∣uε − u∗
∣∣∣.

By setting K = max{K1, K2}, it follows that∣∣∣xε(t)− x∗(t)
∣∣∣ ≤ K

m
I ᾱ
a+

(∣∣∣xε(t)− x∗(t)
∣∣∣+ ∣∣∣εh(t)

∣∣∣)
=

K
m

[
|ε|I ᾱ

a+

(∣∣∣h(t)∣∣∣)+ I ᾱ
a+

(∣∣∣xε(t)− x∗(t)
∣∣∣)]

=
K
m

[
|ε|I ᾱ

a+

(∣∣∣h(t)∣∣∣)+ 1
Γ(ᾱ)

∫ t

a
(t− s)ᾱ−1

∣∣∣xε(s)− x∗(s)
∣∣∣ds
]

for all t ∈ [a, b]. Now, by applying Lemma 3 (the fractional Gronwall inequality), it follows that

∣∣∣xε(t)− x∗(t)
∣∣∣ ≤ K

m

[
|ε|I ᾱ

a+

(∣∣∣h(t)∣∣∣)+ |ε| ∫ t

a

(
∞

∑
i=0

1
Γ(iᾱ)

(t− s)iᾱ−1 I ᾱ
a+

(∣∣∣h(s)∣∣∣)) ds

]

= |ε|K
m

[
I ᾱ
a+

(∣∣∣h(t)∣∣∣)+ ∫ t

a

(
∞

∑
i=1

1
Γ(iᾱ + 1)

(t− s)iᾱ I ᾱ
a+

(∣∣∣h(s)∣∣∣)) ds

]

≤ |ε|K
m

[
I ᾱ
a+

(∣∣∣h(t)∣∣∣)+ ∫ t

a

(
∞

∑
i=1

δiᾱ

Γ(iᾱ + 1)
I ᾱ
a+

(∣∣∣h(s)∣∣∣)) ds

]
.

The series in the last inequality is a Mittag–Leffler function and thus convergent. Hence, by taking
the limit when ε tends to zero, we obtain the desired result: xε → x∗ for all t ∈ [a, b].

Lemma 5 (Differentiation of the perturbed trajectory). There exists a function η defined on [a, b] such that

xε(t) = x∗(t) + εη(t) + o(ε).

Proof. Since f ∈ C1, we have that

f (t, xε, uε) = f (t, x∗, u∗) + (xε − x∗)
∂ f (t, x∗, u∗)

∂x
+ (uε − u∗)

∂ f (t, x∗, u∗)
∂u

+ o(|xε − x∗|, |uε − u∗|).

Observe that uε − u∗ = εh(t) and uε → u∗ when ε → 0 and, by Lemma 4, we have xε → x∗

when ε → 0. Thus, the residue term can be expressed in terms of ε only, that is, the residue is o(ε).
Therefore, we have

CDψ(·)
a+ xε(t) =C Dψ(·)

a+ x∗(t) + (xε − x∗)
∂ f (t, x∗, u∗)

∂x
+ εh(t)

∂ f (t, x∗, u∗)
∂u

+ o(ε),

which leads to

lim
ε→0

CDψ(·)
a+ (xε − x∗)

ε
− (xε − x∗)

ε

∂ f (t, x∗, u∗)
∂x

− h(t)
∂ f (t, x∗, u∗)

∂u

 = 0,
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meaning that

CDψ(·)
a+

(
lim
ε→0

xε − x∗

ε

)
= lim

ε→0

xε − x∗

ε

∂ f (t, x∗, u∗)
∂x

+ h(t)
∂ f (t, x∗, u∗)

∂u
.

We want to prove the existence of the limit lim
ε→0

xε − x∗

ε
=: η, that is, to prove that

xε(t) = x∗(t) + εη(t) + o(ε). This is indeed the case, since η is solution of the distributed order
fractional differential equation

CDψ(·)
a+ η(t) = ∂ f (t,x∗ ,u∗)

∂x η(t) + ∂ f (t,x∗ ,u∗)
∂u h(t),

η(a) = 0.

The intended result is proven.

3.2. Pontryagin’s Maximum Principle of Distributed-Order

The following result is a necessary condition of Pontryagin type [24] for the basic distributed-order
non-local optimal control problem (BP).

Theorem 1 (Pontryagin Maximum Principle for (BP)). If (x∗(·), u∗(·)) is an optimal pair for (BP),
then there exists λ ∈ PC1, called the adjoint function variable, such that the following conditions hold for all t
in the interval [a, b]:

• The optimality condition

∂L
∂u

(t, x∗(t), u∗(t)) + λ(t)
∂ f
∂u

(t, x∗(t), u∗(t)) = 0; (1)

• The adjoint equation

Dψ(·)
b− λ(t) =

∂L
∂x

(t, x∗(t), u∗(t)) + λ(t)
∂ f
∂x

(t, x∗(t), u∗(t)); (2)

• The transversality condition
I1−ψ(·)

b− λ(b) = 0. (3)

Proof. Let (x∗(·), u∗(·)) be the solution to problem (BP), h(·) ∈ PC be a variation, and ε a real constant.
Define uε(t) = u∗(t) + εh(t), so that uε ∈ PC. Let xε be the state corresponding to the control u∗,
that is, the state solution of

CDψ(·)
a+ xε(t) = f (t, xε(t), uε(t)) , xε(a) = xa. (4)

Note that uε(t)→ u∗(t) for all t ∈ [a, b] whenever ε→ 0. Furthermore,

∂uε(t)
∂ε

∣∣∣
ε=0

= h(t). (5)

Something similar is also true for xε. Because f ∈ C1, it follows from Lemma 4 that, for each

fixed t, xε(t) → x∗(t) as ε → 0. Moreover, by Lemma 5, the derivative
∂xε(t)

∂ε

∣∣∣
ε=0

exists for each t.

The objective functional at (xε, uε) is

J[xε, uε] =
∫ b

a
L (t, xε(t), uε(t)) dt.
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Next, we introduce the adjoint function λ. Let λ(·) be in PC1, to be determined. By the integration
by parts formula (see Lemma 1),

∫ b

a
λ(t) ·C Dψ(·)

a+ xε(t)dt =
[

xε(t) · I1−ψ(·)
b− λ(t)

]b

a
+
∫ b

a
xε(t) ·Dψ(·)

b− λ(t)dt,

and one has∫ b

a
λ(t) ·C Dψ(·)

a+ xε(t)dt−
∫ b

a
xε(t) ·Dψ(·)

b− λ(t)dt− xε(b) · I1−ψ(·)
b− λ(b) + xε(a) · I1−ψ(·)

b− λ(a) = 0.

Adding this zero to the expression J[xε, uε] gives

φ(ε) = J[xε, uε] =
∫ b

a

[
L (t, xε(t), uε(t)) + λ(t) ·C Dψ(·)

a+ xε(t)− xε(t) ·Dψ(·)
b− λ(t)

]
dt

− xε(b) · I1−ψ(·)
b− λ(b) + xε(a) · I1−ψ(·)

b− λ(a),

which by (4) is equivalent to

φ(ε) = J[xε, uε] =
∫ b

a

[
L (t, xε(t), uε(t)) + λ(t) · f (t, xε(t), uε(t))− xε(t) ·Dψ(·)

b− λ(t)
]

dt

− xε(b) · I1−ψ(·)
b− λ(b) + xa · I1−ψ(·)

b− λ(a).

Since the process (x∗, u∗) = (x0, u0) is assumed to be a maximizer of problem (BP), the derivative
of φ(ε) with respect to ε must vanish at ε = 0; that is,

0 = φ′(0) =
d
dε

J[xε, uε]|ε=0

=
∫ b

a

[
∂L
∂x

∂xε(t)
∂ε

∣∣∣
ε=0

+
∂L
∂u

∂uε(t)
∂ε

∣∣∣
ε=0

+ λ(t)
(

∂ f
∂x

∂xε(t)
∂ε

∣∣∣
ε=0

+
∂ f
∂u

∂uε(t)
∂ε

∣∣∣
ε=0

)
−Dψ(·)

b− λ(t)
∂xε(t)

∂ε

∣∣∣
ε=0

]
dt− ∂xε(b)

∂ε

∣∣∣
ε=0

I1−ψ(·)
b− λ(b),

where the partial derivatives of L and f , with respect to x and u, are evaluated at (t, x∗(t), u∗(t)).
Rearranging the term and using (5), we obtain that

∫ b

a

[(∂L
∂x

+ λ(t)
∂ f
∂x
−Dψ(·)

b− λ(t)
)∂xε(t)

∂ε

∣∣∣
ε=0

+
(∂L

∂u
+ λ(t)

∂ f
∂u

)
h(t)

]
dt− ∂xε(b)

∂ε

∣∣∣
ε=0

I1−ψ(·)
b− λ(b) = 0.

Setting H(t, x, u, λ) = L(t, x, u) + λ f (t, x, u), it follows that

∫ b

a

[(∂H
∂x
−Dψ(·)

b− λ(t)
)∂xε(t)

∂ε

∣∣∣
ε=0

+
∂H
∂u

h(t)
]

dt− ∂xε(b)
∂ε

∣∣∣
ε=0

I1−ψ(·)
b− λ(b) = 0,

where the partial derivatives of H are evaluated at (t, x∗(t), u∗(t), λ(t)). Now, choosing

Dψ(·)
b− λ(t) =

∂H
∂x

(t, x∗(t), u∗(t), λ(t)) , with I1−ψ(·)
b− λ(b) = 0,

that is, given the adjoint equation (2) and the transversality condition (3), it yields

∫ b

a

∂H
∂u

(t, x∗(t), u∗(t), λ(t)) h(t) = 0
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and, by the fundamental lemma of the calculus of variations [25], we have the optimality condition (1):

∂H
∂u

(t, x∗(t), u∗(t), λ(t)) = 0.

This concludes the proof.

Remark 1. If we change the basic optimal control problem (BP) by changing the boundary condition given
on the state variable at initial time, x(a) = xa, to a terminal condition, then the optimality condition and the
adjoint equation of the Pontryagin Maximum Principle (Theorem 1) remain exactly the same. Changes appear
only on the transversality condition:

• A boundary condition at final/terminal time—that is, fixing the value x(b) = xb with x(a) remaining free,
leads to

I1−ψ(·)
a− λ(a) = 0;

• In the case when no boundary conditions is given (i.e., both x(a) and x(b) are free), then we have

I1−ψ(·)
b− λ(b) = 0 and I1−ψ(·)

a− λ(a) = 0.

Remark 2. If f (t, x, u) = u, that is, CDψ(·)
a+ x(t) = u(t), then our problem (BP) gives a basic problem of the

calculus of variations, in the distributed-order fractional sense of [16]. In this very particular case, we obtain
from our Theorem 1 the Euler–Lagrange equation of [16] (cf. Theorem 2 of [16]).

Remark 3. Our distributed-order fractional optimal control problem (BP) can be easily extended to the vector
setting. Precisely, let x := (x1, . . . , xn) and u := (u1, . . . , um) with (n, m) ∈ N2, such that m ≤ n,
and functions f : [a, b]×Rn ×Rm → Rn and L : [a, b]×Rn ×Rm → R be continuously differentiable with
respect to all its components. If (x∗, u∗) is an optimal pair, then the following conditions hold for t ∈ [a, b]:

• The optimality conditions

∂L
∂ui

(t, x∗(t), u∗(t)) + λ(t) · ∂ f
∂ui

(t, x∗(t), u∗(t)) = 0, i = 1, . . . , m;

• The adjoint equations

Dψ(·)
b− λj(t) =

∂L
∂xj

(t, x∗(t), u∗(t)) + λ(t) · ∂ f
∂xj

(t, x∗(t), u∗(t)), j = 1, . . . , n;

• The transversality conditions
I1−ψ(·)

b− λj(b) = 0, j = 1, . . . , n. (6)

Definition 4. The candidates to solutions of (BP), obtained by the application of our Theorem 1, will be called
(Pontryagin) extremals.

We now illustrate the usefulness of our Theorem 1 with an example.

Example 1. The triple (x̃, ũ, λ) given by x̃(t) = t2, ũ(t) =
t(t− 1)

ln t
, and λ(t) = 0, for t ∈ [0, 1], is an

extremal of the following distributed-order fractional optimal control problem:

J[x(·), u(·)] =
∫ 1

0
−
(

x(t)− t2
)2
−
(

u− t(t− 1)
ln t

)2

−→ max,

CDψ(·)
0+ x(t) = u(t), t ∈ [0, 1],

x(0) = 0.

(7)
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Indeed, by defining the Hamiltonian function as

H(t, x, u, λ) = −
[
(x− t2) +

(
u− t(t− 1)

ln t

)2
]
+ λu, (8)

it follows:

• From the optimality condition
∂H
∂u

= 0,

λ(t) = 2
(

u− t(t− 1)
ln t

)
; (9)

• From the adjoint equation Dψ(α)
0+ λ(t) =

∂H
∂x

,

Dψ(α)
0+ λ(t) = −2(x− t2); (10)

• From the transversality condition,
I1−ψ(α)

b− λ(b) = 0. (11)

We easily see that (9), (10) and (11) are satisfied for

x(t) = t2, u(t) =
t(t− 1)

ln t
, λ(t) = 0.

3.3. Sufficient Condition for Global Optimality

We now prove a Mangasarian type theorem for the distributed-order fractional optimal control
problem (BP).

Theorem 2. Consider the basic distributed-order fractional optimal control problem (BP). If (x, u)→ L(t, x, u)
and (x, u)→ f (t, x, u) are concave and (x̃, ũ, λ) is a Pontryagin extremal with λ(t) ≥ 0, t ∈ [a, b], then

J[x̃, ũ] ≥ J[x, u]

for any admissible pair (x, u).

Proof. Because L is concave as a function of x and u, we have from Lemma 2 that

L (t, x̃(t), ũ(t))− L (t, x(t), u(t)) ≥ ∂L
∂x

(t, x̃(t), ũ(t)) · (x̃(t)− x(t)) +
∂L
∂u

(t, x̃(t), ũ(t)) · (ũ(t)− u(t))

for any control u and its associated trajectory x. This gives

J[x̃(·),ũ(·)]− J[x(·), u(·)] =
∫ b

a
[L (t, x̃(t), ũ(t))− L (t, x(t), u(t))] dt

≥
∫ b

a

[
∂L
∂x

(t, x̃(t), ũ(t)) · (x̃(t)− x(t)) +
∂L
∂u

(t, x̃(t), ũ(t)) · (ũ(t)− u(t))
]

dt

=
∫ b

a

[
∂L
∂x

(t, x̃(t), ũ(t)) · (x̃(t)− x(t))− ∂L
∂u

(t, x̃(t), ũ(t)) · (ũ(t)− u(t))
]

dt.

(12)

From the adjoint equation (2), we have

∂L
∂x

(t, x̃(t), ũ(t)) = Dψ(·)
b− λ(t)− λ(t)

∂ f
∂x

(t, x̃(t), ũ(t)).



Axioms 2020, 9, 124 10 of 12

From the optimality condition (1), we know that

∂L
∂u

(t, x̃(t), ũ(t)) = −λ(t)
∂ f
∂u

(t, x̃(t), ũ(t)).

It follows from (12) that

J[x̃(·), ũ(t)]− J[x(·), u(·)] ≥
∫ b

a

(
Dψ(·)

b− λ(t)− λ(t)
∂ f
∂x

(t, x̃(t), ũ(t))
)
· (x̃(t)− x(t))

− λ(t)
∂ f
∂u

(t, x̃(t), ũ(t)) · (ũ(t)− u(t)) dt. (13)

Using the integration by parts formula of Lemma 1,

∫ b

a
λ(t) ·C Dψ(·)

a+ (x̃(t)− x(t)) dt =
[
(x̃(t)− x(t)) · I1−ψ(·)

b− λ(t)
]b

a
+
∫ b

a
(x̃(t)− x(t)) ·Dψ(·)

b− λ(t)dt,

meaning that

∫ b

a
(x̃(t)− x(t)) ·Dψ(·)

b− λ(t)dt

=
∫ b

a
λ(t) ·C Dψ(·)

a+ (x̃(t)− x(t)) dt−
[
(x̃(t)− x(t)) · I1−ψ(·)

b− λ(t)
]b

a
. (14)

Substituting (14) into (13), we get

J [x̃(·), ũ(·)]− J [x(·), u(·)] ≥
∫ b

a
λ(t) [ f (t, x̃(t), ũ(t))

− f (t, x(t), u(t))− ∂ f
∂x

(t, x̃(t), ũ(t)) · (x̃(t)− x(t))− ∂ f
∂u

(t, x̃(t), ũ(t)) · (ũ(t)− u(t))
]

dt.

Finally, taking into account that λ(t) ≥ 0 and f is concave in both x and u, we conclude that
J [x̃(·), ũ(·)]− J [x(·), u(·)] ≥ 0.

Example 2. The extremal (x̃, ũ, λ) given in Example 1 is a global minimizer for problem (7). This is easily
checked from Theorem 2 since the Hamiltonian defined in (8) is a concave function with respect to both variables
x and u and, furthermore, λ(t) ≡ 0. In Figure 1, we give the plots of the optimal solution to problem (7).

0.0 0.2 0.4 0.6 0.8 1.0
time (t)

0.0

0.2

0.4

0.6

0.8

1.0 x*(t) = t2

u*(t) = t(t− 1)/lnt

Figure 1. The optimal control u∗ and corresponding optimal state variable x∗, solution of problem (7).
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4. Conclusions

In this paper we investigated fractional optimal control problems depending on distributed-order
fractional operators. We have proven a necessary optimality condition of Pontryagin’s type and a
Mangasarian-type sufficient optimality condition. The new results were illustrated with an example.
As for future work, it would be interesting to develop proper numerical approaches to solve problems
of optimal control with distributed-order fractional derivatives. In this direction, the approaches found
in [17,18] can be easily adapted.
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