
axioms

Article

Local Spectral Theory for R and S Satisfying
RnSRn = Rj

Salvatore Triolo

Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy;
salvatore.triolo@unipa.it

Received: 8 August 2020; Accepted: 14 October 2020; Published: 19 October 2020
����������
�������

Abstract: In this paper, we analyze local spectral properties of operators R, S and RS which satisfy
the operator equations RnSRn = Rj and SnRSn = Sj for same integers j ≥ n ≥ 0. We also continue to
study the relationship between the local spectral properties of an operator R and the local spectral
properties of S. Thus, we investigate the transmission of some local spectral properties from R to S
and we illustrate our results with an example. The theory is exemplified in some cases.

Keywords: local spectral subspaces; Dunford’s property (C) and property (β); Drazin
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1. Introduction

In this paper, we continue the analysis undertaken in [1–6] on the general problem of study
the local spectral properties for R, S, RS and SR ∈ L(X) in the case R and S satisfy the operator
equations RnSRn = Rj for same integers j ≥ n ≥ 0. Following the procedure of [1], we study the
relationship of Dunford property (C) for products RnS and SRn for operator Rj−n ∈ L(X) which satisfy
the operator equations

SRn = Rj−n for same integers j ≥ n ≥ 0, (1)

and hence
RnSRn = Rj for same integers j ≥ n ≥ 0. (2)

The paper is organized as follows.
In Section 2, to keep the paper sufficiently self-contained, we collect some preliminary definitions

and propositions that are used in what follows. In Section 3, we show some results concerning the
transmission of some local spectral properties from R to S. In Section 4, we give an example that plays
a crucial role for the theory. The final considerations are given in Section 5.

2. Notation and Complementary Results

A bounded operator T ∈ L(X) on a complex infinite dimensional Banach space X is said to have
the single valued extension property at λo ∈ C. In short, T has the SVEP at λo, if for every open disc Dλo

centered at λo the only analytic function f : Dλo → X which satisfies the equation

(λI − T) f (λ) = 0 (3)

is the constant function f ≡ 0.
T is said to have the SVEP if T has the SVEP for every λ ∈ C.
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To facilitate the reader, we remember that the SVEP is a typical tool of the local spectral theory.
If ρT(x) denote the local resolvent set of T at the point x ∈ X, defined as the union of all open subsets
U of C for which there exists an analytic function f : U → X that satisfies

(λI − T) f (λ) = x for all λ ∈ U (4)

then the local spectrum σT(x) of T at x is defined by

σT(x) := C \ ρT(x),

and, obviously, σT(x) ⊆ σ(T), where σ(T) denotes the spectrum of T.

Remark 1. Let λ ∈ ρT(x) and U denotes an open neighborhood of λ. If f : U → X satisfies the equation
(λI − T) f (µ) = x on U , then σT( f (λ)) = σT(x) for all λ ∈ U (see [7], Lemma 1.2.14). Moreover,
0 ∈ σλI−T(x) if and only if λ ∈ σT(x).

Theorem 1. Let T ∈ L(X), X a Banach space. Then, T has SVEP if and only if every 0 6= x ∈ X the local
spectrum σT(x) is non-empty.

Proof. See ([7], Proposition 1.2.16).

The SVEP has a decisive role in local spectral theory it has a certain interest to find conditions for
which an operator has the SVEP.

Definition 1. Let T is a linear operator on a vector space X. The hyperrange of T is the subspace

T∞(X) :=
⋂

n∈N
Tn(X).

Generally, T(T∞(X)) ⊆ T∞(X), thus we are interested in finding conditions for which
T(T∞(X)) = T∞(X). For every linear operator T on a vector space X, there corresponds the two chains:

{0} = ker T0 ⊆ ker T ⊆ ker T2 · · · .

and
X = T0(X) ⊇ T(X) ⊇ T2(X) · · · .

The ascent of T is the smallest positive integer p = p(T), whenever it exists, such that
ker Tp = ker Tp+1. If such p does not exist, we let p = +∞. Analogously, the descent of T is defined
to be the smallest integer q = q(T), whenever it exists, such that Tq+1(X) = Tq(X). If such q does not
exist, we let q = +∞.

It is possible to prove that, if p(T) and q(T) are both finite, then p(T) = q(T). Note that p(T) = 0
means that T is injective, and q(T) = 0 that T is surjective.

Theorem 2. If T ∈ L(X) and X is a Banach space, then

T does not have the SVEP at 0⇒ p(T) = ∞. (5)

As noted in [1] (Lemma 1.1), the local spectrum of Tx and x may differ only at 0, i.e.,
For every T ∈ L(X) and x ∈ X, we have

σT(Tx) ⊆ σT(x) ⊆ σT(Tx) ∪ {0}. (6)
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Moreover, if T is injective, then

σT(Tx) = σT(x) for all x ∈ X. (7)

For every subset F ⊆ C, the analytic spectral subspace of T associated with F is the set

XT(F) := {x ∈ X : σT(x) ⊆ F}

For every subset F ⊆ C, the global spectral subspace XT(F) consists of all x ∈ X for which there
exists an analytic function f : C \ F → X that satisfies

(λI − T) f (λ) = x for all λ ∈ C \ F. (8)

In general, XT(F) ⊆ XT(F) for every closed sets F ⊆ C. The identity XT(F) = XT(F) holds for all
closed sets F ⊆ C whenever T has SVEP, precisely. T has SVEP if and only if XT(F) = XT(F) holds for
all closed sets F ⊆ C.

Definition 2. The analytical core K(λI − T) of λI − T is the set

K(λI − T) := XT(C \ {λ}) = {x ∈ X : λ 6∈ σT(x)} (9)

The analytic core of an operator T is an invariant subspace, which, in general, is not closed [8].

Definition 3. An operator T ∈ L(X) is said to be upper semi-Fredholm, T ∈ Φ+(X), if T(X) is closed and
the kernel kerT is finite-dimensional. An operator T ∈ L(X) is said to be lower semi-Fredholm, T ∈ Φ−(X) if
the range T(X) has finite codimension.

Definition 4. An operator T ∈ L(X) is said to be Drazin invertible if there exist C ∈ Ł(X) such that

1. Tm(X) = Tm+1C for some integer m ≥ 0;
2. C = TC2; and
3. TC = CT

In this case, C is called Drazin inverse of T and the smallest m ≥ 0 in (4) is called the index i(T)
of T.

3. Operator Equation RnSRn = Rj

As mentioned in the Introduction, in this section, we show some results concerning the
transmission of some local spectral properties from R to S.

We study the relationship between the local spectral properties of an operator R and the local
spectral properties S, if this exists. In particular, we study a reciprocal relationship, analogous to that
of (2). We also show that many local spectral properties, such as SVEP and Dunford property (C),
are transferred from operator R to S somehow through a bond. While these properties are, in general,
not preserved under sums and products of commuting operators, we obtain positive results in the case
of our perturbations.

We suppose that R, S ∈ Ł(X) satisfy RnSRn = Rj for some integers j ≥ n ≥ 0. The case n = 2
and j = 1 is studied in [1,9,10]; if n = j = 1, the operators A and B are relatively regular.

Moreover, if T ∈ Ł(X) is Drazin invertible operator with i(T) = k, then, by (4),

T2k+1 = Tk+1CTk+1.

Therefore, in this case, j = 2k + 1 and n = k + 1.



Axioms 2020, 9, 120 4 of 8

Lemma 1. For every x ∈ X, we have
σRj−n(Rnx) ⊆ σSRn(x). (10)

Moreover,
σSRn(SRnx) ⊆ σRj−n(x), σSRn(SRnx) ⊆ σRj−n(Rnx) (11)

Proof. Suppose that λ0 ∈ ρSRn(x); then, there exists an open neighborhood U0 if λ0 and an analytic
function f : Uo → X such that

(λI − SRn) f (λ) = x for all λ ∈ U0. (12)

From this, it then follows that

Rnx = Rn(λI − SRn) f (λ) = (λRn − RnSRn) f (λ)

= (λRn − Rj) f (λ) = (λI − Rj−n)Rn f (λ),

for all λ ∈ U0. Hence, λo ∈ ρRj−n(Rnx); thus,

σRj−n(Rnx) ⊆ σSRn(x).

To show the first inclusion (11), let λ0 ∈ ρRj−n(x); then, there exists an open neighborhood Uo of
λ0 and an analytic function f : Uo → X such that

(λI − Rj−n) f (λ) = x for all λ0 ∈ U0.

Consequently,

SRnx = SRn(λI − Rj−n) f (λ) = (λSRn − SRj) f (λ)

= (λSRn − SRnSRn) f (λ) = (λSR− [SRn]2) f (λ)

= (λI − SRn)SRn f (λ),

for all λ ∈ U0, and since SRn f (λ) is analytic, we obtain λ0 ∈ ρSRn(SRnx). Hence, this shows the
first inclusion of (11). To show the second inclusion, let λ0 ∈ ρRj−n(Rnx); then, there exists an open
neighborhood Uo of λ0 and an analytic function f : Uo → X such that

(λI − Rj−n) f (λ) = Rnx for all λ0 ∈ U0.

Consequently, the argument is similar to that first part.

Theorem 3. Suppose that F is a closed subset of C and 0 ∈ F . Then, XRj−n(F ) is closed if and only if
XSRn(F ) is closed.

Proof. Suppose that X j
R(F ) is closed and let (xm) be a sequence of XSRn(F ) which converges to x ∈ X.

Then, for every m ∈ N, we have σSRn(xm) ⊆ F . By (10), we have σRj−n(Rnxm) ⊆ F . Since 0 ∈ F , by
(6) where T = Rj−n, we have σRj−n(Rnxm) ⊆ σRj−n(Rjxm) ∪ {0} ⊆ F . Therefore, Rjxm ∈ XRJ−n(F ) i.e.,
Rj−nRnxm ∈ XRJ−n(F ). By [9] (Lemma 2.3) , Rnxm ∈ XRJ−n(F ) and by assumption XRj−n(F ) is closed.
We then have Rnx ∈ XRj−n(F ), i.e., σRj−n(x) ⊆ F . By (11),

σSRn(SRnx) ⊆ σRj−n(x) ⊆ F .

Then, SRnx ∈ XSRn(F ), by [9] (Lemma 2.3) x ∈ XSRn(F ), thus XSRn(F ) is closed. Conversely,
suppose that XSRn(F ) is closed and let (xm) be a sequence of XRj−n(F ) which converges to x ∈ X;
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then, σRj−n(xm) ⊆ F for every m ∈ N. By (11), σSRn(SRnxm) ⊆ F , and then SRnxm ∈ XSRn(F ).
By [9] (Lemma 2.3) xm ∈ XSRn(F ), therefore x ∈ XSRn(F ). Hence, σSRn(x) ⊆ F . Since by (10)
σRj−n(Rny) ⊆ σSRn(y) for all y ∈ X, then, if y = Rj−nx, we have σRj−n(RJ x) ⊆ σSRn(Rj−nx). By (6),
we have

σRj−n(Rj−nx) ⊆ σRj−n(Rjx) ∪ {0} ⊆ σSRn(Rj−nx) ∪ {0}
⊆ σSRn(SRjx) ∪ {0} ⊆ σSRn [(SRn)2x] ∪ {0}
⊆ σSRn(SRnx) ∪ {0} ⊆ σSRn(x) ∪ {0} ⊆ F

i.e., Rj−nx ∈ XRj−n(F ). Hence, σRj−n(Rj−nx) ⊆ F i.e., Rj−nx ∈ XRj−n(F ). By [9] (Lemma 2.3)
x ∈ XRj−n(F ).

The following result is inspired by [1] and ([11], Theorem 2.1).

Lemma 2. Let S, R ∈ L(X) be such that RnSRn = Rj for same integers j ≥ n ≥ 0. If Rj−n has SVEP,
then SRn and RnS have SVEP.

Proof. By ([12], Proposition 2.1), SRn has SVEP if and only if RnS has Svep. Suppose that Rj−n has
SVEP at λ0 and let f : U0 → X be an analytic function for which (λI − SRn) f (λ) = 0 for all λU0. Then,
SRn f (λ) = λ f (λ).

Rn(λI − SRn) f (λ) =

(λRn − Rj) f (λ) = (λI − Rj−n)Rn f (λ) = 0.

The SVEP of Rj−n at λ0 implies that Rn f (λ) = 0 and hence SRn f (λ) = λ f (λ) = 0. Thus, if 0 6∈ U0,
then f (λ) = 0 for λ 6= 0 and by continuity f (0) = 0. Therefore, SRn has SVEP at λ0.

We now consider the case where 0 6∈ F

Theorem 4. Let F be a closed subset of C such that 0 6∈ F . Suppose that R, S ∈ Ł(X) satisfy RnSRn = Rj

for some integers j ≥ n ≥ 0 and Rj−n has SVEP. If XRj−n(F ) is closed, then XSRn(F ) is closed.

Proof. Let F1 := F ∪ {0}; by assumption, XRj−n(F1) is closed. By (3), XSRn(F1) is closed. By (2), SRn

has SVEP; therefore, by ([9], Lemma 1.4), XSR(F ) is closed.

Definition 5. An operator T ∈ L(X) is said to have Dunford’s property (abbreviated property (C)) if XT(F )
is closed for every closed set F ⊆ C

It is known that Dunford property (C) entails SVEP for T.

Theorem 5. Let S, R ∈ L(X) be such that RnSRn = Rj for some integers j ≥ n ≥ 0. If Rj−n has the property
(C), then SRn and RnS have the property (C).

Proof. Suppose that F is a closed set and Rj−n has property (C); then, Rj−n has SVEP. If 0 ∈ F , by (3)
and by assumptions XRj−n(F ) is closed, it follows that XSRn(F ) is closed. Similarly, if 0 6∈ F , then by
(4) we have that XSRn(F ∪ {0}) is closed. Therefore, SRn has property (C).

We prove that somehow there exists a bond, i.e., SR and RS share Dunford’s property (C) when
RnSRn = Rj for same integers j ≥ n ≥ 0.
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Definition 6. An operator T ∈ L(X) is said to have property (Q) if the quasi-nilpotent part H0(λI − T) of
λI − T defined by

H0(λI − T) := {x ∈ X : lim sup
n→∞

‖(λI − T)nx‖1/n = 0}

is closed for every λ ∈ C.

It is known that
Property(C)⇒ Property(Q)⇒ SVEP,

and moreover for operator T we have XT(λ) = H0(λI − T).
Then, if T has SVEP,

XT(λ) = XT(λ) = H0(λI − T). (13)

Every multiplier of a semi-simple commutative Banach algebra has property (Q), see ([13],
Theorem 1.8), in particular every convolution operator Tµ, µ ∈ M(G), on the group algebra L1(G) has
property (Q), but there are convolution operators which do not enjoy property (C) (see [7], Chapter 4).

Observe that, if T has property (Q) and f is an injective analytic function defined on an open
neighborhood U of σ(T), then f (T) also has property (Q). To see this, recall first that the equality

X f (T)(F ) = XT( f−1(F )) (14)

holds for every closed subset of C and every analytic function f on an open neighborhood U of σ(T),
see ([7], Theorem 3.3.6). Now, to show that f (T) has property (Q) amd f is injective, we have to
prove that H0(λI − f (T)) is closed for every λ ∈ C. If λ /∈ σ( f (T)), then H0(λI − f (T)) = {0}, while,
if λ ∈ σ( f (T)) = f (σ(T)), then

H0(λI − f (T)) = X f (T)({λ}) = XT( f−1{λ}) = H0(µI − T),

where f (λ) = µ, and, consequently, H0(λI − f (T)) is closed. In particular, considering the function
f (λ) := 1

λ , we see that, if T is invertible and has property (Q), then its inverse has property (Q).
Furthermore, property (Q) for T implies property (Q) for Tn, for every n ∈ N.

Theorem 6. Let S, R ∈ L(X) be such that RnSRn = Rj for some integers j ≥ n ≥ 0. If Rj−n has the property
(Q), then SRn has the property (Q).

Proof. Suppose that Rj−n has property (Q). Then, Rj−n has SVEP, hence by Lemma 2 SRn has SVEP.
Therefore, by (13) and by assumption, H0(λI − Rj−n) = XRj−n({λ}) is closed for every λ ∈ C. By (13)
and (3), H0(SRn) = XSRn({0}) is closed. Following the procedure of [1], let 0 6= λ ∈ C; by ([7],
Proposition 3.3.1, part (f)) we have

XRj−n({λ} ∪ {0}) = XRj−n({λ}) + XRj−n({0}) = H(λ0 I − Rj−n) + H0(Rj−n).

Since Rj−n is upper semi-Fredholm, the SVEP at 0 implies that H0(Rj−n) is finite-dimensional (see [8],
Theorem 3.18). Then, XRj−n({λ} ∪ {0}) is closed. By Theorem 5, we then have

H0(λI − SRn) = XSRn{λ}

is closed, therefore SRn has property Q.

Following the procedure of [1] (Theorem 3), it is possible to prove the following:

Theorem 7. Let S, R ∈ L(X) be such that RnSRn = Rj for same integers j ≥ n ≥ 0.



Axioms 2020, 9, 120 7 of 8

1. (i) If 0 6= λ ∈ C, then K(λI − Rj−n) is closed if and only K(λI − SRn) is closed, or equivalently
K(λI − RnS) is closed.

2. (ii) If Rj−n is injective, then K(λI − Rj−n) is closed if and only K(λI − SRn) is closed, or equivalently
K(λI − RnS) is closed for all λ ∈ C.

Corollary 1. Suppose RnSRn = Rj, SjRSJ = Sn, for some integers j ≥ n ≥ 0 and λ 6= 0. Then, the following
statements are equivalent:

1. K(λI − Rj) is closed.
2. K(λI − SRn) is closed.
3. K(λI − RnS) is closed.
4. K(λI − Sn) is closed.

When R is injective, the equivalence also holds for λ 6= 0.

Proof. The equivalence of (3) and (4) follows from Theorem 3. Since, the injectivity of R is equivalent
to the injectivity of S, the equivalence of (1) and (4) also holds for λ = 0.

We show now that property (Q) is also transmitted between operators R into S. Let S, R ∈ L(X) be
such that RnSRn = Rj for some integers j ≥ n ≥ 0. If R has the property (Q) and Rj−n has the property
(Q), then SRn has the property (Q), therefore Sn has the property (Q), thus S has the property (Q).

4. Example: Drazin Invertible Operators

In this section, we give an example that plays a crucial role for the theory, of operators R, S ∈ Ł(X)

that satisfy the equation RnCRn = Rj for some integers j ≥ n ≥ 0.
In the literature, the concept of invertibility admits several generalizations. Another generalization

of the notion of invertibility, which satisfies the relationships of "reciprocity" observed above,
is provided by the concept of Drazin invertibility.

The concept of Drazin invertibility has been introduced in a more abstract setting than operator
theory [14]. In the case of the Banach algebra L(X), R ∈ L(X) is said to be Drazin invertible (with a
finite index) if there exists an operator S ∈ L(X) and n ∈ N such that

RS = SR, SRS = S, RnSR = Rn. (15)

The smallest nonnegative integer ν such that (15) holds is called the index i(R) of R. In this case,
the operator S is called Drazin inverse of R.

Clearly, in this case,

RnSRn = RnSRRn−1 = RnRn−1 = Rj for same integers j = 2n− 1 > n ≥ 0. (16)

Clearly, any invertible operator or a nilpotent operator R is Drazin invertible.

5. Conclusions

In this paper we give a proof that the operators S and R share property (Q) and in some modes
Dunford’s property (C); we prove further results concerning the local spectral theory of R, S, RS and
SR, in particular we show several results concerning the quasi-nilpotent parts and the analytic cores
of these operators. It should be noted that these results are established in a very general framework.
Therefore, we hope to discuss some aspect in a further paper.
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