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Abstract: Several methods have been put forward to solve equilibrium problems, in which the
two-step extragradient method is very useful and significant. In this article, we propose a new
extragradient-like method to evaluate the numerical solution of the pseudomonotone equilibrium in
real Hilbert space. This method uses a non-monotonically stepsize technique based on local bifunction
values and Lipschitz-type constants. Furthermore, we establish the weak convergence theorem for
the suggested method and provide the applications of our results. Finally, several experimental
results are reported to see the performance of the proposed method.

Keywords: Lipschitz-type conditions; pseudomonotone bifunction; equilibrium problem; variational
inequality problems; weak convergence; fixed point problems

1. Introduction

Assume K to be a subset of a Hilbert space E with f : E × E → R a bifunction with f (z1, z1) = 0,
for every z1 ∈ K. An equilibrium problem [1,2] for f on K is formulated in the following way:

Find q∗ ∈ K such that f (q∗, z1) ≥ 0, ∀z1 ∈ K. (1)

The equilibrium problem (1) has many mathematical problems as particular instances such as
the variational inequality problems (VIP), the minimization problems, the fixed point problems,
the complementarity problems, the Nash equilibrium of non-cooperative games, the saddle
point problems, and the vector optimization problem (see [1,3,4] for more details). The term
“equilibrium problem” in a particular format was established in 1992 by Muu and Oettli [2], and
it was further promoted by Blum and Oettli in the article [1]. Some of the most popular ones,
interesting and worthwhile research fields in equilibrium problem theory, are to develop new iterative
schemes, improve the convergence rate and efficiency of the already existing methods, and study their
converging analysis with optimal conditions. Several methods have been established in the past few
years to solve the equilibrium problems in real Hilbert spaces, i.e., the extragradient methods [5–14],
the inertial methods [15–20], for particular classes of equilibrium problems [21–28], and others
in [29–37].
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The proximal-like method [38] is one of the famous and efficient techniques to solve equilibrium
problems. This technique is equivalent to solving minimization problems on each iteration.
This approach was also considered as the two-step extragradient method in [5] due to the previous
contribution of the Korpelevich method [39] to numerically solve the saddle point problems. Tran et al.
in [5] generated the sequence {un} in the following way:

u0 ∈ K,
vn = arg min

v∈K
{λ f (un, v) + 1

2‖un − v‖2},

un+1 = arg min
v∈K

{λ f (vn, v) + 1
2‖un − v‖2},

where 0 < λ < min
{ 1

2c1
, 1

2c2

}
. The iterative sequence generated by the above-written method provides

the weak convergence of the iterative sequence, and in order to operate it, previous knowledge of
Lipschitz-type constants is required that help to choose the value of the stepsize.

Recently, the authors introduced an inertial iterative scheme in [19] to determine a numerical
solution of pseudomonotone equilibrium problems. The key contribution is an inertial factor that
has helped to enhance the rate of convergence of the iterative sequence {un}. The detailed method is
provided as follows:

Step 1: Choose u−1, u0 ∈ K, θ ∈ [0, 1), 0 < λ < { 1
2c1

, 1
2c2
} and a sequence {εn} ⊂ [0,+∞)

such that:
+∞

∑
n=0

εn < +∞, (2)

holds. Let θn satisfy 0 ≤ θn ≤ θ̄n such that:

θ̄n =

min
{

θ, εn
‖un−un−1‖

}
if un 6= un−1,

θ otherwise.
(3)

Step 2: Compute: 
ρn = un + θn(un − un−1),
vn = arg min

v∈K
{λ f (ρn, v) + 1

2‖ρn − v‖2},

un+1 = arg min
v∈K

{λ f (vn, v) + 1
2‖ρn − v‖2}.

In this study, we concentrate on projection methods that are well known and practically
straightforward to operate due to their simple numerical computation. Motivated by the works
of [19,40], we propose an inertial explicit extragradient method to solve pseudomonotone equilibrium
problems and other particular classes of equilibrium problems such as the fixed point problems and
the variational inequality problems. The proposed method can be considered as the modification of the
methods that appeared in [5,19,39,40]. Under certain mild conditions, the weak convergence results
are established corresponding to the proposed method. Numerical studies have been demonstrated
that show that the suggested method is more efficient than the existing method in [19].

The remainder of the paper is arranged in the following way: Section 2 includes some preliminary
and necessary results that will be used throughout the paper. Section 3 contains our main method,
as well as the weak convergence theorem. Section 4 covers the applications of the proposed method.
Section 5 demonstrates the numerical results that provide the computational performance of our
proposed method.
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2. Preliminaries

Assume K ⊂ E to be a convex and closed subset of a real Hilbert space E , and R and N
denote the set of real numbers and the set of a natural numbers, respectively. Let f : E × E → R be
a bifunction and EP( f ,K) be the solution set of an equilibrium problem on the set K, q∗ being an
arbitrary element of EP( f ,K). Next, we consider the definitions of a bifunction monotonicity (see [1,41]
for more details). A bifunction f : E × E → R on K for γ > 0 is said to be:

(1) strongly monotone if:

f (z1, z2) + f (z2, z1) ≤ −γ‖z1 − z2‖2, ∀z1, z2 ∈ K;

(2) monotone if:
f (z1, z2) + f (z2, z1) ≤ 0, ∀z1, z2 ∈ K;

(3) strongly pseudomonotone if:

f (z1, z2) ≥ 0 =⇒ f (z2, z1) ≤ −γ‖z1 − z2‖2, ∀z1, z2 ∈ K;

(4) pseudomonotone if:
f (z1, z2) ≥ 0 =⇒ f (z2, z1) ≤ 0, ∀z1, z2 ∈ K.

The following implications can be seen from the definitions mentioned above:

(1) =⇒ (2) =⇒ (4) and (1) =⇒ (3) =⇒ (4).

Generally speaking, the converse is not true. We say that a bifunction f : E × E → R satisfies the
Lipschitz-type condition [42] on set K if there exist two constants c1, c2 > 0, such that:

f (z1, z3) ≤ f (z1, z2) + f (z2, z3) + c1‖z1 − z2‖2 + c2‖z2 − z3‖2, ∀z1, z2, z3 ∈ K.

Let h : K → R be a convex function, and the subdifferential of h at z1 ∈ K is defined by:

∂h(z1) = {z3 ∈ E : h(z2)− h(z1) ≥ 〈z3, z2 − z1〉, ∀z2 ∈ K}.

A normal cone of K at z1 ∈ K is defined by:

NK(z1) = {z3 ∈ E : 〈z3, z2 − z1〉 ≤ 0, ∀z2 ∈ K}.

The metric projection PC(z1) for z1 ∈ E on K of E is defined by:

PC(z1) = arg min{‖z2 − z1‖ : z2 ∈ K}.

Lemma 1. [43] Let h : K → R be a subdifferentiable, convex, and lower semi-continuous function on K,
where K is a nonempty, convex, and closed subset of a real Hilbert space E . An element z1 ∈ K is a minimizer of
a function h if and only if 0 ∈ ∂h(z1) + NK(z1), where ∂h(z1) and NK(z1) denote the subdifferential of h at
z1 ∈ K and the normal cone of K at z1, respectively.

Lemma 2. [44] Suppose that a sequence {ηn} in E and K ⊂ E such that the following conditions are true.

(i) For every η ∈ K, limn→∞ ‖ηn − η‖ exists;
(ii) each sequentially weak cluster limit point of {ηn} belongs to set K.

Then, {ηn} weakly converges to a point in K.
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Lemma 3. [45] For u, v ∈ E and τ ∈ R, then the following equality holds.

‖τu + (1− τ)v‖2 = τ‖u‖2 + (1− τ)‖v‖2 − τ(1− τ)‖u− v‖2.

Lemma 4. [46] Assume that the sequence {qn} and {rn} of nonnegative real numbers satisfies
qn+1 ≤ qn + rn, ∀n ∈ N . If ∑ rn < ∞, then limn→∞ qn exists.

Lemma 5. [40] Assume that {an}, {bn} are real numbers sequences such that an ≤ bn, ∀n ∈ N .
Let $, σ ∈ (0, 1) and µ ∈ (0, σ). Then, there exists a sequence λn such that λnan ≤ µbn and λn ∈ ($µ, σ).

Corollary 1. Assume that f satisfies a Lipschitz-type condition on K with constants c1 > 0 and c2 > 0.
Let $ ∈ (0, 1), 0 < σ < min

{
1, 1

2c1
, 1

2c2

}
, and µ ∈ (0, σ). Then, there exists λ > 0 such that:

λ
(

f (z1, z3)− f (z1, z2)− c1‖z1 − z2‖2 − c2‖z2 − z3‖2) ≤ µ f (z2, z3)

where $µ < λ < σ with z1, z2, z3 ∈ K.

Assume that a bifunction f satisfies the following conditions:

(Ψ1) f (z2, z2) = 0, for all z2 ∈ K, and f is pseudomonotone on K;
(Ψ2) f satisfies the Lipschitz-type condition on E through c1 > 0 and c2 > 0;
(Ψ3) lim sup

n→∞
f (zn, v) ≤ f (z∗, v) for each v ∈ K and {zn} ⊂ K satisfy zn ⇀ z∗;

(Ψ4) f (z1, .) is subdifferentiable and convex on K for each z1 ∈ K.

3. An Accelerated Method for Pseudomonotone Equilibrium Problems and Its
Convergence Analysis

Now, we present a method that consists of two strongly convex optimization problems with an
inertial term and an explicit formula for stepsize evaluation. The detailed method is provided below:

Algorithm 1 (Accelerated method for pseudomonotone equilibrium problems)

Initialization: Choose u−1, u0 ∈ E , $ ∈ (0, 1), σ < min
{

1, 1
2c1

, 1
2c2

}
, µ ∈ (0, σ), λ0 > 0, θ ∈ [0, 1),

and a sequence {εn} ⊂ [0,+∞) such that: ∑+∞
n=0 εn < +∞.

Iterative steps: Let θn satisfy 0 ≤ θn ≤ θ̄n such that:

θ̄n =

{
min

{
θ, εn
‖un−un−1‖

}
if un 6= un−1,

θ otherwise.
(4)

Step 1: Compute:

vn = arg min
y∈K

{λn f (ρn, y) +
1
2
‖ρn − y‖2},

where ρn = un + θn(un − un−1). If ρn = vn; STOP. Otherwise, go to the next step.
Step 2: Set 0 < β ≤ βn ≤ 1, and compute

un+1 = (1− βn)ρn + βnzn,

where zn = arg min{µλn f (vn, y) + 1
2‖ρn − y‖2 : y ∈ K}.

Step 3: Revised the stepsize in the following way:

λn+1 = min
{

σ,
µ f (vn, zn)

f (ρn, zn)− f (ρn, vn)− c1‖ρn − vn‖2 − c2‖zn − vn‖2 + 1

}
. (5)

Set n := n + 1, and return back to Iterative steps.



Axioms 2020, 9, 99 5 of 18

Remark 1. From Corollary 1, the definition of λn+1 in (5) is well-defined such that:

λn+1

[
f (ρn, zn)− f (ρn, vn)− c1‖ρn − vn‖2 − c2‖vn − zn‖2

]
≤ µ f (vn, zn). (6)

Remark 2. Due to the summability of
+∞

∑
n=0

εn, the expression (4) provides that:

∞

∑
n=1

θn‖un − un−1‖ ≤
∞

∑
n=1

θ̄n‖un − un−1‖ ≤
∞

∑
n=1

θ‖un − un−1‖ < ∞, (7)

which implies that:
lim

n→∞
θ‖un − un−1‖ = 0. (8)

Lemma 6. If vn = ρn in Algorithm 1, then ρn ∈ EP( f ,K).

Proof. From the value of vn and Lemma 1, we have:

0 ∈ ∂2

{
λn f (ρn, y) +

1
2
‖ρn − y‖2

}
(vn) + NK(vn).

Thus, there exists υn ∈ ∂ f (ρn, vn) and ω ∈ NK(vn) such that:

λnυn + vn − ρn + ω = 0.

Thus, we have:

〈ρn − vn, y− vn〉 = λn〈υn, y− vn〉+ 〈ω, y− vn〉, ∀y ∈ K.

Given that ρn = vn, ω ∈ NK(vn) implies that:

λn〈υn, y− vn〉 ≥ 0. (9)

Due to υn ∈ f (ρn, vn) and using the subdifferential definition, we obtain:

f (ρn, y)− f (ρn, vn) ≥ 〈υn, y− vn, 〉, ∀y ∈ K. (10)

Combining Expressions (9) and (10) and due to λn > 0, we get:

f (ρn, y)− f (ρn, vn) ≥ 0. (11)

By vn = ρn, the condition (Ψ1) implies that f (ρn, y) ≥ 0, for all y ∈ K.

Lemma 7. Suppose that f : E × E → R satisfies the conditions (Ψ1)–(Ψ4). For each q∗ ∈ EP( f ,K) 6= ∅,
we have:

‖zn − q∗‖2 ≤ ‖ρn − q∗‖2 − (1− λn+1)‖zn − ρn‖2

− λn+1(1− 2c1λn)‖ρn − vn‖2 − λn+1(1− 2c2λn)‖zn − vn‖2.

Proof. From Lemma 1 and the value of zn, we have:

0 ∈ ∂2

{
µλn f (vn, y) +

1
2
‖ρn − y‖2

}
(zn) + NK(zn).

Thus, we have:
µλnω + zn − ρn + ω = 0,
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where ω ∈ ∂2 f (vn, zn) and ω ∈ NK(zn). Thus, we have:

〈ρn − zn, y− zn〉 = µλn〈ω, y− zn〉+ 〈ω, y− zn〉, ∀y ∈ K.

Since ω ∈ NK(zn), then 〈ω, y− zn〉 ≤ 0, ∀y ∈ K. This implies that:

µλn〈ω, y− zn〉 ≥ 〈ρn − zn, y− zn〉, ∀y ∈ K. (12)

Given that ω ∈ ∂2 f (vn, zn) and due to the definition of the subdifferential, we have:

f (vn, y)− f (vn, zn) ≥ 〈ω, y− zn〉, ∀y ∈ K. (13)

Combining Expressions (12) and (13):

µλn f (vn, y)− µλn f (vn, zn) ≥ 〈ρn − zn, y− zn〉, ∀y ∈ K. (14)

By letting y = q∗ in Expression (14), we obtain:

µλn f (vn, q∗)− µλn f (vn, zn) ≥ 〈ρn − zn, q∗ − zn〉, ∀y ∈ K. (15)

From hypothesis q∗ ∈ EP( f ,K) such that f (q∗, vn) ≥ 0 and due to the condition (Ψ1) implying
that f (vn, q∗) ≤ 0, we have:

〈ρn − zn, zn − q∗〉 ≥ µλn f (vn, zn). (16)

Combining Expressions (6) and (16), we obtain:

〈ρn − zn, zn − q∗〉 ≥ λn+1

[
λn
{

f (ρn, zn)− f (ρn, vn)
}

− c1λn‖ρn − vn‖2 − c2λn‖zn − vn‖2
]
.

(17)

In a similar way as Expression (14), we obtain:

λn f (ρn, y)− λn f (ρn, vn) ≥ 〈ρn − vn, y− vn〉, ∀y ∈ K. (18)

By substituting y = zn, we obtain:

λn
{

f (ρn, zn)− f (ρn, vn)
}
≥ 〈ρn − vn, zn − vn〉. (19)

The expressions (17) and (19) imply that:

2〈ρn − zn, zn − q∗〉 ≥ λn+1

[
2〈ρn − vn, zn − vn〉

− 2c1λn‖ρn − vn‖2 − 2c2λn‖zn − vn‖2
]
.

(20)

We have the following formulas:

2〈ρn − zn, zn − q∗〉 = ‖ρn − q∗‖2 − ‖zn − ρn‖2 − ‖zn − q∗‖2.

2〈ρn − vn, zn − vn〉 = ‖ρn − vn‖2 + ‖zn − vn‖2 − ‖ρn − zn‖2.

Combining the above equalities with Expression (20), we have:

‖zn − q∗‖2 ≤ ‖ρn − q∗‖2 − (1− λn+1)‖zn − ρn‖2

− λn+1(1− 2c1λn)‖ρn − vn‖2 − λn+1(1− 2c2λn)‖zn − vn‖2.
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Theorem 1. Let {ρn}, {un}, and {vn} be the sequences generated by Algorithm 1 converging weakly to
q∗ ∈ EP( f ,K).

Proof. From the value of un+1 with Lemma 3, we have:

‖un+1 − q∗‖2 = ‖(1− βn)ρn + βnzn − q∗‖2

= ‖(1− βn)(ρn − q∗) + βn(zn − q∗)‖2

= (1− βn)‖ρn − q∗‖2 + βn‖zn − q∗‖2 − βn(1− βn)‖ρn − zn‖2

≤ (1− βn)‖ρn − q∗‖2 + βn‖zn − q∗‖2. (21)

By Lemma 7 and Expression (21), we obtain:

‖un+1 − q∗‖2 ≤ ‖ρn − q∗‖2 − βn(1− λn+1)‖zn − ρn‖2

− βnλn+1(1− 2c1λn)‖ρn − vn‖2 − βnλn+1(1− 2c2λn)‖zn − vn‖2. (22)

From Corollary 1, we have $µ < λn < σ, for all n ≥ 1. From Lemma 7, we have:

‖zn − q∗‖2 ≤ ‖ρn − q∗‖2, ∀n ≥ 1. (23)

Combining Expressions (21) and (23), we have:

‖un+1 − q∗‖2 ≤ ‖ρn − q∗‖2, ∀n ≥ 1. (24)

Due to definition of ρn, we have:

‖ρn − q∗‖2 = ‖un + θn(un − un−1)− q∗‖2

= ‖(1 + θn)(un − q∗)− θn(un−1 − q∗)‖2

= (1 + θn)‖un − q∗‖2 − θn‖un−1 − q∗‖2 + θn(1 + θn)‖un − un−1‖2 (25)

≤ (1 + θn)‖un − q∗‖2 − θn‖un−1 − q∗‖2 + 2θ‖un − un−1‖2. (26)

From the definition of ρn, we can obtain:

‖ρn − q∗‖ = ‖un + θn(un − un−1)− q∗‖ ≤ ‖un − q∗‖+ θn‖un − un−1‖ (27)

Combining Expressions (24) and (27), we have:

‖un+1 − q∗‖ ≤ ‖un − q∗‖+ θ‖un − un−1‖, ∀n ≥ 1. (28)

From Expressions (7) and (8), we deduce that:

∞

∑
n=1
‖un − un−1‖ < +∞ and lim

n→∞
‖un − un−1‖ = 0. (29)

Using Lemma 4 with Expressions (28) and (29), we have:

lim
n→∞

‖un − q∗‖ = l, for some finite l ≥ 0. (30)

By using (29) and (30) and letting n→ ∞ in (25), it is implied that:

lim
n→∞

‖ρn − q∗‖ = l. (31)
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Combining Expressions (22) and (26), we have:

‖un+1 − q∗‖2 ≤ (1 + θn)‖un − q∗‖2 − θn‖un−1 − q∗‖2 + 2θ‖un − un−1‖2

− βn(1− λn+1)‖zn − ρn‖2

− βnλn+1(1− 2c1λn)‖ρn − vn‖2 − βnλn+1(1− 2c2λn)‖zn − vn‖2, (32)

which further implies that (for n ≥ 1):

0 ≤ β(1− σ)‖zn − ρn‖2 + βσ(1− 2c1σ)‖ρn − vn‖2

+ βσ(1− 2c2σ)‖zn − vn‖2

≤ ‖un − q∗‖2 − ‖un+1 − q∗‖2 + θn
(
‖un − q∗‖2 − ‖un−1 − q∗‖2)

+ 2θ‖un − un−1‖2. (33)

By letting n→ ∞ in Expression (33), we obtain:

lim
n→∞

‖zn − ρn‖ = lim
n→∞

‖ρn − vn‖ = lim
n→∞

‖vn − zn‖ = 0. (34)

From Expressions (31) and (34), we obtain:

lim
n→∞

‖vn − q∗‖ = l. (35)

It follows from Expressions (30), (31), and (35) that the sequences {ρn}, {un} and {vn} are
bounded, and for each q∗ ∈ EP( f ,K), the limit of ‖ρn − q∗‖, ‖un − q∗‖ and ‖vn − q∗‖ exists. Next,
for using Lemma 2, we need to show that any sequential weak limit point of the sequence {un} belongs
to the set EP( f ,K). Suppose z to be an arbitrary weak cluster point of {un}, i.e., a subsequence {unk} of
{un} weakly converges to z. Due to ‖un − vn‖ → 0, then {vnk} also weakly converges to z and z ∈ K.
Next, we need to show that z ∈ EP( f ,K). From (14) and the definition of λn+1 and (19), we have:

µλnk f (vnk , y) ≥ µλnk f (vnk , znk ) + 〈ρnk − znk , y− znk 〉
≥ λnk λnk+1 f (ρnk , znk )− λnk λnk+1 f (ρnk , vnk )− c1λnk λnk+1‖ρnk − vnk‖

2

− c2λnk λnk+1‖vnk − znk‖
2 + 〈ρnk − znk , y− znk 〉

≥ λnk+1〈ρnk − vnk , znk − vnk 〉 − c1λnk λnk+1‖ρnk − vnk‖
2

− c2λnk λnk+1‖vnk − znk‖
2 + 〈ρnk − znk , y− znk 〉. (36)

By letting n→ ∞, in the above expression, we obtain:

0 ≤ lim sup
k→∞

f (vnk , y) ≤ f (z, y), ∀y ∈ K.

It is concluded that z ∈ EP( f ,K). Finally, by Lemma 2, {ρn}, {un}, and {vn} weakly converge to
q∗ as n→ ∞.

4. Applications of the Main Results

We consider the implementation of our results to solve the variational inequality problems
involving the pseudomonotone and Lipschitz-type continuous operator. A variational inequality
problem is formulated in the following way:

Find q∗ ∈ K such that
〈

G(q∗), y− q∗
〉
≥ 0, ∀y ∈ K.

An operator G : E → E is said to be:
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(i) L-Lipschitz continuous on K if:

‖G(z1)− G(z2)‖ ≤ L‖z1 − z2‖, ∀z1, z2 ∈ K;

(ii) pseudomonotone on K if:〈
G(z1), z2 − z1

〉
≥ 0 =⇒

〈
G(z2), z1 − z2

〉
≤ 0, ∀z1, z2 ∈ K.

Assume that G satisfies the following conditions:

(G1) G is pseudomonotone on K with solution set VI(G,K) 6= ∅;
(G2) G is L-Lipschitz continuous on K with L > 0;
(G3) lim sup

n→∞
〈G(un), y− un〉 ≤ 〈G(p), y− p〉, ∀y ∈ K and {un} ⊂ K satisfy un ⇀ p.

Let f (x, y) :=
〈

G(x), y − x
〉
, ∀x, y ∈ K. Then, the problem (1) translates into the variational

inequality problem with L = 2c1 = 2c2. From the value of vn, we have:

vn = arg min
y∈K

{
λn f (ρn, y) +

1
2
‖ρn − y‖2

}
= arg min

y∈K

{
λn〈G(ρn), y− ρn〉+

1
2
‖ρn − y‖2 +

λ2
n

2
‖G(ρn)‖2 − λ2

n
2
‖G(ρn)‖2

}
= arg min

y∈K

{1
2
‖y− (ρn − λnG(ρn))‖2

}
= PK(ρn − λnG(ρn)). (37)

In a similar way as Expression (37), the value of un+1 is written as:

zn = PK(ρn − µλnG(vn)).

Corollary 2. Let G : K → E be an operator satisfying the conditions (G1)–(G3). Assume that {ρn}, {un}, and
{vn} are the sequences generated in the following way:

(i) Choose u−1, u0 ∈ E , $ ∈ (0, 1), σ < min
{

1, 1
L
}

, µ ∈ (0, σ), λ0 > 0, θ ∈ [0, 1), and a sequence
{εn} ⊂ [0,+∞) such that:

+∞

∑
n=0

εn < +∞. (38)

(ii) Let θn satisfy 0 ≤ θn ≤ θ̄n such that:

θ̄n =

min
{

θ, εn
‖un−un−1‖

}
if un 6= un−1,

θ otherwise.
(39)

(iii) Set ρn = un + θn(un − un−1), and compute:
vn = PK(ρn − λnG(ρn)),

zn = PK(ρn − µλnG(vn)),

un+1 = (1− βn)ρn + βnzn,

(40)

where 0 < β ≤ βn ≤ 1.
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(iv) Next, stepsize λn+1 is obtained as follows:

λn+1 = min
{

σ,
µ〈G(vn), zn − vn〉

〈G(ρn), zn − vn〉 − L
2 ‖ρn − vn‖2 − L

2 ‖zn − vn‖2 + 1

}
. (41)

Then, {ρn}, {un} and {vn} are weakly convergent to q∗ ∈ VI(G,K).

Next, consider the applications of our results that are discussed in Section 3 to solve fixed point
problems involving κ-strict pseudocontraction. A mapping T : K → K is said to be:

(i) a κ-strict pseudo-contraction [47] on K if:

‖Tz1 − Tz2‖2 ≤ ‖z1 − z2‖2 + κ‖(z1 − Tz1)− (z2 − Tz2)‖2, ∀z1, z2 ∈ K; (42)

that is equivalent to:

〈
Tz1 − Tz2, z1 − z2

〉
≤ ‖z1 − z2‖2 − 1− κ

2
‖(z1 − Tz1)− (z2 − Tz2)‖2, ∀z1, z2 ∈ K; (43)

(ii) sequentially weakly continuous on K if:

T(un) ⇀ T(p) for every sequence in K satisfying un ⇀ p (weakly converges).

A fixed point problem is formulated in the following way:

Find q∗ ∈ K such that T(q∗) = q∗.

Let f (x, y) = 〈x− Tx, y− x〉, ∀x, y ∈ K. Then, the problem (1) translates into the fixed point
problem with 2c1 = 2c2 = 3−2κ

1−κ . The value of vn in Algorithm 1 converts into the followings:

vn = arg min
y∈K

{λn f (ρn, y) +
1
2
‖ρn − y‖2}

= arg min
y∈K

{λn〈ρn − T(ρn), y− ρn〉+
1
2
‖ρn − y‖2}

= arg min
y∈K

{λn〈ρn − T(ρn), y− ρn〉+
1
2
‖ρn − y‖2 +

λ2
n

2
‖ρn − T(ρn)‖2}

= arg min
y∈K

{1
2
‖y− ρn + λn(ρn − T(ρn))‖2}

= PK[ρn − λn(ρn − T(ρn))]. (44)

Corollary 3. Assume that K is a nonempty, closed, and convex subset of a Hilbert space E and T : K → K is a
κ-strict pseudocontraction and weakly continuous with Fix(T) 6= ∅.

(i) Choose u−1, u0 ∈ E , $ ∈ (0, 1), σ < min
{

1, 1−κ
3−2κ

}
, µ ∈ (0, σ), λ0 > 0, θ ∈ [0, 1), and a sequence

{εn} ⊂ [0,+∞) such that:
+∞

∑
n=0

εn < +∞. (45)

(ii) Let θn satisfy 0 ≤ θn ≤ θ̄n such that:

θ̄n =

min
{

θ, εn
‖un−un−1‖

}
if un 6= un−1,

θ otherwise.
(46)
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(iii) Set ρn = un + θn(un − un−1), and compute:
vn = PK[ρn − λn(ρn − T(ρn))],

zn = PK[ρn − µλn(vn − T(vn))],

un+1 = (1− βn)ρn + βnzn,

(47)

where 0 < β ≤ βn ≤ 1.
(iv) Next, stepsize λn+1 is obtained as follows:

λn+1 = min
{

σ,
µ〈vn − Tvn, zn − vn〉

〈ρn − Tρn, zn − vn〉 −
( 3−2κ

2−2κ

)
‖ρn − vn‖2 −

( 3−2κ
2−2κ

)
‖zn − vn‖2 + 1

}
. (48)

Then, the {ρn}, {un}, and {vn} sequences are weakly convergent to q∗ ∈ Fix(T).

5. Numerical Experiments

MATLAB Version 9.5 (R2018b) was run on a PC (with Intel(R) Core(TM)i3-4010U CPU @
1.70 GHz 1.70 GHz, RAM 4.00 GB). We used the built-in MATLAB fmincon function to solve the
minimization problems. In this section, we discuss a number of test problems and explain the
effectiveness of the proposed methodology.

Example 1. Let f : K×K → R be defined by:

f (u, v) =
5

∑
i=2

(vi − ui)‖u‖, ∀u, v ∈ R5

where K =
{
(u1, · · · , u5) : u1 ≥ −1, ui ≥ 1, i = 2, · · · , 5

}
. The bifunction f is Lipschitz-type

continuous with constants c1 = c2 = 2, satisfying the conditions (Ψ1)–(Ψ4). The solution set is
EP( f ,K) = {(u1, 1, 1, 1, 1) : u1 > 1} (see [48] for more details). In addition, to estimate the optimal values
of the control parameters, two experiments are performed by assuming the variation of the control parameters
λ, λ0 and inertial factor θ. The values of the control parameters for Algorithm 1 (Alg2) are σ = 1

2.3c1
,

µ = 1
2.4c1

, u0 = u−1 = (2, 3, 2, 5, 5), βn = 0.80, and εn = 1
n2 ; for Algorithm 1 (Alg1) in [19], they are

u0 = u−1 = (2, 3, 2, 5, 5) and εn = 1
n2 . Numerical results are shown in Tables 1–2 by using the stopping

criterion Dn = ‖ρn − vn‖ ≤ ε = 10−4.

Table 1. Example 1: Algorithm 1’s (Alg2) numerical comparison with Algorithm 1 in [19].

Number of Iterations CPU Time in Seconds

θ λ λ0 Alg1 Alg2 Alg1 Alg2
0.40 0.22 0.45 14 2 0.9134 0.5424
0.40 0.17 0.35 18 2 0.8615 0.5223
0.40 0.12 0.32 20 2 1.0815 0.5112
0.40 0.07 0.25 22 2 1.4219 0.5367
0.40 0.02 0.05 26 2 1.7329 0.5181
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Table 2. Example 1: Algorithm 1’s numerical comparison with Algorithm 1 in [19].

Number of Iterations CPU Time in Seconds

θ λ λ0 Alg1 Alg2 Alg1 Alg2
0.80 0.22 0.16 21 2 1.0482 0.0811
0.60 0.22 0.16 15 2 0.8676 0.0626
0.40 0.22 0.16 12 2 1.0545 0.0791
0.20 0.22 0.16 11 2 0.09923 0.0892
0.05 0.22 0.16 19 2 1.09151 0.0788

Example 2. Let us consider the Nash–Cournot equilibrium model that appeared in the paper [5,49]. A bifunction
f can be written in the following manner:

f (u, v) = 〈Pu + Qv + c, v− u〉,

where c ∈ R5, and the matrices P, Q are:

P =


3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

 Q =


1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

 c =


1
−2
−1
2
−1


where the Lipschitz constants are c1 = c2 = 1

2‖P−Q‖. The set K ⊂ R5 is considered as follows:

K := {u ∈ R5 : −5 ≤ ui ≤ 5}.

To see the suitable values of the control parameters, different tests are performed by assuming the variation
of the control parameters’ inertial factor θ. The values of the control parameters for Algorithm 1 are σ = 1

2.3c1
,

µ = 1
2.4c1

, u0 = u−1 = (1, 1, 1, 1, 1), λ = 1
3c1

, βn = 0.80, and εn = 1
n2 ; for Algorithm 1 in [19], they are

u0 = u−1 = (1, 1, 1, 1, 1), εn = 1
n2 , and λ = 0.20. Table 3 reports the numerical results by using the

stopping criterion Dn = ‖ρn − vn‖ ≤ ε = 10−6.

Table 3. Example 2: Algorithm 1’s numerical comparison with Algorithm 1 in [19].

Number of Iterations CPU Time in Seconds

θ Alg1 Alg2 Alg1 Alg2
0.10 42 8 1.5851 0.2822
0.15 29 8 1.3148 0.2433
0.40 28 7 1.1278 0.2662
0.55 37 8 1.2211 0.2745
0.70 47 8 1.7188 0.2279
0.85 49 8 1.6188 0.2179

To determine the suitable values of the control parameters, different tests are presented by assuming
the different initial points. The control parameter values for Algorithm 1 are σ = 1

2.1c1
, µ = 1

2.2c1
,

u0 = u−1, λ = 1
3c1

, θ = 0.45, βn = 0.80, and εn = 1
n2 ; for Algorithm 1 in [19], they are u0 = u−1,

θ = 0.45, εn = 1
n2 , and λ = 0.18. Table 4 reports the numerical results by using the stopping criterion

Dn = ‖ρn − vn‖ ≤ ε = 10−6.
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Table 4. Example 2: Algorithm 1’s numerical comparison with Algorithm 1 in [19].

Number of Iterations CPU Time in Seconds

u0 = u−1 Alg1 Alg2 Alg1 Alg2
(0, 0, 1, 1, 0) 22 7 1.0321 0.1634
(1, 1, 1, 1, 0) 24 7 1.0945 0.1858
(1, 2, 0, 3, 0) 25 7 1.0328 0.2012
(2, 2, 1,−4, 5) 30 7 1.0517 0.2020
(2,−2, 2,−4, 5) 35 8 1.0919 0.1428

Example 3. Assume that E = L2([0, 1]) through an inner product 〈u, v〉 =
∫ 1

0 u(t)v(t)dt and induced

norm ‖u‖ =
√∫ 1

0 u2(t)dt, ∀u, v ∈ E . The set K := {u ∈ L2([0, 1]) :
∫ 1

0 tu(t)dt = 2}. Assume that
f : E × E → R is defined by:

f (u, v) = 〈G(u), v− u〉,

where G(u(t)) =
∫ t

0 u(s)ds for every u ∈ L2([0, 1]) and t ∈ [0, 1]. It is observed that f is monotone, and
Lipschitz-type constants c1 = c2 = 1

π (see [45]). The projection on setK is computed in the following manner:

PK(u)(t) := u(t)−
∫ 1

0 tu(t)dt− 2∫ 1
0 t2dt

t, t ∈ [0, 1].

The values of the control parameters for Algorithm 1 (Alg2) are σ = 1
3.4c1

, µ = 1
3.6c1

, θ = 0.45,
u0 = u−1, λ0 = 1

3c1
, βn = 0.90, and εn = 1

n2 ; for Algorithm 1 (Alg1) in [19], they are θ = 0.45,
u0 = u−1, εn = 1

n2 , and λ = 0.12. Numerical results are reported in Table 5 by using the stopping criterion
Dn = ‖ρn − vn‖ ≤ ε = 10−4.

Table 5. Example 3: Algorithm 1’s numerical comparison with Algorithm 1 in [19].

Number of Iterations CPU Time in Seconds

u−1 = u0 Alg1 Alg2 Alg1 Alg2
2t 37 4 4.9566 0.5460
2t2 41 2 5.2378 0.4331
2 sin(t) 48 3 6.4556 0.3945
2 cos(t) 51 6 6.6756 0.4945
2 exp(t) 56 6 6.8713 0.5108

Example 4. Assume that an operator G : R2 → R2 is defined by:

G(u) =

(
0.5u1u2 − 2u2 − 107

−4u1 − 0.1u2
2 − 107

)

on K = {u ∈ R2 : (u1 − 2)2 + (u2 − 2)2 ≤ 1}. We can easily see that G is Lipschitz continuous with
L = 5 and pseudomonotone. Let the bifunction f (u, v) = 〈G(u), v− u〉 and c1 = c2 = 5

2 . For these tests,
we used the same initial values as seen in the table below and stepsize λ = 0.001, u−1 = u0, θ = 0.45, and
εn = 1

n2 for Algorithm 1 in [19]. For Algorithm 1, we used σ = 1
3.2c1

, µ = 1
3.4c1

, λ0 = 1
3c1

, u−1 = u0,
θ = 0.45, and εn = 1

n2 . Figures 1–4 and Table 6 report the numerical results by letting the stopping criterion
Dn = ‖ρn − vn‖ ≤ ε = 10−6.
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Number of iterations
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10-6

10-4

10-2

100

Figure 1. Example 4: Algorithm 1’s numerical comparison with Algorithm 1 in [19] by letting
u−1 = u0 = (1.7, 1.9).

2 4 6 8 10 12 14 16 18

Number of iterations
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100

Figure 2. Example 4: Algorithm 1’s numerical comparison with Algorithm 1 in [19] by letting
u−1 = u0 = (2.5, 3.5).
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Number of iterations
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10-2

100

102

Figure 3. Example 4: Algorithm 1’s numerical comparison with Algorithm 1 in [19] by letting
u−1 = u0 = (1.5, 2.5).
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100

Figure 4. Example 4: Algorithm 1’s numerical comparison with Algorithm 1 in [19] by letting
u−1 = u0 = (2.7, 2.0).
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Table 6. Figures 1–4: Algorithm 1’s numerical comparison with Algorithm 1 in [19].

Number of Iterations CPU Time in Seconds

u−1 = u0 Alg1 Alg2 Alg1 Alg2
(1.7, 1.9) 17 6 0.482301 0.3473423
(2.5, 3.5) 18 8 0.789869 0.5659991
(1.5, 2.5) 17 7 0.709038 0.3791612
(2.7, 2.0) 15 7 0.585472 0.4401882
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