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Abstract: A coupled system of singular fractional differential equations involving Riemann-Liouville
integral and Caputo derivative is considered in this paper. The question of existence and uniqueness
of solutions is studied using Banach contraction principle. Furthermore, the question of existence of
at least one solution is discussed. At the end, an illustrative example is given in details.
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1. Introduction

Fractional calculus theory and differential equations of non integer order are new powerful
mathematical tools for modeling complex real world phenomena, see for instance the papers [1-3]
for more details. We can find many applications for these two theories in mechanics, chemistry,
biology, economics, visco-elasticity, electrochemistry, etc. For more information and more details and
recent applications, we refer the reader to [4-9]. For the theory of fractional differential equations,
in the literature, we can find many authors who have paid much attention to the question of
existence and uniqueness of solutions for certain types of fractional equations. For more details,
we refer the reader to the papers [10-15]. Moreover, the study of coupled systems of fractional
order is also important in various problems of applied sciences, see for instance the two research
works [12,16-19].

In this work, a new singular system of differential equations is investigated. The considered
problem has some relationship with the well known Lane-Emden equation which has a
considerable importance in astrophysics, for more details, one can consult [14,20-22]. We attract
the reader’s attention that the standard Lane-Emden problem has the form:
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a
x ()4 px () +f(Lx() =g(), te[01],
with
x(0)=A, x (0)=B,
and A and B are constants, f, g are continuous real functions.

Let us now recall some other research works that have motivated the present paper. We begin
by [23], where Mechee et al. have applied a numerical approach to study the following problem:

D%y (t) + —5DPy () + f (ty () = g (t), t € [0,1],

=B
k>0,1<a<20<p<1,
with

y(0)=A4y (0)=B,

and A and B are constants.
Then, in [20], Rabha W. Ibrahim has studied the question of Ulam Hyers Stability for the
following equation:

DP(D*+§)u(t)+ f(tu(t) =g(t),
w(0) =p, u(l)=v,

0<a,p<L1,0<t<1,a2>0,

where D7 is the Caputo derivative, f is a continuous function and g € C([0,1]).
In [24], Dahmani and Tabia have been concerned with the following general Lane-Emden
coupled system of fractional differential equations:

DP1 (D% + ) xy (1) + f1 (Bx1 (8), %2 (8) e xn () = g1 (1), €],
DP2 (D% + 2) xy (£) + fo (£, x1 (£), %2 (£) ey X0 (£)) = g2 (), €],

woXn () =gn(t), te],

~

DF» (D% + ), (1) + fr (1351 (£), % (1

i L o -1

L[5 0) = T |5 ©0)]=..= ¥ |5 0] =0,
" k=1 " k=1 k:1n
L [D%x¢(0)] = ¥ [D%1z (0)] = ... = ¥ [DM41-2x¢ (0)] =0,
k=1 k=1 k=1

D%+i-1x (1) =0, k=1,2,...,n,

where !l —1 <y, By <1,a,>0,1€¢ N-{0,1},k=1,2,..,n,n €« N—{0},and ] := [0, 1].

The authors have discussed the existence, uniqueness and some types of Ulam stabilities for
the proposed coupled nonlinear fractional system.

Recently, A. Bekkouche et al. [25] have studied the existence of solutions and the A—Ulam
stabilities for the following two dimension non homogeneous Lane-Emden fractional system:
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DA (Dal +b1g1 (t)) X1 (t) + A (t,x1 (t),x (t)) = w151 (t, 11 (t),xz (t)), 0<t<l,
DF2 (D% + bygs (1)) %2 (£) + fo (6,31 (£), %2 (£)) = waSa (631 (£), %2 (£)), 0 < £ < 1,
xk(O) = 0, D"‘xk(l) + bkgk(l)xk(l) = 0,

where 0 < Bx < 1,0 < ay <1,b > 0,0 < wg < o0, k =1,2 and the derivatives DPr and D% are in
the sense of Caputo. The functions f; : [0,1] x R> — R and S; : [0,1] x R? — R are continuous,
gk 1 ]0,1] — [0, 4+00) is continuous and singular at t = 0.

The published papers in [5,17,26,27] have also investigated some singular Lane-Emden
type problems.

In [28], Y. Gouari et al. have studied the following nonlinear singular integro-differential
equation of Lane-Emden type with nonlocal multi point integral conditions:

DF(D* + %)y(t) + M f (4 y(1), Doy(t)) + dag(t,y(1), 1Py (1)) + h(t,y(t))

=1(t), t €]0,1],

=

>00<A<1,1<B<20<a <1,

with the conditions: Ay > 0, Ay > 0, ] := [0, 1], the derivatives of the problem are in the sense of
Caputo, I? denotes the Riemann-Liouville integral of order p, and f, g are two given functions
defined on | x R?,also h : ] x R — R s a given function and ! is given function defined over J.
The authors have investigated the existence and uniqueness of solutions for the considered class.

Very recently, in [29] , the authors have considered the following sequential time-singular
fractional problem of Lane-Emden type:

D% (D%...(D% (DP + %))...)u(t) + f(t,u(t), Dou(t)) + g(t, u(t), IPu(t))
+h(t,u(t)) =1(t), t€]0,1],

u(0) =0,

u(l) =9,

D*(DFu(0)) =0,

D*-1 (D" (DPu(0))) =0,

bas(DM...(Dan(Dﬁu(o))
D% (D%...(D* (DPu(1) + ¢ (1)u(1)))...) =0,
k>o0.

N
N
o
<

) . k .
where [ :=1[0,1],0<B<1,0<w; < 1;i=1,2,..,n8 <min(B,a;), P r(t) = Y the sequential
derivatives are in the sense of Caputo, I’ denotes the Riemann-Liouville fractional integral of
order p, and f,g : | x R? — R are two given functions, also 1 : | x R — R is a given function
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and / is a function which is defined on J. The authors of this paper have proved the existence and
uniqueness of solutions by application of Banach contraction principle, then, by means of Schaefer
fixed point theorem, they have studied the existence of at least one solution for the problem.

Motivated by the above works, in the present paper, we are concerned with the study of a
new singular system of Lane-Emden type. In fact, we investigate the following class of singular
fractional differential equations with two different orders of derivation and also with a time
singularity at the origin:

Dm(D“1+EEJ yi(t) + fi(t,ya(£), Dy () + g1 (tya(t), 1Py () + ha (£ 1 (t))
=hL(t), ¢t 6]0,1[,

DF2(D"2 4 ;f%) 2(8) + fa(t,y1(£), D2y2(t)) + g2(t, ya (1), P2y (t)) + ha(t, 2 (1))

= yi(0), @

W%(DZ%(L
ki >01<w;,B <2,0<9;,0;,A,p; <1,9;>0,0; >0,i =1,2.

k:

The following data are taken into account: J := [0, 1], ¢, 1, (t) = %, the derivative D% is in
the sense of Caputo, I is the Riemann-Liouville integral of order p;, the four functions f1, f2, g1, $2
are defined on | x R2, hy,hy are defined on | x R, and Iy, 1, are defined over ], and Ty, T, are

continuous over |, with sup |T;(f)| = x;. i = 1,2.
te]
Regarding the above problem, the reader is invited to take into account the following particular

points:

(1.) The Caputo derivative is introduced in both sides of the coupled system.

(2.) Furthermore, the Riemann Liouville integral is introduced in one nonlinearity of the right
hand side of each the equation of the considered system.

(3.) Another important point in this paper is the time singularity at the origin for each equation of
the above 2D-system.

These three particular conditions allow us to consider a new fractional system of Lane-Emden
type. It is important to note also that Equation (1) is general enough to describe many problems that
can arise in mathematical physics since this system includes several particular types of problems
that have applications in real word phenomena. For example, one can verify that our problem
includes the standard Lane-Emden equation as a special case when i = 1. Furthermore, the above
system includes the Emden Fowler equation; such an equation has been introduced to model several
phenomena in mathematical physics and astrophysics, such as the theory of stellar structure.

To the best of our knowledge, this is the first time in the literature where such problem is
investigated.

This paper is structured as follows: we begin by recalling some fractional calculus concepts.
Then, by application of the fractional integral inequality theory combined with the fixed point
theory, we study the questions of existence and uniqueness of solutions and the existence of at least
one solution for the considered singular system. In Section 4, an illustrative example is presented
to show the applicability of our main results. Finally, a conclusion follows.
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2. Preliminaries

We recall some definitions and lemmas that will be used later. For more details, we refer to
the reference [30].

Definition 1. Let « > 0, and f : [0,1] — R be a continuous function. The Riemann—Liouville integral
of order w is defined by:

sz / t— :x 1
£ = 5 ) = o
where T(a) := [~ e "u"du
Definition 2. For a function f € C"([0,1],R) and n — 1 < a < n, the Caputo fractional derivative is
defined by:

D) = )

1 ! n—a—1¢(n
= T —a) ./0 (t—s) 1r0) (5)ds.

Furthermore, we recall the following lemmas [30]:

Lemma 1. Suppose that n € N*, and n —1 < a < n. Thus, the general solution of D*y(t) = 0 is:

n—=1
= Z cit!,
i=0
such thatc; € R,i=0,1,2,..,n—1.
Lemma 2. Suppose that n € N*, and n —1 < a < n, then, we get:
I*D*y( )+ 2 cit!,

forsomec; € R,i=0,1,2,..,n—1.
We prove the following result:

Lemma 3. Suppose that G; € C([0,1]) . Then, the problem:

DD + £ )ui(1) = Gile),
vi(1) = y;(0), )
Hi
DAy (1) + 9, (V1) = [ Tix)i(o)
I%iy;(6;) = yi(1),
ki>0,1<a,pi<2i=12,

admits the couple (y1(t),y2(t)), where



Axioms 2020, 9, 95 60f 18

007" 2 Pt gt
. — TR, i _ Wi, _ 1 _ ai—1p.
t— it athit
_ %R (O i _ Big, 3)
PRO) + (e D T ') P

i — zxit"‘fﬂ ¢ i
* <(1 —aj)T(a;+1) (1—a)T(a;+2) V3i> /0 Ti(7)yi(T)dr,

as integral solution,
where,

RiS) = F7 1 (6= 0P G = o)

"= ¢ (1 B Gil"(oci+1)> LT/ B, ( w0 1) i

wi+gi+1) w+1 w+gi+1 ) T(a+2)
«;0; Qi
(1= iYi _ i
& 4”( ai+qi+1) I'(a;+2)
-+ +1) T (1—a)l(gi+2)
0F — _Tlgi+1) 07 #£T(q;+1).

bl T+

Proof. By Lemma 2, we can write:

ut) =g [ =9 (g [ 6= 0P G- Eo) ) s

T(Bi)
CO,‘tlxi Cl,‘tai—"_l ; (4)
T+ 1) Tl t2) A%
Hence, it yields that
! — 1 f IX,‘*2 1 s ﬁ[*l kl
yi(t) = m/g (t—s) (T(,Bl)/o (s—1) Gi(t)dt — @xz(s) ds
co, %1 o1, 1% (5)

T(a;) Dlg+1) 2

And, then

Co.

B =40 = o+

L = [8TIR(1
I(a;+1) (1),

D%y;(1) + ¢x, 0, (Dyi(1) :/m T(Dyi(t)dt = co +c1, = IPiGi(1) — [ Ti(t)y:(T)dr.

0
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Therefore, we obtain

1 _ Tla;+1) . 1 Hi
— Bics. _ 2\ A -1, _ : .
co, 7 70({1 Gi(1) T I R;(1) 7 7%‘/0 T;(t)yi(7)dr,
% g (i +1) 01y, & /”f TV (2\d
€ = 1_ (XZ'I Gi(1) + " I Ri(1) + 1—a; Jo i(Tyi(t)dr.

Thanks to the boundary condition y;(1) = y;(0), we conclude that

Ri(1) - . Gl e
o =R - i O gy ar g RO
1 Hi
Tl +2) /0 Ti(7)yi(T)dr.

By using the fact that y;(1) = y;(0) and I7y;(6;) = y;(1), we obtain

it ai 9?¢i+qi+1 99#1
1 1

) — L co; — €1, — co, |-
T(a; +q;+1) T(a;+q:+2) 7 T(q:+2)

C3i = 91* {I“ﬁL%‘Ri(Gi (6)

Replacing co,, c1,, ¢5; in Equation (6), we get

grofit! w;0; :
—prutaiR.(9) — 1 i iR, B e b S _ P i
ey, = O R(6) — f ) + [ (1) - e
' _Gil"(ai+1) @i a-1p. ' _ «;0; . Pi
+[‘Pz <1 a;+qg;+1 (J(Z'—I—l]I Rl(l))+[¢l ! ai+qi+1 F(Oéi-‘rZ)}

< [M Towia.

Again, replacing co,, ¢1,, ¢,, 3, in Equation (4), we obtain Equation (3). [

We will use the fixed point theory to study the above singular system. To do this, we need to
introduce the following notions.
We introduce the space:

X x X := {(x1,x) € C(J,R) x C(J,R), D%x; € C(J,R),i = 1,2},
and the norm:
(1, x2) [xxx = Max{|[x1]leo , [ x2le0 , (1D %1 oo , [| D2 |0 },
where,

xilleo = sup [x;(£)] , [ D% xi[|eo = sup [DYx;(t)| ;i =1,2.
teJ te]

Then, we define the operator S : X x X — X x X:

S (x1,x2) = (S1(x1,x2), So(x1, x2))
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such that, for any ¢ € ], we have

St 2)(0) =gy [ 0= (g [ (6= 0P T — e 5(0) = flr (1), Do)

I'(Bi) -
, k; o7t 1 1 .
— gi(T, x1(7), IPixy(7))]dT — Ex,(s))ds + [r(qi T2 t] ) /0 (1—s)%1
(g o6 =P G0 = e, () = filrm(7), D)
i tt ot

— gi(t, %1 (1), P xa (7)) ]dT — %xds))ds + [1 B Y

. , ki
X [1i(t) = hi(T, x(7)) — fi(T, x1(T), D%x2(7)) — i(T, 1 (), IPixa(T))]dT — Ex,-(s))ds @)
1 i i+qi—1 1 s Bi—1
- - . g)&iTYgi _ i 1l — h: .
e o @9 (s = P ) — e o)
v : ki
— fi(1,x1(1), D% x5 (7)) — gi(T, x1(7), [P 2o (7)) |dT — Ex,-(s)>ds
t— ttx,‘+l D(l‘t“i+1
+ [(l — a,-)l“(oc,- + 1) + (1 — oci)l'(tx,- +2) N VZ,]
1
< =P ) — ()
— fi(t,x1(7), DPxa(7)) = gi(T, :1(7), PPz (7)) T
th,‘ _ aitlxl‘+1 t Wi
+ I—a)(+1) (—a)l(a+2) v /0 Ti(m)xi(T)dr.
At the end of this section, we are ready to present our main results.
3. Main Results
First of all, we shall take into account the following hypotheses:
(T1) : The functions f; and g; are continuous over | x R?,
h; are continuous over | X R and [; are continuous over [;i =1, 2.
(T2) : There are nonnegative constants wij and w;-j;i =1,2,j=1,2,such that:
foranyte J,x;,y; € R
2
filt,x1,x2) = filtbyr, o)l < Y wilx—yil 5 =12,
2 ®)

2
18i(t, x1,02) = &i(t,y1,y2)| < Ewiﬂxj_yj‘; i=12
]:

and foranyte J,x,y € R

|hi(t,x) —hi(t,y)| < rijx—y| ; i=1,2. )
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We pose

Ap, = max {w;},

B = f“?’z‘{ wi} -
(T3) : There exist non negative constants Ny, Ny, N3,, that satisfy forany ¢t € ], x € R?, yeR
fit,x)] < Nu,, [8i(tx)| < Np, |hi(ty)| < N,

(T4) : We take ||lj]|c = Ny;;i = 1,2. Then, we consider the quantities:

gl = {r-—}-ZA +A +Ag"H<2+|9;F|9?1H) L
N e S ) T(gi+2) ) T(a; + Bi + 1)
gxit+Bit4i

( , ) I'(a +ﬁ> T(a+Bi+4q:+1) :
@ reT * wooteTs ) )

(

|

1 +‘Xi 1 . . . — .
(a; = (a; +1) + (; — )T (a; +2) + |U3"|)lel +hI(1 = A

x (2+ |9?|9?'H> 1 +( 2 |>1
F(qi+2) F(oci —)\i—Fl) (D(i — 1) Li F(oci —)\i)
1

+r(“i_)\i+‘7i+1) ’

and

€2 = {1’,+2Aﬁ+Ag, l+1)} _(5 +ﬁl+1)+F(oci+[3,-+11)1"(2—5i)
4 —1r>(lx<l+15 EUNCER a(lH)é +2)
+(v¢i—l)(1+zx ) (wz+ﬁ

o )]
(wi—l)F(az+1) @& (@ 1r (%—5 +2))T(Bi+1)

1 ai(a;+1) 1
6

*(( (w6 +1) | (m— D —

1 1
+kfr(1_Af){r(le =Mt D) T —A+1T(2=3)
T(a;+1) [(a;+1)
*(( TG0+ 1) (m SULCERES
+ %

(0 =) +a)T(2—-6;) ) T(a; — Ay) |’

+2) + (a0 —1)T(a; +2)T(2 — 51,))?(1']41‘

90f 18

The first main result deals with the existence of a unique solution for Equation (1). We prove

the following first main result:

Theorem 1. Assume that (T i);— 5 are satisfied. Then, the problem (1) has a unique solution, provided that

g < 1, where g; = max {e;1,¢;2}.
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Proof. We proceed to prove that S is a contraction mapping. For (x,y) € X x X, we can write

| gqit1
1Si(y1,y2) = Si(x1,%2) [0 < {Y‘JFZA +a ‘+Agi} [(ZJF o ) 1
iy, i\X1, = ! fi & [(p;+1) T(qi+2) ) T(wi+ i +1)

+< 2 ‘H |) 1 N grit+Bitd
—_— V.
(@i —1) ) Y T(a;+ ) Tl +pi+ai+1)
o;
+ + + | | 55—~
T DT )t
x| (y1,y2) — (x1,%2) | xxx

n 1+« n 1 +‘1/ | o
(@ — DT +1) (g — D) (a;+2) 20Xk

x| (y1,y2) — (%1, %2) [ xxx

o A)[(Z_FG;“’G?#]) .
! ! T(q;+2) ) T(a; —A;+1)
2
s+t ) o
((lxi—l) il T(aj — A)
1
(0 —Ai+qi+1

T )} (1, y2) — (x1,%2) [ xxx-

We have:

DSi(y1,y2) (1)

gy o= (g [ D) — () — i (2), Do)

_ ki t=o 1 w1l 10 —
—gi(r,xl(r),lp'xz(r))]dr—Exi(s))ds—m'/o (1—s) 1<m/0(s—r)ﬁ 1

< [4(0) = i, 35(0) = (e 0 (1), DY) = s (), Pona(o)le = S )

T (o; + 1)% =0 T (a; + 1)%—0+1 a1 1
" [(1 —a)T(a;—6+1)  (—a)T(a;—6+2) (1—a)(1+a)T(2— 51‘)] I(a; —1)

% /(;1(1 A <F(}3i) ./os(s — )P (1) = (T, xi(1)) — fi(T, 21(7), DY xa (7)) — gi(T, x1(7),

(10)

. k,‘ tl_‘si ta,-—(5;+1 1
IPixy(T))]dT — Wxi(s))ds + [(1 “a) LA+ a)l(2—0) (1—a)T(w —o; +2)] (6

% /01(1 = 0P (1) = hi(T, (1)) — fi(T, x1(1), DYixa (1)) — gi(T, :1(T), P xa (7)) dT

i ai(a; 4+ )0+ 10 i
* [(1 —a)T(a;i—6+1) (1T—a)l(w;—06;+2) (1 —a)l(a;+2)T(2— ‘Si)] /0 fiep(or
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On the other hand, we can write

ID%S;(y1,y2) — D%S;(x1,%2) [|oo

1 1
56+ pitl) Tt pirDI2—0)

I(a;+1)
(a; = )T (i — 6 +1)

I(a;+1) o; 1
(a; = 1)I'(a; — 6; +2) (i*l)(1+w1)r(2*5i)>T(Déi+ﬁi)

1 (o +1) 1 .
(@ DT =6 +1) (@ — D) (e — +2)+<az~—1>r<ai+z>r<2—5i>)’“’“

|
(

+((ﬂci—1)r(a,-1+1)r(275i) (a; — )T (1 — 6 +2))r(ﬁi1+1):|u(y1'y2)_(x1/x2)HX><X
(

x| (y1,y2) — (x1,x2) [[xxx

1 1
le-—(i,-—)xﬁ—l) +F(Déi—/\1‘—0—1)1—‘(2—(51')

I(a; 4+ 1) T(a;+1) o; 1
((“z_l)( “6+ 1) (@ - DM -6 +2) (i_l)(1+“i)r(2_‘5i))r(i—)\i)}

+kT(1—Ay) L_,(

X[ (1 y2) = (1, x2) [ xxx-

Consequently,

1Si(y1,y2) — Si(x1, x2) ||xxx < & [[(y1,v2) — (%1, %2) | xxx-

Using the condition on ¢;;i = 1,2, we conclude that S is contractive. So applying Banach
contraction principle, we see that S admits a unique fixed point (x1, x2) which is the solution of
the problem (1). O

The following main result deals with the existence of at least one solution.

Theorem 2. Assume that hypotheses (T1), (T3) and (T4) are satisfied. Then, (1) has at least one solution
defined over J.

Proof. Let us prove the result by applying Schaefer fixed point theorem. We do this by considering
the following steps:
Step 1: Since the functions f;, gj, h; and I;,i = 1,2 are continuous, then S is continuous on X x X.
Step 2: S maps bounded sets into bounded sets in X x X:

Let us take r > 0 and B, := {(x1,x2) € X X X; |[(x1,x2)||xxx <r}. For (y1,y2) € By,
thanks to (T3) and (T4), we can write
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1Si(y1,y2) || o

IA

* i+1
16716 1
I(

Ni, + Np, + N3, + Ny 2+
[ b 4’} [( T(qi+2) ) T(ai+ i +1)

+< 2 +| |> 1 N gaitpita;
-_— V.
(i—1) " ") T(a+B) " T(wi+pi+qi+1)

2 14 1
*((ai T ) DT 2) '”"‘”") r<ﬁi+1>]

i 1+ u; " 1 -|—|1/ | .
(0 — DT+ 1) (a— DT +2) )Tl

|9f*|6?7"+1> 1 ( 2 1

ki T(1— Ay | (2 + Sl )=
hirT( )K T+ ) Tm—r 1) (“i_1)+|1/11|)r(“i_/\i)
1

+
F(aj—Aj+g;+1)

}<+oo

and

1D%S;(y1,2) leo

1 1
l:Nli + Na; + N3, + N4i:| {r

@01 pi+1)  T(m+pB+1T(2=3)

IN

T(a; 4+ 1) [(a;+1) o; 1
* ( (0 = DT(a; —0;+1)  (a; — I (a; — 6; +2) * (0; = 1)(1T+a;)T(2— 51‘)) T'(a; + Bi)

+( 1 n 1 1
(a; = DT (a; + T2 —6;) (o = I (a; — 0 + 2)) L(Bi + 1)}

+( 1 PR (R 1 )rx |
((X,‘ — 1)1”(0(1- —0; + 1) (IJC,' — l)F(le- — 6+ 2) (oci — 1)F(v¢i + 2)F(2 — 5,) iti

1 1 T(a;+1)

HhirT(1=2i) [F({xi oA+l Tw A T2—s) (( " (= 5, +1)
I'(a; +1) n o ) 1

(a; =DT(a; —6;+2) (0 = 1)(1+a)T(2—-0;) ) T(a; — Ay)

+ } < oo
So, for any (y1,y2) € By, we have ||S(y1,¥2) || xxx < +oo.
Consequently, S is uniformly bounded on B, .

Step 3: S maps bounded sets into equicontinuous sets of X x X :

12 of 18

(11)

(12)
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Let t1,tp € J,t1 < tp and let B, be the above bounded set of X x X. So by considering
x = (xq,x2) € By, we can state that for each t € |, we have

[Six(t2) — Six(t1)]

S g e (g [0 1[1<r> (T,3(7)) = fi(1,31(1), D xa (1)

r(ﬁik) 5 : 1
1 S
—0i(T, x1(7), IPixy(T))]dT — =L x / (t fs”‘l’l( / s — )P LL(T
sien(@) Pa(o)ldn - ) Jas - s M i =)
kA
—hi(t,xi(7)) = fi(T, %1 (1), D%x3(7)) — 81(T x1(T), IPixa (7)) )dT — sﬁxi(s))dﬂ
N1, + No. + N3, + Ny, r(1—A;)
i i i i k;: f—t
e e L e v
Ny, + No, + N3, + Ny, T(1—=A;) 17|0% — 8% |t1“i+1 - tz‘x"'H‘ + |t — 1o
[ +hr Il ]
T(a; + Bi) I —A) a—1 (a; —1)(a; +1)
o Na o+ Noy + N3, + Ny, [\tl — |+ [RNT = BN — tz“i+1|]
r(p+1) (a; = 1)I(a; +1) (a; = 1)I(a; +2)
[|t1“" — b%| + a4 — |t — o }r ”
(ai = D (w; +1) (ai — DT (a; +2) )1
< g =9 (g 6P = () ~ Al (), Do)
> l"(tx,-) 0 2 F(IBI)O i AN i\t, 41 s 2
k; 1 2!
— 0. Pi _ — — — ,Bz 1
Qi(T, x1(T), IPixp(T))]dT oy x,(s))ds @) /0 (1 ( / s—T)Pi ()
—hi(7,%;(7)) = fi(t,21(7), D%x2(7)) — (T, x1(7), [Pixa (7 ))]dT— - xi(s ))d5|
1 rt 1 'S
_— ty — )41 / — )P YL(T) = Iy (T, x; — (7, , DY
Hr(‘xi) /t1 (t2 —s) (r(ﬁ]i) A (s = )P [Li(1) — hi(T, x:(7)) — fi(T, x1(7), D% x0(7)) (13)
il 0 (2), (1))l = () )l
Ni. + Np. + N3. + Ny 1"(1—)\)
i i i i k;: f—t
N e e L]
le + N2i + Ngi + N4i F(l — )\i) |t1ai — tzail |t1ai+1 - tzai+1‘ + IX,'|t1 - t2|
[ +hr Il ]
(e + Bi) T —Ay) a—1 (0; —1)(a; +1)
Ny, 4+ No, + N3, + Ny, [\tl —bp| + [HUT — 8Ty — tz”‘i+1|]
r(p+1) (a; = 1)I(a; +1) (a; = 1)I(a; +2)
[|t1“" — |+ |ty — % |t — ta }r .
(a; =T oc,+1 (a; = 1) (a; +2) Xittis
Ny, + No, + N3, +
< Biteai _ 4 Bitai _ Bita; _
< P %1t BPH| 420t — BIP 4 | — b
—Q—k‘rM [|t w—Ai g lxi*Ai‘ + |t —t |]
T =2 +a) 2 1
+[N1,»+N2i+N3i+N4I- - ( )\)] [|t1“i_t2"‘i| |t1“i+1—t2ai+1‘+1Xj|t1—t2|]
(e + Bi) I'(a; /\z) a—1 (a; —1)(a; +1)
NL‘ + Nzi + N3i + N4l. [‘tl — tz‘ | it “i+1| uc,'|t1"‘i+1 - tz”‘i+1|]
r(p+1) (a; — )T (a; +1) (a; = 1) (a; +2)
b — b+ a5 — "‘+1| |t — to|

+[ (@ =1l (& +1) (ai—l)r(a,-juz)}”‘i”f'
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With the same arguments as before, we have
|D%Six(t2) — DU Six(f)|

Ny, + Ny, + N3, + Ny,
I — 0 + Bi +)1)
k: — =A== Ai=d;

+’TF(17/\i+ai7(5i)|1 2 |
[Nli + Np, + N3, + Ny,

I+ pi+1)

IN

[|tlﬁi+ﬂi*f5i _ tzﬁi+“i*5i| +2|t — t2|ﬁi+ai—§i]

+ kﬁ’

I(1-A) } 1% — B
I“(zxi—)xi—i-l) l“(2—(51)

[NL. + Ny, + N3, + Ny, . r(1-A) } [r(ai + 1)t 40 — i) (14)
T(a; + B;) T(a—A)IL (@ = 1T (=6 +1)
r(lXi + 1)“10(1'—01'4-1 _ t2lxi—5i+1| 0(1‘|t11_5i _ t21—0i| }

J’_
(0; —1)T(a; — 6; +2) (Déifl)gﬂéiJrl)r(Z*&')
,‘| |t a;—0;+1 —t D(,‘*J,'«Fl'
1 2 ]

+

Ni. + Np. + N3, + Ny |t117‘5" — 1
1 1 1 1 [ +
I(gi+1) (0; = Dl(a; +DI(2—-0;) (0 — D (a; — 0 +2)
+[ £ %% — =i i + 1) [ % %+ — gm0t
(al-fl)l"(aiféﬁrl) (Déifl)r(ﬂéi*5i+2)

|t 170 — 17| }r o
(0 — )T (w; +2)T(2— o) ) AHT

_|_

The right hand sides of Equations (13) and (14) tend to zero independently of x as t; — t5.
As a consequence of Steps 1-3 and thanks to Ascoli-Arzela theorem, we conclude that S is
completely continuous.
Step 4: The set A := {(x1,x2) € X x X : (x1,x2) = 0S(x1,x2),0 €]0,1[} is bounded:
Let (y1,y2) € A. Then, we have (y1,y2) = 0S(y1,y2) for some 0 < o < 1.
So, we have y; = 0S;(y1,12);i =1,2.
Hence, we can write

* i+1
10716 ) 1

oo < Ni, +No, + Ns + Ny | | (2
lyilleo < Uﬁ?}f([ 17 Ny N 4“( " Tgi+2) )Tt gt D)

( 2 | ) 1 guitBi+ai
[ —— + 1w, +
(i—1) ") T(a;+ ) T(wi+pi+ai+1)

2 o
*((ai O D) @ D@2 "“") I +1>}

n 1+ a; " 1 +|V | .
(@ —D(a+1) | (= V)T (g +2) o)Ak

|9*|97f+1> 1 < 2 ) 1
k(1 — A 2 L1 il T — 2.
hirT( )K g2 T w9 Ay

1
+r("‘i_/\i+5h+l)] .
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It is also evident that

[ D2yileo
< omax {N + Np. + N- +N}[ L + !
= T\ T E T T T — o+ B+ 1) T+ i+ T2 )
+< e+1) . T+ ) . ) 1
(0 =DT(a; =6 +1) (@ —D)T(w; —6;+2)  (ai — 1)1+ ;)T (2—6;) ) T(a; + Bi)

1 1 1
*((ai DT+ T2 =6) (w1l —fsi+z>> r<ﬁf+1>}

1 Déi(ﬂéi+1) 1
*(oxi T =+ 1) (w1 —6+2) | (wi— 1>r<ai+z>r<z—fsi>>”‘"“f
1 1
+hrT (1= A) [r(zxi — 6 —Ai+1) + T(a; —Aj+ 12 —6;)

[(a;+1) I(a;+1) a 1
*((m DM@ -6 +1) Ul —6+2) (- 1><1+ai>r(2—5i>> e —A»D'

Using Equations (11) and (12), we state that ||(y1,y2)||xxx < o°. The set is thus bounded.
As a consequence of Schaefer fixed point theorem, we conclude that S has a fixed point which
is a solution of Equation (1). O

4. Example

In this section, we present an example to illustrate the application of the first main result.
Consider the following system:

1 1
3 t) + D2y, (t cosyq(t) +cos T2y, (t
DD 4+ 5y (h) + lya (t) va( 1)| 4 cosy( )64 0 ya(t)
o 40e2(1 4 [y1 (t) + D2y2(H)]) &
sinyq (¢ t
== 1
ageret — 5 0t

1 1 ly1(t)] cos D2y, (t) 1 (siny(t)  sin %8y, (t)
D1.7 D1.9 - -
(D oy V2 + g (2(1+\y1(t))\ T teo\ ez T at
S 710) N——— Ay
1007t (1 + [y2(£))]) ~— 37 ’

yi(1) =y;(0), i=1,2,
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We have
|1 (t) + ua(t))
tui(t), us(t)) = ’
fi(t,ur(t), uz(t)) 40221+ [uq (t) + ua (1))
1 |1 (1) cos up(t)
t, t , t = — ’
Ltun(t),ux(t) = g5 (2(1+ @) T e
cos u1(t) + cos uy(t)
tup(t), ua(t)) = ,
81( ul( ) Mz( )) 64772
1 [sinui(t) = sinup(t)
t t t)) = —=
ga(t,up(t), ua(t)) 50 ( ot +2 + 12(t+1) )"’
_ sinu(t)
m(tu(t)) =~ o
|u(t)]
h t,u t - 7
2040) = T00m (1 + ()]
and
3 1 1 5 !
t =198, 1 =3,01= 3,01 = 3,11 =01k = 15,41 = 002,60 = 07,91 =02, 1 = 7555/
1 5 1 1 75
) = 1_9,[82 =17,00= 0.8,0, = 02,up = 04,k = m,)\z = m/GZ =202 = 100X = 1000°

We can also consider that

1 1 1 1 1 1
AT 2002778 T ea2’ N T 1aa’ ™ T 1607782 T 502272 T 1007

So, we obtain:

€11 = 0.2205, €12 = 0.0253, g1 = 0.2191, &2 = 0.04,
g1 = max {e11,e12} = 0.2205, ep = max {ex1,€,2} = 0.2191.

By Theorem 1, we confirm that the above example has a unique solution.

5. Conclusions

The fundamental objective of this work was to introduce the new fractional coupled system
of Lane-Emden type given by Equation (1). By using the well known Banach fixed point theorem
combined with the integral inequality theory, a first main result on the existence of a unique
solution has been proved. Then, by application of Scahefer fixed point theorem, another main
result, that studied the existence of at least one solution for Equation (1), has been discussed.
Finally, we have discussed an illustrative example.

The reader can see that in this paper, the question of stability of solutions in the sense of Ulam
Hyers has not been considered. This type of stability and some others will be investigated in the
future paper. This work is in progress.
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