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Abstract: In some applications, one is interested in reconstructing a function f from its Fourier series
coefficients. The problem is that the Fourier series is slowly convergent if the function is non-periodic,
or is non-smooth. In this paper, we suggest a method for deriving high order approximation to f using
a Padé-like method. Namely, we do this by fitting some Fourier coefficients of the approximant to the
given Fourier coefficients of f . Given the Fourier series coefficients of a function on a rectangular
domain in Rd, assuming the function is piecewise smooth, we approximate the function by piecewise
high order spline functions. First, the singularity structure of the function is identified. For example in
the 2D case, we find high accuracy approximation to the curves separating between smooth segments
of f . Secondly, simultaneously we find the approximations of all the different segments of f . We
start by developing and demonstrating a high accuracy algorithm for the 1D case, and we use this
algorithm to step up to the multidimensional case.

Keywords: fourier data, reconstruction, multivariate approximation, piecewise smooth

1. Introduction

Fourier series expansion is a useful tool for representing and approximating functions,
with applications in many areas of applied mathematics. The quality of the approximation depends on
the smoothness of the approximated function and on whether or not it is periodic. For functions that
are not periodic, the convergence rate is slow near the boundaries and the approximation by partial
sums exhibits the Gibbs phenomenon. Several approaches have been used to improve the convergence
rate, mostly for the one-dimensional case. One approach is to filter out the oscillations, as discussed in
several papers [1,2]. Another useful approach is to transform the Fourier series into an expansion in a
different basis. For the univariate case this approach is shown to be very efficient, as shown in [1] using
Gegenbauer polynomials with suitably chosen parameters. Further improvement of this approach is
presented in [3] using Freud polynomials, achieving very good results for univariate functions with
singularities.

An algebraic approach for reconstructing a piecewise smooth univariate function from its first N
Fourier coefficients has been realized by Eckhoff in a series of papers [4–6]. There, the “jumps” are
determined by a corresponding system of linear equations. A full analysis of this approach is presented
by Betankov [7]. Nersessian and Poghosyan [8] have used a rational Padé type approximation strategy
for approximating univariate non-periodic smooth functions. For multiple Fourier series of smooth
non-periodic functions, a convergence acceleration approach was suggested by Levin and Sidi [9]. More
challenging is the case of multivariate functions with discontinuities, i.e., functions that are piecewise
smooth. Here again, the convergence rate is slow, and near the discontinuities, the approximation
exhibits the Gibbs phenomenon. In this paper, we present a Padé-like approach consisting of finding a
piecewise-defined spline whose Fourier coefficients match the given Fourier coefficients.

The main contribution of this paper is demonstrating that this approach can be successfully
applied to the multivariate case. Namely, we present a strategy for approximating both non-periodic

Axioms 2020, 9, 88; doi:10.3390/axioms9030088 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
http://www.mdpi.com/2075-1680/9/3/88?type=check_update&version=1
http://dx.doi.org/10.3390/axioms9030088
http://www.mdpi.com/journal/axioms


Axioms 2020, 9, 88 2 of 20

and non-smooth multivariate functions. We derive the numerical procedures involved and provide
some interesting numerical results. We start by developing and demonstrating a high accuracy
algorithm for the 1D case, and use this algorithm to step up to the multidimensional case.

2. The 1D Case

In this section, we present the main tools for function approximation using its Fourier series
coefficients. We define the basis functions and describe the fitting strategy and develop the computation
algorithm. After dealing with the smooth case we move on to approximate a piecewise smooth function
with a jump singularity.

2.1. Reconstructing Smooth Non-Periodic Functions

Let f ∈ Cm[0, 1], and assume we know the Fourier series expansion of f

f (x) = ∑
n∈Z

f̂ne2πinx. (1)

The series converge pointwise for any x ∈ [0, 1], however, if f is not periodic, the convergence may
be slow, and if f (1) 6= f (0) the convergence is not uniform and the Gibbs phenomenon occurs near 0
and near 1. As discussed in [9,10], one can apply convergence acceleration techniques for improving
the convergence rate of the series. Another convergence acceleration approach was suggested by
Gottlieb and Shu [1] using Gegenbauer polynomials. Yet, in both approaches, the convergence rate is
not much improved near 0 and near 1. We suggest an approach in the spirit of Padé approximation.
A Padé approximant is a rational function whose power series agrees as much as possible with the
given power series of f . Here we look for approximations to f whose Fourier coefficients agree with
a subset of the given Fourier coefficients of f . The approximation space can be any favorable linear
approximation space, such as polynomials or trigonometric functions.

We choose to build the approximation using kth order spline functions, represented in the
B-spline basis:

S[k]
d (x) =

Nd

∑
j=1

ajB
[k]
d (x− jd). (2)

B[k]
d (x) is the B-spline of order k with equidistant knots {−kd, ...,−2d,−d, 0}, and Nd = 1/d + k− 1 is

the number of B-splines whose shifts do not vanish in [0, 1]. The advantage of using spline functions is
threefold:

• The locality of the B-spline basis functions.
• A closed form formula for their Fourier coefficients.
• Their approximation power, i.e., if f ∈ Ck[0, 1], there exists a spline S[k]d such that ‖ f − S[k]d ‖∞,[0,1] ≤ Cdk.

The B-splines basis functions used in the 1D case are shown in Figure 1. We denote by S ≡ S[k]
d |[0,1]

the restriction of S[k]
d to the interval [0, 1]. We find the coefficients {ai}

Nd
i=1 by least-squares fitting,

matching the first M + 1 Fourier coefficients of S to the corresponding M + 1 Fourier coefficients of f .
That is,

{ai}
Nd
i=1 = arg min

M

∑
n=0
| f̂n − Ŝn|2. (3)

Notice that it is enough to consider the Fourier coefficients with non-negative indices.
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Figure 1. The B-splines used in Example 1.

We denote by Bi ≡ B[k]
d (· − id)|[0,1] the restriction of B[k]

d (· − id) to the interval [0, 1], and by {B̂i,n}
its Fourier coefficients. The normal equations for the least squares problem (3) induce the linear system
Aa = b for a = {ai}

Nd
i=1, where

Ai,j =
M

∑
n=0

[Re(B̂i,n)Re(B̂j,n) + Im(B̂i,n) Im(B̂j,n)], 1 ≤ i, j ≤ Nd, (4)

and

bi =
M

∑
n=0

[Re(B̂i,n)Re( f̂n) + Im(B̂i,n) Im( f̂n)], 1 ≤ i ≤ Nd. (5)

2.1.1. Numerical Example—The Smooth 1D Case

We consider the test function f (x) = x exp(x) + sin(8x), assuming only its Fourier coefficients
are given. We have used only the 20 Fourier coefficients { f̂n}19

n=0, and computed an approximation
using 12th degree splines with equidistant knots’ distance d = 0.1. For this case, the matrix A is
of size 19× 19, and cond(A) = 5.75× 1020. We have employed an iterative refinement algorithm
described below to obtain a high precision solution. The results are shown in the following two
figures. In Figure 2 we see the test function on the left and the approximation error on the right. Figure
3 presents the graph of log10( f̂n) in blue and the graph of log10( f̂n − Ŝn), showing eight orders of
magnitude reduction in the Fourier coefficients. Notice the matching in the first Fourier coefficients
reflected in the beginning of the red graph.

Remark 1. The powerful iterative refinement method described in [11,12] is as follows:
For solving a system Ax = b, we use some solver, e.g., the Matlab pinv function. We obtain the solution

x(0) = pinv(A)b. Next we compute the residual r(0) = b− Ax(0). In case cond(A) is very large, the residual
will be large. Now we solve again the system with r(0) at the right hand side, and use the solution to correct x(0),
to obtain

x(1) = x(0) + pinv(A)r(0).

We repeat this correction steps a few times, i.e., r(k) = b− Ax(k), and

x(k+1) = x(k) + pinv(A)r(k),

until the resulting residual r(k) is small enough.
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Figure 2. The test function (left) and the spline approximation error (right).
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Figure 3. log10 of the given Fourier coefficients (blue), and of the Fourier coefficients of the
approximation error (red).

2.2. Reconstructing Non-Smooth Univariate Functions

Let f be a piecewise smooth function on [0, 1], defined by combined two pieces f1 ∈ Cm[0, s∗] and
f2 ∈ Cm(s∗, 1], and assume that f2 can be continuously extended to [s∗, 1].

f (x) =

{
f1(x) x ≥ s∗,

f2(x) x < s∗.
(6)

Here again, we assume that all we know about f is its Fourier series expansion. In particular,
we do not know the position s∗ ∈ [0, 1] of the singularity of f . As in the case of a non-periodic function,
the existence of a singularity in [0, 1] significantly influences the Fourier series coefficients and implies
their slow decay. As we demonstrate below, good matching of the Fourier coefficients requires a
good approximation of the singularity location. The approach we suggest here involves finding
approximations to f1 and f2 simultaneously with a high precision identification of s∗.

Let s be an approximation of the singularity location s∗, and let us follow the algorithm
suggested above for the smooth case. The difference here is that now we look for two separate
spline approximations:

S1 ≡ S[k]
d |[0,s](x) =

Nd

∑
i=1

a1iB
[k]
d (x− id)|[0,s] ∼ f1, (7)
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and

S2 ≡ S[k]
d |(s,1](x) =

Nd

∑
i=1

a2iB
[k]
d (x− id)|(s,1] ∼ f2. (8)

The combination S of S1 and S2 constitutes the approximation to f . Here again we aim at
matching the first M + 1 Fourier coefficients of f and of S. Here S depends on the Nd coefficients
{a1i} of S1, the Nd coefficients {a2i} of S2 and on s. Therefore, the minimization process solves for all
these unknowns: [

{a1i}
Nd
i=1, {a2i}

Nd
i=1, s

]
= arg min

M

∑
n=0
| f̂n − Ŝn|2. (9)

The minimization is non-linear with respect to s, and linear with respect to the other
unknowns. Therefore, the minimization problem is actually a one parameter non-linear minimization
problem, the parameter s. Using the approximation power of kth order splines (k ≤ m), and
considering the value of the objective cost function for s = s∗, we can deduce that the minimal
value of ∑M

n=0 | f̂n − Ŝn|2 is O(d2k). We also observe that an ε deviation from s∗ implies a bounded
deviation of the minimizing Fourier coefficients

max
n∈Z
| f̂n − Ŝn| ≤ c1ε + c2dk. (10)

As shown below, these observations can be used for finding a good approximation to s∗.
We denote by B1i ≡ B[k]

d (· − id)|[0,s] the restriction of B[k]
d (· − id) to the interval [0, s], and by

B2i ≡ B[k]
d (· − id)|(s,1] the restriction of B[k]

d (· − id) to the interval (s, 1]. We concatenate these two

sequences of basis functions, {B1i} and {B2i} into one sequence {Bi}
2Nd
i=1 , and denote their Fourier

coefficients by {B̂i,n}n∈Z. For a given s, the normal equations for the least squares problem (9) induce
the linear system Aa = b for the splines’ coefficients a = ({a1i}

Nd
i=1, {a2i}

Nd
i=1), where:

Ai,j =
M

∑
n=0

[Re(B̂i,n)Re(B̂j,n) + Im(B̂i,n) Im(B̂j,n)], 1 ≤ i, j ≤ 2Nd, (11)

and

bi =
M

∑
n=0

[Re(B̂i,n)Re( f̂n) + Im(B̂i,n) Im( f̂n)], 1 ≤ i ≤ 2Nd. (12)

Remark 2. Due to the locality of the B-splines, some of the basis functions {B1i} and {B2i} may be identical 0.
It thus seems better to use only the non-zero basis functions. From our experience, since we use the generalized
inverse approach for solving the system of equations, using all the basis functions gives the same solution.

The generalized inverse approach computes the least-squares solution to a system of linear equations that
lacks a unique solution. It is also called the Moore–Penrose inverse, and is computed by Matlab pinv function.

The above construction can be carried out to the case of several singular points.

2.2.1. Finding s∗

We present the strategy for finding s∗ together with a specific numerical example. We consider a
test function on [0, 1] with a jump discontinuity at s∗ = 0.5:

f (x) =

 f1(x) = sin(5x) x ≥ s∗,

f2(x) = 1
(x−0.5)2+0.5 x < s∗.

(13)

As expected, the Fourier series of f is slowly convergent, and it exhibits the Gibbs phenomenon
near the ends of [0, 1] and near s∗. In Figure 4, on the left, we present the sum of the first 200 terms of
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the Fourier series, computed at 20,000 points in [0, 1]. This sum is not acceptable as an approximation
to f , and yet we can use it to obtain a good initial approximation to s0 ∼ s∗. On the right graph, we plot
the first differences of the values in the left graph. The maximal difference is achieved at a distance of
order 10−4 from s∗.
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Figure 4. A partial Fourier sum (left) and its first differences (right).

Having a good approximation s0 ∼ s∗ is not enough for achieving a good approximation to
f . However, s0 can be used as a starting point for an iterative method leading to a high precision
approximation to s∗. To support this assertion we present the graph in Figure 5, depicting the maximum
norm of the difference between 1000 of the given Fourier coefficients and the corresponding Fourier
coefficients of the approximation S, as a function of s, near s∗ = 0.5. This function is almost linear on
each side of s∗, and simple quasi-Newton iterations converge very fast to s∗. After obtaining a high
accuracy approximation to s∗, we use it for deriving the piecewise spline approximation to f .
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Figure 5. The graph of the error ‖ f̂ − Ŝ‖ as a function of s near s∗ = 0.5.

In the following, we present the numerical results obtained for the test function defined in (13).
We have used only 20 Fourier coefficients of f , and the two approximating functions S1 and S2 are
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splines of order eight, with knots’ distance d = 0.1. Figure 6 depicts the approximation error, showing
that ‖ f − S‖∞ = 5.3× 10−8, and that the Gibbs phenomenon is completely removed. Figure 7 shows
log10 of the absolute values of the given Fourier coefficients of f (in blue), and the corresponding
values for the Fourier coefficients of f − S (in red). The graph shows a reduction of ∼7 orders of
magnitude. These results clearly demonstrate the high effectiveness of the proposed approach.
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Figure 6. The approximation error for the 1D non-smooth case.
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Figure 7. log10 of the given Fourier coefficients (blue), and of the Fourier coefficients of the approximation
error (red).

2.2.2. The 1D Approximation Procedure

Let us sum up the suggested approximation procedure:

(1) Choose the approximation space Π for approximating f1 and f2.
(2) Define the number of Fourier coefficients to be used for building the approximation such that

M + 1 ≥ 2 dim(Π). (14)
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(3) Find first approximation to s∗: Compute a partial Fourier sum and locate maximal first
order difference.

(4) Calculate the first M + 1 Fourier coefficients of the basis functions of Π, truncated at s∗.
(5) Use the above Fourier coefficients to compute the approximation to f1 and f2 by solving the

system of linear equation defined by (11), (12).
(6) Update the approximation to s∗, by performing quasi-Newton iterations to reduce the objective

function in (9).
(7) Go back to (4) to update the approximation.

3. The 2D Case—Non-Periodic and Non-Smooth

3.1. The Smooth 2D Case

Let f ∈ Cm[0, 1]2, and assume we know its Fourier series expansion

f (x, y) = ∑
m∈Z

∑
n∈Z

f̂mne2πimxe2πiny. (15)

Such series are obtained when solving PDE using spectral methods. However, if the function is not
periodic, or, as in the case of hyperbolic equations, the function has a jump discontinuity along some
curve in [0, 1]2, the convergence of the Fourier series is slow. Furthermore, the approximation of f by its
partial sums suffers from the Gibbs phenomenon near the boundaries and near the singularity curve.

We deal with the case of smooth non-periodic 2D functions in the same manner as we did for the
univariate case. We look for a bivariate spline function S whose Fourier coefficients match the Fourier
coefficients of f . As in the univariate case, it is enough to match the coefficients of low frequency terms
in the Fourier series. The technical difference in the 2D case is that we look for a tensor product spline
approximation, using tensor product kth order B-spline basis functions.

S[k]
d (x, y) =

Nd

∑
i=1

Nd

∑
j=1

aijB
[k]
d (x− id)B[k]

d (y− jd). (16)

The system of equations for the B-spline coefficients is the same as the system defined by (4)
and (5) in the univariate case, only here we reshape the unknowns as a vector of N2

d unknowns.

3.1.1. Numerical Example—The Smooth 2D Case

We consider the test function

f (x, y) =
10

1 + 10(x2 + (y− 1)2)
+ sin(10(x− y)),

assuming only its Fourier coefficients are given. We have used only 160 Fourier coefficients,
and constructed an approximation using 10th degree tensor product splines with equidistant knots’
distance d = 0.1 in each direction. For this case, the matrix A is of size 361× 361, and cond(A) =

6.2× 1030. Again, we have employed the iterative refinement algorithm to obtain a high precision
solution (relative error 10−15). Computation time ∼18 s.

In Figure 8 we plot the test function on [0, 1]2. Note that it has high derivatives near (0, 1).
The approximation error f − S[10]

0.1 is shown in Figure 9. To demonstrate the convergence
acceleration of the Fourier series achieved by subtracting the approximation from f , we present
in Figure 10 log10 of the absolute values of the Fourier coefficients of f (in green) and of the Fourier

coefficients of f − S[10]
0.1 (in blue), for frequencies 0 ≤ m, n ≤ 200. The magnitude of the Fourier

coefficients is reduced by a factor of 105, and even more so for the low frequencies due to the matching
strategy used to derive the spline approximation.
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Figure 8. The test function for the smooth 2D case.

Figure 9. The approximation error f − S[10]
0.1 .

Figure 10. log10 of the Fourier coefficients before (green), and after (blue).
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3.2. The Non-Smooth 2D Case

Let Ω1, Ω2 ⊂ [0, 1]2 be open, simply connected domains with the properties

Ω1 ∩Ω2 = ∅, Ω̄1 ∪ Ω̄2 = [0, 1]2.

Let Γ∗ be the curve separating the two domains,

Γ∗ = Ω̄1 ∩ Ω̄,

and assume Γ∗ is a Cm-smooth curve.
Let f be a piecewise smooth function on [0, 1]2, defined by combined two pieces f1 ∈ Cm[Ω1]

and f2 ∈ Cm[Ω2], and assume that each f j can be continuously extended to a function in Cm(Ω̄j),
j = 1, 2. Here again, we assume that all we know about f is its Fourier expansion. In particular, we do
not know the position of the dividing curve separating Ω1 and Ω2. We denote this curve by Γ∗, and
we assume that it is a Cm-smooth curve. As in the case of a non-periodic function, the existence of
a singularity curve in [0, 1]2 significantly influences the Fourier series coefficients and implies their
slow decay. In case of discontinuity of f across Γ∗, partial sums of the Fourier series exhibit the
Gibbs phenomenon near Γ∗. As demonstrated below, a good matching of the Fourier coefficients
requires a good approximation of the singularity location. As in the univariate non-smooth case,
the computation algorithm involves finding approximations to f1 and f2 simultaneously with a high
precision identification of Γ∗.

Evidently, finding a high precision approximation of the singularity curve Γ∗ is more involved than
finding a high precision approximation to the singularity point s∗ in the univariate case. Let DΓ∗(x, y)
be the signed-distance function corresponding to the curve Γ∗:

DΓ∗(x, y) =

{
dist((x, y), Γ∗) (x, y) ∈ Ω1,

−dist((x, y), Γ∗) (x, y) ∈ Ω2.
(17)

In looking for an approximation to Γ∗, we look for an approximation to DΓ∗ . Here again we are
using a tensor product spline approximants, the same set of spline functions described in the previous
section. Since the curve is Cm, it can be shown that one can construct a spline function D̃ of order
k ≤ m, with knots’ distance h, which approximates DΓ∗ near Γ∗ so that the Hausdorff distance between
the zero level set of D̃ and Γ∗ is O(hk).

Let Db̄ be a spline approximation to DΓ∗ , with spline coefficients b̄ = {bij}
Nh
i,j=1:

Db̄(x, y) =
Nh

∑
i=1

Nh

∑
j=1

bijB
[k]
h (x− ih)B[k]

h (y− jh). (18)

For a given Db̄ we define the approximation to f similar to the construction in the univariate case
by Equations (7)–(9). We look here for an approximation S to f which is a combination of two bivariate
splines components:

S(x, y) =
Nd

∑
i=1

Nd

∑
j=1

a1ijB
[k]
d (x− id)B[k]

d (y− jd), Db̄(x, y) ≥ 0, (19)

S(x, y) =
Nd

∑
i=1

Nd

∑
j=1

a2ijB
[k]
d (x− id)B[k]

d (y− jd), Db̄(x, y) < 0, (20)

such that (2M + 1)2 Fourier coefficients of f and S are matched in the least-squares sense:
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[
{a1ij}

Nd
i,j=1, {a2ij}

Nd
i,j=1, {bij}

Nd
i,j=1

]
= arg min

( M

∑
m,n=−M

| f̂mn − Ŝmn|2
)
. (21)

We denote by B1ij(x, y) the restriction of B[k]
d (x − id)B[k](y − jd) to the domain defined by

Db̄(x, y) ≥ 0, and by B2ij(x, y) the restriction of B[k]
d (x − id)B[k](y − jd) to the domain defined

by Db̄(x, y) < 0. We concatenate these two sequences of basis functions, {B1ij} and {B2ij}
into one sequence {Bij}

Nd ,2Nd
i=1,j=1, denoting their Fourier coefficients by {B̂ij,n}n∈Z, and rearranging

them (for each n) in vectors of length 2N2
d , {B̂i,n}

2N2
d

i=1,n∈Z. For a given D̄̂b, the normal equations
for the least squares problem (21) induce the linear system Aa = b for the splines’ coefficients
a = ({a1ij}

Nd
i,j=1, {a2ij}

Nd
i,j=1), where:

Ai,j =
M

∑
m,n=−M

[Re(B̂i,n)Re(B̂j,n) + Im(B̂i,n) Im(B̂j,n)], 1 ≤ i ≤ 2N2
d , (22)

and

bi =
M

∑
m,n=−M

[Re(B̂i,n)Re( f̂n) + Im(B̂i,n) Im( f̂n)], 1 ≤ i ≤ 2N2
d . (23)

For a given choice of b̄ = {bij}, the coefficients {a1ij}
Nd
i,j=1, {a2ij}

Nd
i,j=1 are obtained by solving a

linear system of equations, and properly rearranging the solution. However, finding the optimal b̄ is a
non-linear problem that requires an iterative process and is much more expensive.

Remark 3. Representing the singularity curve of the approximation S as the zero level set of the bivariate spline
function Db̄ is the way to achieve a smooth control over the approximation. As a result, the objective function
in (21) varies smoothly with respect to the spline coefficients {bij}.

Remark 4. In principle, the above framework is applicable to cases where f is combined of k functions defined
on k disjoint subdomains of [0, 1]2. The implementation, however, is more involved. The main challenge is to
find a good first approximation to the curves separating the subdomains. In this context, for our case of two
subdomains, we further assume for simplicity that the separating curve Γ∗ is bijective.

Here again we choose to demonstrate the whole approximation procedure alongside a specific
numerical example.

3.2.1. The Approximation Procedure—A Numerical Example

Consider a piecewise smooth function on [0, 1]2 with a jump singularity across the curve Γ∗ which
is the quarter circle defined by x2 + y2 = 0.5. The test function is shown in Figure 11 and is defined as

f (x, y) =

{
(x2 + y2 − 0.5) sin(10(x + y)) x2 + y2 ≥ 0.5,

(x2 + y2 − 0.5) sin(10(x + y)) + 2x x2 + y2 < 0.5.
(24)

In the univariate case, in Section 2.2.1, we use the Gibbs phenomenon in order to find an initial
approximation s0 to the singularity location s∗. The same idea, with some modifications to the 2D case,
is applied here. The truncated Fourier sum

f50(x, y) =
50

∑
m,n=−50

f̂mne2πimxe2πiny. (25)

gives an approximation to f , but the approximation suffers from a Gibbs phenomenon near the
boundaries of the domain and near the singularity curve Γ∗. We evaluated f50 on a 400× 400 mesh
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on [0, 1]2, and enhanced the Gibbs effect by applying first order differences along the x-direction.
The results are depicted in Figure 12. The locations of large x-direction differences and of large
y-direction differences within [0, 1]2 indicate the location of Γ∗.

Figure 11. The test function for the 2D non-smooth case.

Figure 12. First order x-direction differences of a truncated Fourier sum—notice the relatively high
values at the boundary and near the singularity curve.

Building the initial approximation Db̄0

Searching along 50 horizontal lines (x-direction) for maximal x-direction differences, and along
50 vertical lines (y-direction) for maximal y direction differences, we have found 72 such maximum
points, which we denote by P0. We display these points (in red) in Figure 13, on top of the curve Γ∗

(in blue). Now we use these points to construct the spline Db̄0
, whose zero level curve is taken as

the initial approximation to Γ∗. To construct Db̄0
we first overlay on [0, 1]2 a net of 11× 11 points, Q0.

These are the green points displayed in Figure 14.
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Figure 13. The singularity curve Γ∗ (blue) and points of maximal first differences of f50.
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Figure 14. The singularity curve Γ∗ (blue) and points of maximal first differences of f50.

To each point in Q0 we assign the value of its distance from the set P0, with a plus sign for points
which are on the right or above P0, and a minus sign for the other points. To each point in P0 we assign
the value zero. The spline function Db̄0

is now defined by the least-squares approximation to the values
at all the points P0 ∪ Q0. We have used here tensor product splines of order 10, on a uniform mesh
with knots’ distance = 0.1. We denote the level curve zero of the resulting Db̄0

as Γ0, and this curve
is depicted in yellow in Figure 14. It seems that Γ0 is already a good approximation to Γ∗ (in blue),
and thus it is a good starting point for achieving the minimization target (21).

Improving the approximation to Γ∗, and building the two approximants

Starting from Db̄0
we use a quasi-Newton method for iterative improvement of the approximation

to Γ∗. The expensive ingredient in the computation procedure is the need to recompute the Fourier
coefficients of the B-splines for any new set of coefficients b̄ of Db̄. We recall that we need (2M + 1)2 of
these coefficients for each B-spline, and we have 2N2

d B-splines. In the numerical example we have
used M = 40 and Nd = 19. To illustrate the issue we present in Figure 15 one of those B-spline whose
support intersects the singularity curve. When the singularity curve is updated, the Fourier coefficients
of this B-spline are recalculated.
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Remark 5. Calculating Fourier coefficients of the B-splines Calculating the Fourier coefficients of the
B-splines is the most costly step in the approximation procedure. For the univariate case the Fourier coefficients of
the B-splines can be computed analytically. For a smooth d-variate function f : [0, 1]d → R, with no singularity
within the unit cube [0, 1]d, piecewise Gauss quadrature may be used to compute the Fourier coefficients with
high precision. The non-smooth multivariate case is more difficult, and more expensive. However, we noticed
that using low precision approximations for the Fourier coefficients of the B-splines is fine. For example, in the
above example, we have employed a simple numerical quadrature combined with fast Fourier transform, and
we obtained the Fourier coefficients with a relative error ∼10−5. Yet the resulting approximation error is small
‖ f − S‖∞ < 5× 10−6, as seen in Figure 18.

Figure 15. One of the tensor product B-splines used for the approximation of f , chopped off by the
singularity curve.

Using one quasi-Newton step we obtained new spline coefficients b̄1 and an improved
approximation Γ1 to Γ∗ as the zero level set of Db̄1

. Stopping the procedure at this point yields
approximation results as shown in the figures below. Figure 16 shows the approximation error f − S
on [0, 1]2 \U, where U is a small neighborhood of Γ∗. Figure 17 shows, in green, log10 of the magnitude
of the giver Fourier coefficients f̂mn and, in blue, log10 of the Fourier coefficients of the difference f − S.
We observe a reduction of three orders of magnitude between the two.

Figure 16. The approximation error with Db̄1
.
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Figure 17. The magnitude reduction of the Fourier coefficients with Db̄1
.

Applying four quasi-Newton iterations took ∼24 min execution time. The approximation of Γ∗

by the zero level set of Db̄4
is now with an error of 10−9. The consequent approximation error to f is

reduced as shown in Figure 18, and the Fourier coefficients of the error are reduced by 5 orders of
magnitude, as shown in Figure 19.

Figure 18. The approximation error with Db̄4
.

Figure 19. The magnitude reduction of the Fourier coefficients with Db̄4
.
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3.2.2. The 2D Approximation Procedure

Let us sum up the suggested approximation procedure:

(1) Choose the approximation space Π1 for approximating f1 and f2 and the approximation space
Π2 for approximating Γ∗.

(2) Define the number of Fourier coefficients to be used for building the approximation such that

(2M + 1)2 ≥ 2 dim(Π1) + dim(Π2). (26)

(3) Find first approximation to Γ∗:

(a) Compute a partial Fourier sum and locate maximal first order differences along horizontal
and vertical lines to find points P0 near Γ∗, with assigned values 0.

(b) Overlay a net of points Q0 as in Figure 14, with assigned signed-distance values.
(c) Compute the least-squares approximation from Π2 to the values at P0 ∪Q0, denote it Db̄0

.

(4) Calculate the first (2M + 1)2 Fourier coefficients of the basis functions of Π1, truncated with
respect to the zero level curve of Db̄0

.
(5) Use the above Fourier coefficients to compute the approximation to f1 and f2 by solving the

system of linear equation defined by (22), (23).
(6) Update Db to improve the approximation to Γ∗, by performing quasi-Newton iterations to reduce

the objective function in (21).
(7) Go back to (4) to update the approximation.

3.2.3. Lower Order Singularities

Let us assume that f (x, y) is a continuous function, and that fx(x, y) is discontinuous across the
singularity curve Γ∗. In this case we cannot use the Gibbs phenomenon effect to approximate the
singularity curve. However, the Fourier coefficients

ĝmn = im f̂mn,

represent a function g that has discontinuity across Γ∗, and the above procedure for approximating Γ∗

can be applied.

3.3. Error Analysis

We consider the non-smooth bivariate case, where f is a combination of two smooth parts,
f1 on Ω1 and f2 on Ω2, separated by a smooth curve Γ∗. Throughout the paper we approximate f
using spline functions. In this section we consider approximations by general approximation spaces.
Let Π1 be the approximation space for approximating the smooth pieces constituting f , and let Π2

be the approximation space used for approximating the singularity curve. The following assumption
characterize and quantify the assumptions about the function f and its singularity curve Γ∗ in terms
the ability to approximate them using the approximation spaces Π1, Π2.

Assumption 1. We assume that Π1 and Π2 are finite dimensional spaces of dimensions N1 and N2 respectively.

Assumption 2. We assume that f1 and f2 are smoothly extendable to [0, 1]2 and dist[0,1]2( f1, Π1) ≤
ε, dist[0,1]2( f2, Π1) ≤ ε.

Assumption 3. For p ∈ Π2, let us denote by Γ0(p) the zero level curve of p within [0, 1]2. we assume there
exists p ∈ Π2 such that

dH(Γ∗, Γ0(p)) ≤ δ,
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where dH denotes the Hausdorff distance.

We look for an approximation S to f which is a combination of two components, p1 ∈ Π1 in Ω̃1

and p2 ∈ Π1 in Ω̃2, separated by Γ0(p), p ∈ Π2, such that (2M + 1)2 Fourier coefficients of f and S are
matched in the least-squares sense:

F(p1, p2, p) =
M

∑
m,n=−M

| f̂mn − Ŝmn|2 → minimum. (27)

Assumption 4. Consider the above function S constructed by a triple (p1, p2, Γ0(p)), p1, p2 ∈ Π1, p ∈ Π2.
We assume that there is a Lipschitz continuous inverse mapping from the (2M + 1)2 Fourier coefficients of S to
the triple (p1, p2, Γ0(p)):

{Ŝmn}M
m,n=−M → (p1, p2, Γ0(p)). (28)

Remark 6. To enable the above property we choose M so that

(2M + 1)2 > 2N1 + N2. (29)

The topology in the space of triples (p1, p2, Γ0(p)) is in terms of the maximum norm for the first two
components and the Hausdorff distance for the third component.

Proposition 1. Let f1, f2, Γ∗, Π1 and Π2 satisfy Assumptions 1, 2, 3 and 4. Then the triple (p∗1 , p∗2 , p∗)
minimizing (27) provides the following approximation bounds:

‖ f1 − p∗1‖∞,Ω∗1
≤ C1Mε + C2Mδ, (30)

‖ f2 − p∗2‖∞,Ω∗2
≤ C1Mε + C2Mδ, (31)

and
dH(Γ∗, Γ0(p∗)) ≤ C3Mε + C4Mδ, (32)

where Ω∗1 and Ω∗2 are separated by Γ0(p∗).

Proof. By Assumptions 2, 3 it follows that there exists an approximation S defined as above by a triple
( p̄1, p̄2, p̄), such that

‖ f1 − p̄1‖∞,[0,1]2 ≤ ε, (33)

‖ f2 − p̄2‖∞,[0,1]2 ≤ ε, (34)

and
dH(Γ∗, Γ0( p̄)) ≤ δ. (35)

Building an approximation S̄ to f as above by a triple ( p̄1, p̄2, p̄), we can estimate its Fourier
coefficients using the above bounds, and it follows that

| f̂mn − ˆ̄Smn| ≤ ε + Lδ, −M ≤ m, n ≤ M. (36)

Therefore,
min{F(p1, p2, p)} ≤ (2M + 1)2(ε + Lδ)2. (37)

Let [
p∗1 , p∗2 , p∗

]
= arg min

{ M

∑
m,n=−M

| f̂mn − Ŝmn|2
}

. (38)



Axioms 2020, 9, 88 18 of 20

The approximation S∗ to f is the combination of the two components, p∗1 in Ω∗1 and p∗2 in Ω∗2 ,
where Ω∗1 and Ω∗2 are separated by Γ0(p∗).

Using the bound in (37) it follows that

| f̂mn − Ŝ∗mn| ≤ (2M + 1)(ε + Lδ), −M ≤ m, n ≤ M. (39)

In view of (36) and (39) if follows that

| ˆ̄Smn − Ŝ∗mn| ≤ (2M + 2)(ε + Lδ), −M ≤ m, n ≤ M. (40)

Using Assumption 4, the bound (40) implies

‖p∗1 − p̄1‖∞,Ω∗1
≤ C(2M + 2)(ε + Lδ), (41)

‖p∗2 − p̄2‖∞,Ω∗2
≤ C(2M + 2)(ε + Lδ), (42)

and
dH(Γ0(p∗), Γ0( p̄)) ≤ C(2M + 2)(ε + Lδ). (43)

The approximation result now follows by considering the inequalities (41)–(43), together with the
inequalities (33)–(35), and applying the triangle inequality.

3.3.1. Validity of the Approximation Assumptions

Let us check the validity of Assumptions 1, 2, 3 and 4 for the approximation tools suggested in
Section 3.2 and used in the above numerical tests.

We assume that f1, f2 ∈ Cm[0, 1]2, and that Γ∗ is a Cm curve. To construct the approximation to
f1 and f2 we use the space Π1 of kth degree tensor-product splines with equidistant knots’ distance
d in each direction, k ≤ m. The approximation to Γ∗ is obtained using the approximation space
Π2 of `th degree tensor product splines with equidistant knots’ distance h in each direction, ` ≤ m.
dim(Π1) = (1/d + k− 1)2 ≡ N2

d , dim(Π2) = (1/h + `− 1)2 ≡ N2
h , and for both spaces we use the

B-spline basis functions. Assumptions 2 and 3 are fulfilled with ε = C1dk and δ = C2h`.
Assumption 4 is more challenging. To define the mapping

{Ŝmn}M
m,n=−M → (p1, p2, Γ0(p)), (44)

we use the same procedure Section 3.2.2 for defining the approximation to f :
We represent p and p1, p2 using the B-spline basis function as in (18), (19) and (20), respectively.

Each triple (p1, p2, p) defines a piecewise spline approximation T(x, y), and we look for the
approximation T(x,y) such that (2M + 1)2 Fourier coefficients of T match the Fourier coefficients
{Ŝmn}M

m,n=−M in the least-squares sense:

[
{a1ij}

Nd
i,j=1, {a2ij}

Nd
i,j=1, {bij}

Nh
i,j=1

]
= arg min

( M

∑
m,n=−M

|Ŝmn − T̂mn|2
)
. (45)

Out of all the possible solutions of the above problem we look for the one with minimal coefficients’
norm, i.e., minimizing

Nd

∑
i,j=1

a2
1ij +

Nd

∑
i,j=1

a2
2ij. (46)

Following the procedure of Section 3.2.2, we observe that every step in the procedure is smooth
with respect to its input. Possible non-uniqueness in solving the linear system of equations on step
(5) is resolved by using the generalized inverse. Therefore, the composition of all the steps is also a
smooth function of the input, which implies the validity of Assumption 4.
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4. The 3D Case

4.1. Numerical Example—The Smooth 3D Case

We consider the test function

f (x, y, z) = (x2 + y2 + z2 − 0.5) sin(4(x + y− z)),

assuming only its Fourier coefficients are given. We have used only 103 Fourier coefficients and
constructed an approximation using 5th-degree tensor product splines with equidistant knots’ distance
d = 0.1 in each direction. For this case, the matrix A is of size 153 × 153, and cond(A) = 1.2× 1022.
Again, we have employed the iterative refinement algorithm to obtain a high precision solution.
The test function is shown in Figure 20. The error in the resulting approximation is displayed in
Figure 21.

Figure 20. The 3D test function reshaped into 2D.

Figure 21. The approximation error graph, reshaped into 2D.

5. Concluding Remarks

The basic crucial assumption behind the presented Fourier acceleration strategy is that the
underlying function is piecewise ‘nice’. That is, piecewisely, the function can be well approximated
by a suitable finite set of basis functions. The Fourier series of the function may be given to us as a
result of the computational method dictated by the structure of the mathematical problem at hand.
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In itself, the Fourier series may not be the best tool for approximating the desired solution, and yet it
contains all the information about the requested function. Utilizing this information we can derive high
accuracy piecewise approximations to that function. The simple idea is to make the approximation
match the coefficients of the given Fourier series. The suggested method is simple to implement
for the approximation of smooth non-periodic functions in any dimension. The case of non-smooth
functions is more challenging, and a special strategy is suggested and demonstrated for the univariate
and bivariate cases. The paper contains a descriptive graphical presentation of the approximation
procedure, together with a fundamental error analysis.
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