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Abstract: A plethora of applications from mathematical programming, such as minimax, and mathematical
programming, penalization, fixed point to mention a few can be framed as equilibrium problems.
Most of the techniques for solving such problems involve iterative methods that is why, in this paper,
we introduced a new extragradient-like method to solve equilibrium problems in real Hilbert spaces
with a Lipschitz-type condition on a bifunction. The advantage of a method is a variable stepsize
formula that is updated on each iteration based on the previous iterations. The method also operates
without the previous information of the Lipschitz-type constants. The weak convergence of the
method is established by taking mild conditions on a bifunction. For application, fixed-point theorems
that involve strict pseudocontraction and results for pseudomonotone variational inequalities are
studied. We have reported various numerical results to show the numerical behaviour of the proposed
method and correlate it with existing ones.

Keywords: convex optimization; pseudomonotone bifunction; equilibrium problems; variational
inequality problems; weak convergence; fixed point problems

1. Introduction

For a nonempty, closed and convex subset K of a real Hilbert space E and f : E × E → R is
a bifunction with f (p1, p1) = 0, for each p1 ∈ K. A equilibrium problem [1,2] for f on the set K is
defined in the following way:

Find ℘∗ ∈ K such that f (℘∗, p1) ≥ 0, ∀p1 ∈ K. (1)

The problem (1) is very general, it includes many problems, such as fixed point problems,
variational inequalities problems, the optimization problems, the Nash equilibrium of non-cooperative
games, the complementarity problems, the saddle point problems, and the vector optimization problem
(for further details see [1,3,4]). The equilibrium problem is also considered as the famous Ky Fan
inequality [2]. This above-defined particular format of an equilibrium problem (1) is initiated by
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Muu and Oettli [5] in 1992 and further investigation on its theoretical properties studied by Blum and
Oettli [1]. The construction of new optimization-based methods and the modification and extension of
existing methods, as well as the examination of their convergence analysis, is an important research
direction in equilibrium problem theory. Many methods have been developed over the last few years
to numerically solve the equilibrium problems in both finite and infinite dimensional Hilbert spaces,
i.e., the extragradient algorithms [6–14] subgradient algorithms [15–21] inertial methods [22–25],
and others in [26–34].

In particular, a proximal method [35] is an efficient way to solve equilibrium problems that are
equivalent to solving minimization problems on each step. This approach is also considered as the
two-step extragradient-like method in [6], because of the early contribution of the Korpelevich [36]
extragradient method to solve the saddle point problems. More precisely, Tran et al. introduced a
method in [6], in which an iterative sequence {un+1} was generated in the following manner:

un ∈ K,
vn = arg min{ξ f (un, y) + 1

2‖un − y‖2 : y ∈ K},

un+1 = arg min{ξ f (vn, y) + 1
2‖un − y‖2 : y ∈ K},

where 0 < ξ < min
{ 1

2k1
, 1

2k2

}
and k1, k2 are Lipschitz constants. Moreover, arg min

y∈K
f (x) is the

value of x in set K for which f (x) attains it’s minimum. The iterative sequence generated from the
above-described method provides a weak convergent iterative sequence and in order to operate it,
previous knowledge of the Lipschitz-like constants are required. These Lipschitz-type constants are
normally unknown or hard to evaluate. In order to overcome this situation, Hieu et al. [12] introduced
an extension of the method in [37] to solve the problems of equilibrium in the following manner:
let [t]+ := max{t, 0} and choose u0 ∈ K, µ ∈ (0, 1) with ξ0 > 0, such that

vn = arg min{ξn f (un, y) + 1
2‖un − y‖2 : y ∈ K},

un+1 = arg min{ξn f (vn, y) + 1
2‖un − y‖2 : y ∈ K},

where the stepsize sequence {ξn} is updated in the following way:

ξn+1 = min
{

ξn,
µ(‖un − vn‖2 + ‖un+1 − vn‖2)

2[ f (un, un+1)− f (un, vn)− f (vn, un+1)]+

}
.

Recently, Vinh and Muu proposed an inertial iterative algorithm in [38] to solve a pseudomonotone
equilibrium problem. The key contribution is an inertial factor in the method that used to enhance
the convergence speed of the iterative sequence. The iterative sequence {un} was defined in the
following manner:

(i) Choose u−1, u0 ∈ K, θ ∈ [0, 1), 0 < ξ < min{ 1
2k1

, 1
2k2
} where a sequence {ρn} ⊂ [0,+∞) is

satisfies the following conditions:
+∞

∑
n=0

ρn < +∞. (2)

(ii) Choose θn satisfying 0 ≤ θn ≤ θ̄n and

θ̄n =

min
{

θ, ρn
‖un−un−1‖

}
if un 6= un−1,

θ else.
(3)
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(iii) Compute 
$n = un + θn(un − un−1),
vn = arg min{ξ f ($n, y) + 1

2‖$n − y‖2 : y ∈ K},

un+1 = arg min{ξ f (vn, y) + 1
2‖$n − y‖2 : y ∈ K}.

Recently, another efficient inertial algorithm proposed by Hieu et al. in [39] as follows:
let un−1, un, vn ∈ K, θ ∈ [0, 1), 0 < ξ ≤ 1

2k2+8k1
and the sequence {un} was defined in the

following manner: 

$n = un + θ(un − un−1),
un+1 = arg min{ξ f (vn, y) + 1

2‖$n − y‖2 : y ∈ K},

$n+1 = un+1 + θ(un+1 − un),
vn+1 = arg min{ξ f (vn, y) + 1

2‖$n+1 − y‖2 : y ∈ K}.

In this article, we concentrates on projection methods that are normally well-established and easy
to execute due to their efficient numerical computation. Motivated by the works of [12,38], we formulate
an inertial explicit subgradient extragradient method to solve the pseudomonotone equilibrium
problem. These results can be seen as the modification of the methods appeared in [6,12,38,39].
Under certain mild conditions, a weak convergence theorem is proved regarding the iterative sequence
of the algorithm. Moreover, experimental studies have documented that the designed method tends to
be more efficient when compared to the existing methods that are presented in [38,39].

The remainder of the paper has been arranged, as follows: Section 2 contains the elementary
results used in this paper. Section 3 contains our main algorithm and proves their convergence.
Sections 4 and 5 incorporate the applications of our main results. Section 6 carries out the numerical
results that prove the computational effectiveness of our suggested method.

2. Preliminaries

Assume that h : K → R be a convex function on a nonempty, closed and convex subset K of a
real Hilbert space E and subdifferential of a function h at p1 ∈ K is defined by

∂h(p1) = {p3 ∈ E : h(p2)− h(p1) ≥ 〈p3, p2 − p1〉, ∀p2 ∈ K}.

Assume that K be a nonempty, closed and convex subset of a real Hilbert space E and Normal
cone of K at p1 ∈ K is defined by

NK(p1) = {p3 ∈ E : 〈p3, p2 − p1〉 ≤ 0, ∀p2 ∈ K}.

A metric projection PK(p1) for p1 ∈ E onto a closed and convex subset K of E is defined by

PK(p1) = arg min{‖p2 − p1‖ : p2 ∈ K}.

Now, consider the following definitions of monotonicity a bifunction (see for details [1,40]).
Assume that f : E × E → R on K for γ > 0 is said to be

(1) γ-strongly monotone if

f (p1, p2) + f (p2, p1) ≤ −γ‖p1 − p2‖2, ∀p1, p2 ∈ K;

(2) monotone if
f (p1, p2) + f (p2, p1) ≤ 0, ∀p1, p2 ∈ K;
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(3) γ-strongly pseudomonotone if

f (p1, p2) ≥ 0 =⇒ f (p2, p1) ≤ −γ‖p1 − p2‖2, ∀p1, p2 ∈ K;

(4) pseudomonotone if
f (p1, p2) ≥ 0 =⇒ f (p2, p1) ≤ 0, ∀p1, p2 ∈ K.

We have the following implications from the above definitions:

(1) =⇒ (2) =⇒ (4) and (1) =⇒ (3) =⇒ (4).

In general, the converses are not true. Suppose that f : E × E → R satisfy the Lipschitz-type
condition [41] on a set K if there exist two constants k1, k2 > 0, such that

f (p1, p2) + f (p2, p3) + k1‖p1 − p2‖2 + k2‖p2 − p3‖2 ≥ f (p1, p3), ∀p1, p2, p3 ∈ K.

Lemma 1 ([42]). SupposeK be a nonempty, closed and convex subset of E and PK : E → K is metric projection
from E onto K.

(i) Let p1 ∈ K and p2 ∈ E , we have

‖p1 − PK(p2)‖2 + ‖PK(p2)− p2‖2 ≤ ‖p1 − p2‖2.

(ii) p3 = PK(p1) if and only if
〈p1 − p3, p2 − p3〉 ≤ 0, ∀p2 ∈ K.

(iii) For any p2 ∈ K and p1 ∈ E
‖p1 − PK(p1)‖ ≤ ‖p1 − p2‖.

Lemma 2 ([43,44]). Assume that h : K → R be a convex, lower semicontinuous and subdifferentiable function
on K, where K is a nonempty, convex and closed subset of a Hilbert space E . Subsequently, p1 ∈ K is minimizer
of a function h if and only if 0 ∈ ∂h(p1) + NK(p1), where ∂h(p1) and NK(p1) denotes the subdifferential of h
at p1 ∈ K and the normal cone of K at p1, respectively.

Lemma 3 ([45]). Let {un} be a sequence in E and K ⊂ E , such that the following conditions are satisfied:

(i) for every u ∈ K, the limn→∞ ‖un − u‖ exists;
(ii) each sequentially weak cluster limit point of the sequence {un} belongs to K.

Then, {un} weakly converge to some element in K.

Lemma 4 ([46]). Let {qn} and {pn} be sequences of non-negative real numbers satisfying qn+1 ≤ qn + pn,
for each n ∈ N . If ∑ pn < ∞, then limn→∞ qn exists.

Lemma 5 ([47]). For every p1, p2 ∈ E and ζ ∈ R, then

‖ζ p1 + (1− ζ)p2‖2 = ζ‖p1‖2 + (1− ζ)‖p2‖2 − ζ(1− ζ)‖p1 − p2‖2.

Suppose that bifunction f satisfies the following conditions:

(f1) f is pseudomonotone on K and f (p2, p2) = 0, for every p2 ∈ K;
(f2) f satisfies the Lipschitz-type condition on E with constants k1 > 0 and k2 > 0;
(f3) lim sup

n→∞
f (pn, v) ≤ f (p∗, v) for every v ∈ K and {pn} ⊂ K satisfying pn ⇀ p∗;

(f4) f (p1, .) needs to be convex and subdifferentiable on E for all p1 ∈ E .
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3. The Modified Extragradient Algorithm for the Problem (1) and Its Convergence Analysis

We provide a method consisting of two strongly convex minimization problems with an inertial
term and an explicit stepsize formula that are being used to enhance the convergence rate of the
iterative sequence and to make the algorithm independent of the Lipschitz constants. For the sake of
simplicity in the presentation, we will use the notation [t]+ = max{0, t} and follow the conventions
0
0 = +∞ and a

0 = +∞ (a 6= 0). The detailed method is provided below (Algorithm 1):

Algorithm 1 (Modified Extragradient Algorithm for the Problem (1))

Initialization: Choose u−1, u0 ∈ K, µ ∈ (0, 1), βn ∈ (0, 1], θ ∈ [0, 1) and {ρn} ⊂ [0,+∞) satisfying

+∞

∑
n=0

ρn < +∞. (4)

Iterative steps: Choose θn satisfying 0 ≤ θn ≤ θ̄n and

θ̄n =

{
min

{
θ, ρn
‖un−un−1‖

}
if un 6= un−1,

θ else.
(5)

Step 1: Compute

vn = arg min
y∈K

{ξn f ($n, y) +
1
2
‖$n − y‖2},

where $n = un + θn(un − un−1). If $n = vn; STOP. Else, go to next step.
Step 2: Compute un+1 = (1− βn)$n + βnzn, where

zn = arg min
y∈K

{ξn f (vn, y) +
1
2
‖$n − y‖2}.

Step 3: Update the stepsize in the following manner:

ξn+1 = min
{

ξn,
µ‖$n − vn‖2 + µ‖zn − vn‖2

2[ f ($n, zn)− f ($n, vn)− f (vn, zn)]+

}
.

Put n := n + 1 and return to Iterative steps.

Lemma 6. The sequence {ξn} is monotonically decreasing with a lower bound min
{ µ

2 max{k1,k2}
, ξ0
}

and it
converges to ξ > 0.

Proof. From the definition of sequence {ξn} implies that sequence {ξn} decreasing monotonically. It is
given that f satisfy the Lipschitz-type condition with k1 and k2. Let f ($n, zn)− f ($n, vn)− f (vn, zn) > 0,
such that

µ(‖$n − vn‖2 + ‖zn − vn‖2)

2[ f ($n, zn)− f ($n, vn)− f (vn, zn)]
≥ µ(‖$n − vn‖2 + ‖zn − vn‖2)

2[k1‖$n − vn‖2 + k2‖zn − vn‖2]

≥ µ

2 max{k1, k2}
. (6)

The above implies that {ξn} has a lower bound min
{ µ

2 max{k1,k2}
, ξ0
}

. Moreover, there exists a
fixed real number ξ > 0, such that limn→∞ ξn = ξ.
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Remark 1. Because of the summability of
+∞

∑
n=0

ρn and the expression (5) implies that

∞

∑
n=1

θn‖un − un−1‖ ≤
∞

∑
n=1

θ̄n‖un − un−1‖ ≤
∞

∑
n=1

θ‖un − un−1‖ < ∞, (7)

that implies
lim

n→∞
θ‖un − un−1‖ = 0. (8)

Lemma 7. Suppose that f : E × E → R be a bifunction satisfies the conditions (f1)–(f4). For each
℘∗ ∈ EP( f ,K) 6= ∅, we have

‖zn − ℘∗‖2 ≤ ‖$n − ℘∗‖2 −
(

1− µξn

ξn+1

)
‖$n − vn‖2 −

(
1− µξn

ξn+1

)
‖zn − vn‖2.

Proof. From the value of zn, we have

0 ∈ ∂2

{
ξn f (vn, y) +

1
2
‖$n − y‖2

}
(zn) + NK(zn).

For some ω ∈ ∂ f (vn, zn), there exists ω ∈ NK(zn), such that

ξnω + zn − $n + ω = 0.

The above expression implies that

〈$n − zn, y− zn〉 = ξn〈ω, y− zn〉+ 〈ω, y− zn〉, ∀y ∈ K.

For given ω ∈ NK(zn), imply that 〈ω, y− zn〉 ≤ 0, ∀ y ∈ K. It provides that

〈$n − zn, y− zn〉 ≤ ξn〈ω, y− zn〉, ∀y ∈ K. (9)

From ω ∈ ∂ f (vn, zn), we have

f (vn, y)− f (vn, zn) ≥ 〈ω, y− zn〉, ∀y ∈ E . (10)

Combining expressions (9) and (10) we obtain

ξn f (vn, y)− ξn f (vn, zn) ≥ 〈$n − zn, y− zn〉, ∀y ∈ K. (11)

By substituting y = ℘∗ in (11), gives that

ξn f (vn,℘∗)− ξn f (vn, zn) ≥ 〈$n − zn,℘∗ − zn〉. (12)

Because f (℘∗, vn) ≥ 0, then f (vn,℘∗) ≤ 0, provides that

〈$n − zn, zn − ℘∗〉 ≥ ξn f (vn, zn). (13)

From the formula of ξn+1, we obtain

f ($n, zn)− f ($n, vn)− f (vn, zn) ≤
µ‖$n − vn‖2 + µ‖zn − vn‖2

2ξn+1
(14)
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From the expressions (13) and (14), we have

〈$n − zn, zn − ℘∗〉 ≥ ξn{ f ($n, zn)− f ($n, vn)}

− µξn

2ξn+1
‖$n − vn‖2 − µξn

2ξn+1
‖zn − vn‖2.

(15)

Similar to expression (11), the value of vn gives that

ξn f ($n, y)− ξn f ($n, vn) ≥ 〈$n − vn, y− vn〉, ∀y ∈ K. (16)

By substituting y = zn in the above expression, we have

ξn
{

f ($n, zn)− f ($n, vn)
}
≥ 〈$n − vn, zn − vn〉. (17)

Combining the expressions (15) and (17), we obtain

〈$n − zn, zn − ℘∗〉 ≥ 〈$n − vn, zn − vn〉

− µξn

2ξn+1
‖$n − vn‖2 − µξn

2ξn+1
‖zn − vn‖2.

(18)

We have the given formulas:

−2〈$n − zn, zn − ℘∗〉 = −‖$n − ℘∗‖2 + ‖zn − $n‖2 + ‖zn − ℘∗‖2.

2〈vn − $n, vn − zn〉 = ‖$n − vn‖2 + ‖zn − vn‖2 − ‖$n − zn‖2.

The above expressions with (18), we have

‖zn − ℘∗‖2 ≤ ‖$n − ℘∗‖2 −
(

1− µξn

ξn+1

)
‖$n − vn‖2 −

(
1− µξn

ξn+1

)
‖zn − vn‖2.

Theorem 1. Assume that f : E × E → R be a bifunction satisfies the conditions (f1)–(f4) and ℘∗ belongs to
solution set EP( f ,K). Subsequently, the sequences {$n}, {vn}, {zn} and {un} generated through Algorithm 1
weakly converges to ℘∗. In addition, limn→∞ PEP( f , K)(un) = ℘∗.

Proof. By value of un+1 through Lemma 5, we obtain

‖un+1 − ℘∗‖2 = ‖(1− βn)$n + βnzn − ℘∗‖2

= ‖(1− βn)($n − ℘∗) + βn(zn − ℘∗)‖2

= (1− βn)‖$n − ℘∗‖2 + βn‖zn − ℘∗‖2 − βn(1− βn)‖$n − zn‖2

≤ (1− βn)‖$n − ℘∗‖2 + βn‖zn − ℘∗‖2. (19)

By Lemma 7 and expression (19), we obtain

‖un+1 − ℘∗‖2 ≤ ‖$n − ℘∗‖2

− βn

(
1− µξn

ξn+1

)
‖$n − vn‖2 − βn

(
1− µξn

ξn+1

)
‖zn − vn‖2. (20)

Because ξn → ξ, then there exists a fixed number ε ∈ (0, 1− µ), such that

lim
n→∞

(
1− µξn

ξn+1

)
= 1− µ > ε > 0.
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Subsequently, there exist a fixed real number N1 ∈ N such that(
1− µξn

ξn+1

)
> ε > 0, ∀n ≥ N1. (21)

Combining the expressions (20) and (21), we obtain

‖un+1 − ℘∗‖2 ≤ ‖$n − ℘∗‖2, ∀n ≥ N1. (22)

By definition of the $n, we have

‖$n − ℘∗‖ = ‖un + θn(un − un−1)− ℘∗‖ ≤ ‖un − ℘∗‖+ θn‖un − un−1‖. (23)

From the definition of $n in Algorithm 1, we obtain

‖$n − ℘∗‖2 = ‖un + θn(un − un−1)− ℘∗‖2

= ‖(1 + θn)(un − ℘∗)− θn(un−1 − ℘∗)‖2

= (1 + θn)‖un − ℘∗‖2 − θn‖un−1 − ℘∗‖2 + θn(1 + θn)‖un − un−1‖2 (24)

≤ (1 + θn)‖un − ℘∗‖2 − θn‖un−1 − ℘∗‖2 + 2θ‖un − un−1‖2. (25)

The expression (22) can also be written as

‖un+1 − ℘∗‖ ≤ ‖un − ℘∗‖+ θ‖un − un−1‖, ∀n ≥ N1. (26)

By using Lemma 4 with expressions (7) and (26), we have

lim
n→∞

‖un − ℘∗‖ = l, for some finite l ≥ 0. (27)

The equality (8) implies that

lim
n→∞

‖un − un−1‖ = 0. (28)

By letting n→ ∞ in (24) implies that

lim
n→∞

‖$n − ℘∗‖ = l. (29)

From the expression (20) and (25), we have

‖un+1 − ℘∗‖2

≤ (1 + θn)‖un − ℘∗‖2 − θn‖un−1 − ℘∗‖2 + 2θ‖un − un−1‖2

− βn

(
1− µξn

ξn+1

)
‖$n − vn‖2 − βn

(
1− µξn

ξn+1

)
‖zn − vn‖2, (30)

which further implies that (for n ≥ N1)

εβ‖$n − vn‖2 + εβ‖vn − zn‖2

≤ ‖un − ℘∗‖2 − ‖un+1 − ℘∗‖2 + θn
(
‖un − ℘∗‖2 − ‖un−1 − ℘∗‖2)+ 2θ‖un − un−1‖2. (31)

By letting n→ ∞ in (31), we obtain

lim
n→∞

‖$n − vn‖ = lim
n→∞

‖vn − zn‖ = 0. (32)
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By using the Cauchy inequality and expression (32), we obtain

lim
n→∞

‖$n − zn‖ ≤ lim
n→∞

‖$n − vn‖+ lim
n→∞

‖zn − vn‖ = 0. (33)

The expressions (29) and (32) imply that

lim
n→∞

‖vn − ℘∗‖ = lim
n→∞

‖zn − ℘∗‖ = l. (34)

It follows from the expressions (27), (29) and (34) that the sequences {$n}, {un}, {vn} and {zn}
are bounded. Now, we need to use Lemma 3, for this it is compulsory to show that any weak sequential
limit points of {un} lies in the set EP( f ,K). Consider z to be a weak limit point of {un} i.e., there is a
{unk} of {un} that is weakly converges to z. Because ‖un − vn‖ → 0, then {vnk} also weakly converge
to z and so z ∈ K. Now, it is renaming to show that z ∈ EP( f ,K). From relation (11), due to ξn+1 and
(17), we have

ξnk f (vnk , y) ≥ ξnk f (vnk , znk ) + 〈$nk − znk , y− znk 〉

≥ ξnk f ($nk , znk )− ξnk f ($nk , vnk )−
µξnk

2ξnk+1
‖$nk − vnk‖

2

−
µξnk

2ξnk+1
‖vnk − znk‖

2 + 〈$nk − znk , y− znk 〉

≥ 〈$nk − vnk , znk − vnk 〉 −
µξnk

2ξnk+1
‖$nk − vnk‖

2

−
µξnk

2ξnk+1
‖vnk − znk‖

2 + 〈$nk − znk , y− znk 〉, (35)

where y ∈ K. It follows from (28), (32), (33) and the boundedness of {un} right hand side tend to
zero. Due to ξnk > 0, condition (f3) and vnk ⇀ z, implies

0 ≤ lim sup
k→∞

f (vnk , y) ≤ f (z, y), ∀y ∈ K. (36)

Because z ∈ K imply that f (z, y) ≥ 0, ∀y ∈ K. It is prove that z ∈ EP( f ,K). By Lemma 3,
provides that {$n}, {vn}, {zn} and {un} weakly converges to ℘∗ as n→ ∞.

Finally, to prove that limn→∞ PEP( f , K)(un) = ℘∗. Let qn := PEP( f , K)(un), ∀n ∈ N . For any
℘∗ ∈ EP( f ,K), we have

‖qn‖ ≤ ‖qn − un‖+ ‖un‖ ≤ ‖℘∗ − un‖+ ‖un‖. (37)

Clearly, the above implies that sequence {qn} is bounded. Next, we need to show that {qn} is a
Cauchy sequence. By using Lemma 1(iii) and (23), we have

‖un+1 − qn+1‖ ≤ ‖un+1 − qn‖ ≤ ‖un − qn‖+ θ‖un − un−1‖, ∀n ≥ N1. (38)

Thus, Lemma 4 provides the existence of limn→∞ ‖un − qn‖. Next, take (23) ∀ m > n ≥ N1,
we have

‖qn − um‖ ≤ ‖qn − um−1‖+ θ‖un − un−1‖

≤ · · · ≤ ‖qn − un‖+ θ
m−1

∑
k=n
‖un − un−1‖.

(39)
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Suppose that qm, qn ∈ EP( f ,K) for m > n ≥ N1, through Lemma 1(i) and (39), we have

‖qn − qm‖2

≤ ‖qn − um‖2 − ‖qm − um‖2

≤ ‖qn − un‖2 +
(
θ

m−1

∑
k=n
‖un − un−1‖

)2
+ 2θ‖qn − un‖

m−1

∑
k=n
‖un − un−1‖ − ‖qm − um‖2.

(40)

The existence of limn→∞ ‖un − qn‖ and the summability of the series ∑n ‖un − un−1‖ < +∞,
imply limn→∞ ‖qn − qm‖ = 0, ∀ m > n. As a result, {qn} is a Cauchy sequence and due the closeness
of the set EP( f ,K) the sequence {qn} strongly converges to q∗ ∈ EP( f ,K). Next, remaining to show
that q∗ = ℘∗. From Lemma 1(ii) and ℘∗, q∗ ∈ EP( f ,K), we have

〈un − qn,℘∗ − qn〉 ≤ 0. (41)

Because of qn → q∗ and un ⇀ ℘∗, we obtain

〈℘∗ − q∗,℘∗ − q∗〉 ≤ 0,

implies that ℘∗ = q∗ = limn→∞ PEP( f ,K)(un).

4. Applications to Solve Fixed Point Problems

Now, consider the applications of our results that are discussed in Section 3 to solve fixed-point
problems involving κ-strict pseudo-contraction. Let T : K → K be a mapping and the fixed point
problem is formulated in the following manner:

Find ℘∗ ∈ K such as T(℘∗) = ℘∗.

Let a mapping T : K → K is said to be

(i) sequentially weakly continuous on K if

T(pn) ⇀ T(p) for every sequence in K satisfying pn ⇀ p (weakly converges);

(ii) κ-strict pseudo-contraction [48] on K if

‖Tp1 − Tp2‖2 ≤ ‖p1 − p2‖2 + κ‖(p1 − Tp1)− (p2 − Tp2)‖2, ∀p1, p2 ∈ K; (42)

that is equivalent to

〈
Tp1 − Tp2, p1 − p2

〉
≤ ‖p1 − p2‖2 − 1− κ

2
‖(p1 − Tp1)− (p2 − Tp2)‖2, ∀p1, p2 ∈ K. (43)
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Note: if we define f (p1, p2) = 〈p1 − Tp1, p2 − p1〉, ∀p1, p2 ∈ K. Then, the problem (1) convert
into the fixed point problem with 2k1 = 2k2 = 3−2κ

1−κ . The value of vn in Algorithm 1 convert
into followings:

vn = arg min
y∈K

{ξn f ($n, y) +
1
2
‖$n − y‖2}

= arg min
y∈K

{ξn〈$n − T($n), y− $n〉+
1
2
‖$n − y‖2}

= arg min
y∈K

{ξn〈$n − T($n), y− $n〉+
1
2
‖$n − y‖2 +

ξ2
n

2
‖$n − T($n)‖2 − ξ2

n
2
‖$n − T($n)‖2}

= arg min
y∈K

{1
2
‖y− $n + ξn($n − T($n))‖2}

= PK
[
$n − ξn($n − T($n))

]
= PK

[
(1− ξn)$n + ξnT($n)

]
. (44)

In the similar way to the expression (44), we obtain

zn = PK
[
$n − ξn(vn − T(vn))

]
. (45)

As a consequence of the results in Section 3, we have the following fixed point theorem:

Corollary 1. Assume that T : K → K to be a weakly continuous and κ-strict pseudocontraction with
Fix(T) 6= ∅. The sequences $n, vn, zn and un be generated in the following way:

(i) Choose u−1, u0 ∈ K, µ ∈ (0, 1), βn ∈ (0, 1], θ ∈ [0, 1) and {ρn} ⊂ [0,+∞) satisfies the
following condition:

+∞

∑
n=0

ρn < +∞. (46)

(ii) Choose θn satisfies 0 ≤ θn ≤ θ̄n, such that

θ̄n =

min
{

θ, ρn
‖un−un−1‖

}
if un 6= un−1,

θ else.
(47)

(iii) Compute un+1 = (1− βn)$n + βnzn, where
$n = un + θn(un − un−1),

vn = PK
[
$n − ξn($n − T($n))

]
,

zn = PK
[
$n − ξn(vn − T(vn))

]
.

(48)

(iv) Revised the stepsize ξn+1 in the following way:

ξn+1 = min

{
ξn,

µ‖$n − vn‖2 + µ‖zn − vn‖2

2
[〈
($n − vn)− (T($n)− T(vn)), zn − vn

〉]
+

}

Subsequently, {$n}, {vn}, {zn} and {un} be the sequences converges weakly to ℘∗ ∈ Fix(T).
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5. Application to Solve Variational Inequality Problems

Now, consider the applications of our results that are discussed in Section 3 in order to solve
variational inequality problems involving pseudomonotone and Lipschitz-type continuous operator.
Let a operator L : K → K and the variational inequality problem is formulated as follows:

Find ℘∗ ∈ K such that
〈

L(℘∗), y− ℘∗
〉
≥ 0, ∀y ∈ K.

A mapping L : E → E is said to be

(i) L-Lipschitz continuous on K if

‖L(p1)− L(p2)‖ ≤ L‖p1 − p2‖, ∀p1, p2 ∈ K;

(ii) monotone on K if
〈L(p1)− L(p2), p1 − p2〉 ≥ 0, ∀p1, p2 ∈ K;

(iii) pseudomonotone on K if〈
L(p1), p2 − p1

〉
≥ 0 =⇒

〈
L(p2), p1 − p2

〉
≤ 0, ∀p1, p2 ∈ K.

Note: let f (p1, p2) :=
〈

L(p1), p2− p1
〉
, ∀p1, p2 ∈ K. Thus, problem (1) translates into the problem

(VIP) with L = 2k1 = 2k2. From the value of vn, we have

vn = arg min
y∈K

{
ξn f ($n, y) +

1
2
‖$n − y‖2

}
= arg min

y∈K

{
ξn〈L($n), y− $n〉+

1
2
‖$n − y‖2 +

ξ2
n

2
‖L($n)‖2 − ξ2

n
2
‖L($n)‖2

}
= arg min

y∈K

{1
2
‖y− ($n − ξnL($n))‖2

}
= PK[$n − ξnL($n)]. (49)

In similar way to the expression (49), we obtain

zn = PK[$n − ξnL(vn)].

Suppose that a mapping L satisfies the following conditions:

(L1) L is monotone on K with VI(L,K) 6= ∅;
(L2) L is L-Lipschitz continuous on K with L > 0;
(L3) L is pseudomonotone on K with VI(L,K) 6= ∅; and,
(L4) lim sup

n→∞
〈L(pn), p− pn〉 ≤ 〈L(p), y− p〉, ∀y ∈ K and {pn} ⊂ K satisfying pn ⇀ p.

Next, let L to be monotone and (L4) can be removed. The condition (L4) is used to defined
f (u, v) = 〈L(u), v − u〉 and satisfy the conditions (L4). The condition (f3) is required to show
z ∈ EP( f ,K) see (36). The condition (L4) is required to show z ∈ VI(L,K). Further, to show that
z ∈ VI(L,K). By letting the monotonicity of operator L, we have

〈L(y), y− vn〉 ≥ 〈L(vn), y− vn〉, ∀y ∈ K. (50)

By letting f (u, v) = 〈L(u), v− u〉 with expression (35), implies that

lim sup
k→∞

〈L(vnk ), y− vnk 〉 ≥ 0, ∀y ∈ K. (51)
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Combining (50) with (51), we deduce that

lim sup
k→∞

〈L(y), y− vnk 〉 ≥ 0, ∀y ∈ K. (52)

Therefore, vnk ⇀ z ∈ K, provides 〈L(y), y− z〉 ≥ 0, ∀ y ∈ K. Let vt = (1− t)z + ty, ∀ t ∈ [0, 1].
Since vt ∈ K for t ∈ (0, 1), we have

0 ≤ 〈L(vt), vt − z〉 = t〈L(vt), y− z〉. (53)

That is 〈L(vt), y− z〉 ≥ 0 every t ∈ (0, 1). Due to vt → z, while t→ 0, we have 〈L(z), y− z〉 ≥ 0,
for all y ∈ K, consequently z ∈ VI(L,K).

Corollary 2. Let L : K → E be a mapping and satisfying the conditions (L1)–(L2). Assume that the sequences
{$n}, {vn}, {zn} and {un} generated in the following manner:

(i) Choose u−1, u0 ∈ K, µ ∈ (0, 1), βn ∈ (0, 1], θ ∈ [0, 1) and {ρn} ⊂ [0,+∞), such that

+∞

∑
n=0

ρn < +∞. (54)

(ii) Let θn satisfies 0 ≤ θn ≤ θ̄n and

θ̄n =

min
{

θ, ρn
‖un−un−1‖

}
if un 6= un−1,

θ otherwise.
(55)

(iii) Compute un+1 = (1− βn)$n + βnzn, where
$n = un + θn(un − un−1),

vn = PK[$n − ξnL($n)],

zn = PK[$n − ξnL(vn)].

(56)

(iv) Stepsize ξn+1 is revised in the following way:

ξn+1 = min

{
ξn,

µ‖$n − vn‖2 + µ‖zn − vn‖2

2
[〈

L($n)− L(vn), zn − vn
〉]

+

}

Subsequently, the sequences {$n}, {vn}, {zn} and {zn} converge weakly to ℘∗ ∈ VI(L,K).

Corollary 3. Let L : K → E be a mapping and satisfying the conditions (L2)–(L4). Assume that the sequences
{$n}, {vn}, {zn} and {un} generated in the following manner:

(i) Choose u−1, u0 ∈ K, µ ∈ (0, 1), βn ∈ (0, 1], θ ∈ [0, 1) and {ρn} ⊂ [0,+∞), such that

+∞

∑
n=0

ρn < +∞. (57)

(ii) Choose θn satisfying 0 ≤ θn ≤ θ̄n, such that

θ̄n =

min
{

θ, ρn
‖un−un−1‖

}
if un 6= un−1,

θ else.
(58)
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(iii) Compute un+1 = (1− βn)$n + βnzn, where
$n = un + θn(un − un−1),

vn = PK[$n − ξnL($n)],

zn = PK[$n − ξnL(vn)].

(59)

(iv) The stepsize ξn+1 is updated in the following way:

ξn+1 = min

{
ξn,

µ‖$n − vn‖2 + µ‖zn − vn‖2

2
[〈

L($n)− L(vn), zn − vn
〉]

+

}

Subsequently, the sequences {$n}, {vn}, {zn} and {zn} converge weakly to ℘∗ ∈ VI(L,K).

6. Numerical Experiments

The computational results present this section to prove the effectiveness of Algorithm 1 when
compared to Algorithm 3.1 in [39] and Algorithm 1 in [38].

(i) For Algorithm 3.1 (Alg3.1) in [39]:

ξ =
1

10 max {k1, k2}
, θ =

1
2

, Error term (Dn) = max{‖un+1 − vn‖2, ‖un+1 − $n‖2}.

(ii) For Algorithm 1 (Alg1) in [38]:

ξ =
1

4 max {k1, k2}
, θ =

1
2

, ρn =
1
n2 , Error term (Dn) = ‖$n − vn‖2.

(iii) For Algorithm 1 (mAlg1):

ξ =
1
2

, θ =
1
2

, µ =
1
3

, ρn =
1
n2 , βn =

8
10

, Error term (Dn) = ‖$n − vn‖2.

Example 1. Let take the Nash–Cournot Equilibrium Model that found in the paper [6]. A bifunction f consider
into the following form:

f (p1, p2) = 〈Pp1 + Qp2 + q, p2 − p1〉,

where q ∈ Rm with matrices P, Q of order m and Lipschitz constants are k1 = k2 = 1
2‖P−Q‖ (see for more

details [6]). In our case, P, Q are taken at random (choose diagonal matrices A1 and A2 randomly entries from
[0, 2] and [−2, 0], respectively. Two random orthogonal matrices B1 and B2 provide positive semidefinite matrix
M1 = B1 A1BT

1 and negative semidefinite matrix M2 = B2 A2BT
2 . Finally, set Q = M1 + MT

1 , S = M2 + MT
2

and P = Q− S.) and elements of q are taken arbitrary form [−1, 1]. A set K ⊂ Rm is taken as

K := {u ∈ Rm : −10 ≤ ui ≤ 10}.

Tables 1 and 2 and Figures 1–8 presented the numerical results by taking u−1 = u0 = v0 = (1, · · · , 1)
and Dn ≤ 10−9.
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Figure 1. Example 1: numerical behaviour of Algorithm 1 by letting different options for ξ0, while m = 10.
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Figure 2. Example 1: numerical behaviour of Algorithm 1 by letting different options for ξ0, while m = 20.
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Figure 3. Example 1: numerical behaviour of Algorithm 1 by letting different options for ξ0 while
m = 50.
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Figure 4. Example 1: numerical behaviour of Algorithm 1 by letting different options for ξ0 while
m = 100.
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Table 1. Example 1: Algorithm 1 numerical behaviour by letting different options for ξ0 and m.

m = 10 m = 20 m = 50 m = 100

ξ0 iter. time iter. time iter. time iter. time

1.00 20 0.1701 25 0.2153 29 0.2726 40 0.5570
0.80 23 0.1945 27 0.2326 31 0.2788 47 0.5469
0.60 25 0.1995 30 0.2634 35 0.3285 52 0.6228
0.40 29 0.1467 33 0.2979 39 0.3549 55 0.6542
0.20 30 0.2632 35 0.2868 42 0.3849 57 0.6662
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Figure 5. Example 1: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 60.
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Figure 6. Example 1: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 120.
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Figure 7. Example 1: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 200.
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Figure 8. Example 1: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 300.

Table 2. Example 1: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38].

Number of Iterations Execution Time in Seconds

m Alg3.1 Alg1 mAlg1 Alg3.1 Alg1 mAlg1

60 50 38 28 0.4362 0.3352 0.2705
120 57 49 33 0.6888 0.6000 0.4047
200 66 57 39 1.4708 1.0881 0.6794
300 62 55 40 1.6213 1.4251 1.0303

Example 2. Suppose that f : K×K → R be a bifunction defined in the following way

f (p, q) =
5

∑
i=2

(qi − pi)‖p‖, ∀p, q ∈ R5,

where K =
{
(p1, · · · , p5) : p1 ≥ −1, pi ≥ 1, i = 2, · · · , 5

}
. A bifunction f is Lipschitz-type continuous with

constants k1 = k2 = 2 and satisfy the conditions (f1)–(f4). In order to evaluate the best possible value of the
control parameters, a numerical test is performed taking the variation of the inertial factor θ. The numerical
comparison results are shown in the Table 3 by using u−1 = u0 = v0 = (2, 3, 2, 5, 5) and Dn ≤ 10−6.
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Table 3. Example 2: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38].

Number of Iterations Execution Time in Seconds

θ Alg3.1 Alg1 mAlg1 Alg3.1 Alg1 mAlg1

0.90 67 56 47 2.8674 2.5324 1.6734
0.70 63 53 45 2.7813 2.6423 1.5026
0.50 57 47 41 2.0912 2.4212 1.4991
0.30 61 48 44 2.4115 2.3567 1.5092
0.10 69 60 47 2.9229 2.2881 1.5098

Example 3. Let E = L2([0, 1]) be a Hilbert space with an inner product 〈p, q〉 =
∫ 1

0 p(r)q(r)dr, and the

induced norm ‖p‖ =
√∫ 1

0 p2(r)dr, ∀p, q ∈ E . The set K := {p ∈ L2([0, 1]) :
∫ 1

0 rp(r)dr = 2}. Suppose that
f : E × E → R is defined by

f (p, q) = 〈L(p), q− p〉,

where L(p(r)) =
∫ r

0 p(s)ds, for every p ∈ L2([0, 1]) and r ∈ [0, 1]. The projection on set K is computed in the
following way:

PK(p)(r) := p(r)−
∫ 1

0 rp(r)dr− 2∫ 1
0 r2dr

r, r ∈ [0, 1].

Table 4 reports the numerical results by using stopping criterion Dn ≤ 10−6 and letting u−1 = u0 = v0.

Table 4. Example 3: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38].

Number of Iterations Execution time in Seconds

u0 Alg3.1 Alg1 mAlg1 Alg3.1 Alg1 mAlg1

3t 33 28 19 4.7654 3.9782 2.9342
3t2 38 31 20 5.2598 4.1458 3.0987

3sin(t) 41 33 22 5.9876 5.3976 4.4298
3cos(t) 47 39 22 6.9921 5.4765 4.4611

3 exp(t)2 58 43 31 8.4691 5.8329 5.0321

Example 4. Assume that a bifunction f is defined by

f (p, q) = 〈L(p), q− p〉 and L(p) = G(p) + H(p),

where
G(p) =

(
g1(p), g2(p), · · · , gm(p)

)
, H(p) = Ep + c, c = (−1,−1, · · · ,−1),

and
gi(p) = p2

i−1 + p2
i + pi−1 pi + pi pi+1, i = 1, 2, . . . , m, p0 = pm+1 = 0.

Let the matrix E of order m are consider in the following way:

ei,j =


4 j = i

1 i− j = 1

−2 i− j = −1

0 otherwise,
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where K =
{
(u1, · · · , um) ∈ Rm : ui ≥ 1, i = 2, · · · , m

}
. Figures 9–13 and Table 5 report the numerical

results by taking u−1 = u0 = v0 = (1, · · · , 1) and Dn ≤ 10−6.
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Figure 9. Example 4: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 20.
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Figure 10. Example 4: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 50.

0 20 40 60 80 100 120

Number of iterations

10-8

10-6

10-4

10-2

100

102

0 0.5 1 1.5 2 2.5 3

Elapsed time [sec]

10-8

10-6

10-4

10-2

100

102

Figure 11. Example 4: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 100.
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Figure 12. Example 4: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 200.
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Figure 13. Example 4: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38] while m = 300.

Table 5. Example 4: Algorithm 1 (mAlg1) numerical comparison with Algorithm 3.1 (Alg3.1) in [39]
and Algorithm 1 (Alg1) in [38].

Number of Iterations Execution Time in Seconds

m Alg3.1 Alg1 mAlg1 Alg3.1 Alg1 mAlg1

20 90 64 50 1.0089 0.6923 0.5541
50 98 70 52 1.6089 1.9092 0.8464
100 104 74 58 2.9231 2.1456 1.6970
200 109 79 61 22.5299 17.6267 13.6542
300 112 81 63 52.6776 39.0018 36.6305

Remark 2.

(i) It is also significant that the value of ξ0 is crucial and performs best when it is nearer to 1.
(ii) It is observed that the selection of the value ϑ is often significant and roughly the value ϑ ∈ (3, 6)

performs better than most other values.

7. Conclusions

In this paper, we consider the convergence result for pseudomonotone equilibrium problems that
involve Lipschitz-type continuous bifunction but the Lipschitz-type constants are unknown. We modify
the extragradient methods with an inertial term and new step size formula. Weak convergence theorem
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is proved for sequences generated by the algorithm. Several numerical experiments confirm the
effectiveness of the proposed algorithms.
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