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1. Introduction

Fractional differential equations are found to be of great utility in improving the mathematical
modeling of many engineering and scientific disciplines such as physics [1] bioengineering [2],
viscoelasticy [3], ecology [4], disease models [5-7], etc. For applications of differential equations
containing more than one fractional order differential operators, we refer the reader to Bagley-Torvik [8],
Basset equation [9] to name a few.

Fractional order boundary value problems equipped with a variety of classical and non-classical
(nonlocal) boundary conditions have recently been investigated by many researchers and the literature
on the topic is now much enriched, for instance, see [10-21] and the references cited therein.
There has been a special focus on boundary value problems involving multi-term fractional differential
equations [22-24].

The objective of the present work is to develop the existence theory for multi-term fractional
differential equations equipped with nonlocal multi-point boundary conditions. Precisely, we investigate
the following boundary value problem:

(g2 °D7*% 4 g1 °D7H 4 g0 D) x(t) = f(Hx()), 0<o <1, 0<t<]1, 1)

x(0) = h(x), (@) = Y- jix(n), x(1) =2 [ x(5)as, @
i=1

where ‘DY denote the Caputo fractional derivative of order 0, 0 < ¢ < 1, f : [0,1] xR — R,
h: C([0,1],R) — R are given continuous functions, 0 < § < { <y < < ... <y <1, A € R,
qo,q1,and qp are real constants with g, # 0. One can characterize the first and second conditions
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in (2) as initial-nonlocal and nonlocl multi-point ones, while the last condition in (2) can be understood
in the sense that the value of the unknown function x at the right-end point of the domain (x(1)) is
proportional to the average value of x on the sub-domain (0, ). Existence and uniqueness results are
established by using the classical Banach and Krasnoselskii fixed point theorems and Leray-Schauder
nonlinear alternative. Here, we emphasize that the results presented in this paper rely on the
standard tools of the fixed point theory. However, their exposition to the given nonlocal problem for a
multi-term (sequential) fractional differential equation produces new results which contributes to the
related literature.

The rest of the paper is organized as follows: In Section 2 we recall some preliminary concepts of
fractional calculus and prove a basic lemma, helping us to transform the boundary value problem (1)
and (2) into a fixed point problem. The main existence and uniqueness results for the case g3 — 4q0q2 >
0 are presented in details in Section 3. In Sections 4 and 5 we indicate the results for the cases
7> —4q90q2 = 0 and g3 — 4q0q2 < O respectively. Examples illustrating the obtained results are
also included.

2. Basic Results

Before presenting some auxiliary results, let us recall some preliminary concepts of fractional
calculus [25,26].

Definition 1. Let y,y"™) € Ly[a,b]. Then the Riemann—Liouville fractional derivative D%y of order a €
(m —1,m],m € N, existing almost everywhere on [a, b], is defined as
an 1 d" [
D _ % m-a - - “ / o —1- )
2y (0 = gala v =g am | (9 y(s)ds

a

The Caputo fractional derivative D5y of order « € (m —1,m|, m € N is defined as

—a —a)n1
Dy (t) = D |y (t) =y (a) —y' (a) (tu Ly (“)(t(m_)l)! :

Remark 1. Ify € AC™[a,b], then the Caputo fractional derivative D5y of order x € (m —1,m|,m € N,
existing almost everywhere on [a, b], is defined as

t.
“Diy() = Iy () = g [ (=" @)

a

In the sequel, the Riemann-Liouville fractional integral I and the Caputo fractional derivative
€D with a = 0 are respectively denoted by I* and “D*.

Lemma 1. [25] With the given notations, the following equality holds:
I*(°D*y(t)) = y(t) —co —c1t — ... —cp 1t L, t>0, n—1<a <n, 3)
where c; (i =1,...,n — 1) are arbitrary constants.

The following lemmas associated with the linear variant of problem (1) and (2) plays an important
role in the sequel.
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Lemma 2. For any ¢ € C([0,1],R) and q3 — 4qoq2 > 0, the solution of linear multi-term fractional
differential equation

(g2 °D 2 4 q1 D7 4 g0 D) x(t) = @(t), 0< o <1, 0<t<1, @)

supplemented with the boundary conditions (2) is given by

x() = 2(my —my) {/ / S;(L:T); 1¢(M)du ds
+o1(t / / S;Z;))U 14)(u)du ds
- lei/m/ A(m)s_r{fj;lgo(u)du ds}
+p2(t / / S;(L:T))a 1<p(u)alu ds )
(- ) B st }

+h(x) [ + pi (¢ (ng—ZJHrZJe"’”’)

mpe™2 — \eM20 — /\)}
ny ’

+02(t) (
where

A(x) = M=) —emE=s) 4= 1, ¢ and 1,
2q, ’

pilt) = i) “’3Q2(), pzu):wlez(t)fwzel(t)

m =

7

M1 M1
ot) = m1(1—e’”2211—mv;12(1_em1t),
0t) = gqa(mg—my)(e" —e™mt),
1 = wiwg—wrwz # 0, (6)
w = 1 [m (1_&'._6"11@_}_&'. ml'?i)
! mymy L2 z‘:l]l 1;1]16

—m1< Z] —eng—i-Z]emzmﬂ

i=

n
w = 0 (mZ . ml)(enﬂ@' — oMl _ Zjiemlﬂi + Ejiemzﬂi),
i=1 i=1
— 1 _ oM _ mé _
w3 = — [mz (1 e AS + A/my(e 1))

—my (1= e = 26+ A /ma(e" —1)) ],
wi = ga(my—my)((" +A/m (1 ™))

—(e™ +A/my(1 — emz‘s))).
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Proof. Applying the operator I” on (4) and using (3), we get

t —s o—1
(Q2D2+£]1D+IJO)X(t) = /O %q)(s)dS-FCL (7)

where c; is an arbitrary constant. By the method of variation of parameters, the solution of (7) can be
written as

myt ot

+ cpe™" 4 cze™

QZmﬂﬂz(mz - ml)

1 ! my (t—s s (S — Ll)‘f*l
—qz(mz_ml)/oe ( ></0 T <P(u)du>ds

1 t o (t—s s (S—u)a_l
+W/o e )</o r(cr)fP(u)d”)ds’ ®)

where m7 and m; are given by (6). Using x(0) = h(x) in (8), we get

x(t) = [mz(l — Mty —my (1 — et)

_|_ CZ (emlt _ eI’Hzt> + h(x)emZt
qamymy(my —my)

1 ! iy (t—s my (t—s S(S—u)”_l
+qz(mz—m1)[/o (e( J—emt )></O r((f)ﬁo(u)du)d%, )

which together with the conditions x(¢) = Y1 4 jix(y;) and x(1) = A fo s)ds yields the following
system of equations in the unknown constants c; and c;:

x(t) = [mz(l —e™b) — (1 — et)

ciwy +cowy =V, (10)
ciws +cws = V. (11)

where

_ o—1
Vi = / / S I—-(L:T)) (P(u)du ds
)

+Z]z/ / (1:) (S 1"(1;{7)0 1(p( Ydu ds + h(x (Z]gmszemﬁ),
Vo = —/ / A(l)_(bzr);l(p(u)du ds+h(x)</\em25 _ﬂ/:z_ mZemz)
ml (6—s) _ eM2(6—s) _ s — 1)1
+/\/ / 1) - 1)}( r(a)) () ds.

Solving the system (10)—(11) together with the notations (6), we find that

Viwg — Vowy Vowy — Viws
1 = 7/‘7’ = .”’7
1 1

Substituting the value of ¢; and ¢, in (9), we obtain the solution (5). The converse of the lemma follows
by direct computation. This completes the proof. [

We do not provide the proofs of the following lemmas, as they are similar to that of Lemma 2.
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Lemma 3. For any ¢ € C([0,1],R) and q3 — 4qoq2 = 0, the solution of linear multi-term fractional
differential equation

(g2 °D 2 4 q1 D7 4 g0 D) x(t) = @(t), 0< o <1, 0<t<1, (12)

supplemented with the boundary conditions (2) is given by

= L[ [0 g
+x1(t / / (S ;(l;) 1¢(u)du ds
_Zji /]7/ B(m)%qo(u)du ds}

o1
+x2(t / / (s — ) ~————¢(u)du ds (13)
65)_6(5—s)+1 s —y)o-1
// = )( 1"((7)) () ds|
" me™ _Aemé +A
+h(x) [+ (8) (e ‘5—211 ") + ) (=) |,
where
B(x) = (x—s)e"*%), x=11,¢ and 7,
-
m = —-,
2(]2
@307 (F) — @401 (¢ @01 (f) — @102(¢t
al = = 2(t) — @401 ( ), o) = 2 1(t) — @102 ),
H2 M2
mte™ — e™ 4+ 1
vi(t) = 2z Uz(f):qztemt
mg _ omg —_yn i o™i _ o]
o = mge e"e +1 erznlz]l(mme e +1)’ (14

@ = gt~ Linem)
4

m2e™ — me™ + m — mASe™® + 2Xe™0 — 2N — mAS

w3 = 3 /
— Amée™® 4 \e™d — A

@ = 0 ( m2 )'

Ho = {0104 — @03 75 0.

Lemma 4. For any ¢ € C([0,1],R) and q3 — 4qoq2 < 0, the solution of linear multi-term fractional
differential equation

(g2 °D7 2 441 ‘D7 4 o D) x(t) = @(t), 0< o <1, 0<t<1, (15)

supplemented with the boundary conditions (2) is given by

o oc—1
o = Lo s
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+1(t / / (s F(MU))U 1q)(u)du ds
- Z]z /’7:/ f(’?i)s;(?;l(p(u)du ds}
+1o(t / / (s — w7 ——5—(u)du ds (16)

—m// b—be*”(‘sfs)cosb@—s)
0 Jo

s — u)afl

—ae= ") sinb(6 — s)) (Fw)(p(u)du ds} }

n
+h(x) [e_‘” cos bt + 7y (f) (e_“‘j cosbg — Y " jie™ i cos bm)
i=1

+1(t) <e_“ cosb — ﬁ(a — ae~" cos b + be ™" sin bé))},

where

F(x) = e sinb(k—s), k=t1,& and 7,

qog \/4010172—611

myy = —azxbi, a= 200 205
a(t) = PwﬂwéMWU{Tﬂﬂ:pwu)émwu%
n(t) = b—be C(;li ;2[13’” sin bt’ va(t) = apbe" sin bt
Po= 3 Jlr 2 [b be ™€ cos b& — ae~ % sin b
- Zji(b — be™ i cos by; — ae”"i sin bm)} ,
i=1
p2 = q2b (ff“6 sinb& — i;jie””i sin b}yi) , (17)
im
p3 = o) Jlr 2 [b be % cosb —ae “sinb — bAS
+$ (a — ae™ cos bé + be ™ sin bd)
2[1—2192 (b—be™" cos b6 — e~ sin bé)] ,
pa = q2b {e_“ sinb — A e (b — be=" cosbé — ae~™ sin bé)} ,

pa = mm—mm#Q
3. Existence and Uniqueness Results

Denote by C = C([0,1], R) the Banach space of all continuous functions from [0, 1] to R endowed
with the norm defined by ||x|| = sup {|x(t)| : t € [0,1]}. In relation to the problem (1) and (2) with
73 — 4qoq2 > 0, we define an operator 7 : C — C by Lemma 2 as

_ 4\o—1
(Tx)(t) = N {// SF(L;)) f(u,x(u))du ds

+p1(t / / (s ;(,;))0 1f(u,x(u))du ds
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n i rS _\o—1
*Zji/"/ A(m)(sr(?f(u,x(u))du ds}

+p2(t / / (s ;(LZT))U 1f(u,x(u))du ds (18)
_A/ / o (em](émsl) - 1)> : ;(]fr))glf(u,x(u))du ds}}

+h()[’”2f+p1 (’”26 Z]1+Z]em2'ﬁ)

mpe™2 — \eM20 — /\)}
ny ’

+P2(f)(

where A(-), p1(t) and py(t) are defined by (6).
Observe that the problem (1) and (2) is equivalent to the operator equation

x=Jx, (19)

In the sequel, for the sake of computational convenience, we set

o= max lor(H)], 2= mmax lo2(8)],
€ = max ‘mz (1—e™t) — ml(l—emzt)’r
te[0,1]
x = ! {8+ﬁ1 [Colmz(l—emlg) —my (1= ")
|qamymy(my —mq)|T (0 +1)

n
+ 3 Ll Ima (1 — €™y — my (1 — "2t | (20)
i=1

02 [[ma(1 = ") — i (1 - ™))

S, s , s
] M3 (m18 = € 4 1) — i (mad — e +1)|H,

moe™2| +|A|[e"2° + 1

Ay = mg>l<]lem2t|+pl(|em2§|+2|]||e’”2’7:+1|>+p (' 2¢"| |r|n2’ ‘)

Now the platform is set to present our main results. In the first result, we use Krasnoselskii’s
fixed point theorem to prove the existence of solutions for the problem (1) and (2).

Theorem 1. (Krasnoselskii’s fixed point theorem [27]). Let Y be a bounded, closed, convex, and nonempty
subset of a Banach space X. Let Fy and F, be the operators satisfying the conditions: (i) Fiy1 + By, € Y
whenever y1,y2 € Y; (ii) Fy is compact and continuous; (iii) F, is a contraction mapping. Then there exists
y € Y such that y = Fiy + Fy.

In the forthcoming analysis, we need the following assumptions:

(G1) |f(t,x) = f(t,y)| <{l|x—y| forallt € [0,1], x,y € R, £ > 0.
(Gy) |h(x) —h(y)| < L|jx—y|, forallt € [0,1], x,y € C, L > 0.
(Gs3) |f(t,x)| <9O(t), forallt € [0,1],x € Rand & € C([0,1],RT).

Theorem 2. Let f : [0,1] x R — R be a continuous function satisfying the conditions (Gy) and (G3),
h: C(]0,1],R) — R be continuous function satisfying the conditions (Gy). Then the problem (1) and (2) with
q3 — 4qoq2 > 0, has at least one solution on [0,1] if

LA, < 1, (21)
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where Ay is given by (20).

Proof. Setting sup,. () [8(t) = |||, we can fix
IE] 5
P2 e (€ P [§ma (1 =€) — i (1 7))
X0y il o (L = 1) — my (1= €720 || 42 [Jma(1 &™) —mr (1 —e"2)|  (22)
07|\
2 L |3 (m18 — €™ 4 1) — i (6 — €20 4 1)|] } + A |,

and consider B, = {x € C : ||x|| < r}. Introduce the operators [7; and [, on B; as follows:

o—1

(x)(t) = 2Gm — ) // s;(ua)) f(u, x(u))du ds

// S;(Z;))U 1f(u,x(u))duds}
+02(t // S;(MU); 1f(u x(u))du ds

—)L/ / mz (6—s) _ 1) . (6’”1(5—5) — 1)) (s ;(L;))‘T_lf(u,x(u))du ds} },

mq

and
G = Mo 0 )
+02(t) (%W) } )

Observe that 7 = J; + J». For x,y € B, we have

(23)

1% + oyl
= sup [(J1x)(t) + (J2y)(1)]
te[0,1]
s—u)" 1
< 102z — )] te[m{//fl T |f(u, x(u))|du ds
(s —u)7t
+1lp1(t) // r(a)) |f(u, x(u))|du ds
—u) 1
+Z|ji\/ / A(m)r(a))f(u,x(u))du ds}
_ . \o—1
+loa(t) // Sr(”(‘f)) |f (, x (1)) |du ds
m2(15 s) _ my(6—s) __ _ o1
+|A\// DG . ”)“Hi‘r)) f(u,x(u))uuds}}
my myd
[l >(|em2¢| £l +1»> aat) (PR ]
< ds

||l9|| a/ m t s S)
su t 2( —e"
|q2(my —mq)|T(c+1) te[OP;] ‘

+lex(t) é“’/ [e26=) — gma(@==) ds+2|]z|’7 /\ "2 1i=5) _ ommi(1i=5)

}
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1
+|p2(t)\[/0 ‘emz(l—s)_ iy (1—s)

+A1| k|

ds+|)\\(5‘7/‘ mzb 5)—1)_(m1((55_ ‘ds]}

my mq

18]l
|qamymy(my —mq)|T (o +1)

IN

{S + 01[E7 ma (1 — e™E) — iy (1 — e™26)|

n
1 Ll a1 = €M) — g (1 ") ) Bl a1 ™) — g (1~ €2)]
i=1

87A|
|mym;|

i3 (16 — €10 1) — mid (o8 — "2+ 1)[]} + A ] <7,

where we used (22). Thus J1x + Joy € B,. Using the assumptions (G;) — (G3) together with (21),
we show that /> is a contraction as follows:

172x = Tyl
= sup [(J2x)(t) = (J2y) (1)
te[0,1]
m m n.m. mz+/\m2§+1
< 1hG0) = B 17+ pa (0 (74 1 il -+ 1) o) (2 N AT
i=1
< Layflx =yl

Note that continuity of f implies that the operator J; is continuous. Also, J; is uniformly bounded
on B, as

[xll = sup [(J1%)(1)]

te[0,1]
19
|qamymao(my —myq)|T (o +1)
n

+ ) Ll [ma (1 = ™) —my (1 — ™) [] 4 pp[|ma (1 — ™) — my (1 — ™)
i=1
o7[A|
|myms|

IN

(e Pt %) 1)

|m3(m16 — e"™® + 1) — m2 (mpd — " + 1)|]}

Now we prove the compactness of operator ;. We define sup; \c (1<, |f (£, X)| = f. Thus,
for 0 < t; < tp < 1, we have

I(Jx>(t ) — (Tx)(t1)]
f (S _ u)afl
|072 my — my)] { / / )} Wf(u,x(u))du ds

/ (s = w)™ 1f(u,x(u))duds

+lo1(t2) — p1(t1)| //A(if S;(IZ)

il A S ) ]
+p2(t2) — p2(t1)] //A (s—u) 1|f(u,x(u))|duds

+|/\|/ / mz (6—s) _ 1) _ (€m1(5 S) — )) (s r(ua))tf—l Fon ()l ds}}

my

IN

)(71

|f(u, x(u)) du ds
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(1— emz(fzftl)) —my(1— eml(tZ*tl))‘

|q2mamy(m; fm1)|F(a+ 1) { (t‘17 - tg)

ml(emth _ em2t1) _ m2(8m1t2 _ emltl)

+
+lo1(t2) — p1(t1)[[87 ma(1 — e™E) — my (1 — ™8]

n
+ Y il ma (1 — ™) — my (1 — ™) ]
i=1
+1p2(t2) — p2(t1)[[|m2(1 — €™) — my (1 — ™)
07| Al
+
|[mymy|
independent of x. Thus, J; is relatively compact on B;. Hence, by the Arzela-Ascoli Theorem, [J; is

compact on B,. Thus all the assumption of Theorem 1 are satisfied. So, by the conclusion of Theorem 1,
the problem (1) and (2) has at least one solution on [0, 1]. The proof is completed. [

2 (a6 — "2 1) — 3 (ms — " +1)[]} = 0, as b > by,

Remark 2. In the above theorem we can interchange the roles of the operators J; and J, to obtain a second
result by replacing (21) by the following condition:

foo < 1.

Now we apply Banach’s contraction mapping principle to prove existence and uniqueness of
solutions for the problem (1) and (2).

Theorem 3. Assume that f : [0,1] x R — R is a continuous function such that (Gy) and (Gy) are satisfied.
Then there exists a unique solution for the problem (1) and (2) on [0,1] if fa + LAy < 1, where & and Aq are
given by (20).

Proof. Let us define sup, (o |f(t,0)] =M, SUP;co,1] |h(0)| = Ly and select 7 > % to
show that JB; C By, where By = {x € C : ||x|| < 7} and J is defined by (18). Using the condition
(Gy) and (G,), we have

FEx)] = 1f(2) = F(50) + f(£0)] < [f(tx) = £(1,0)] +|f(x,0)] 28)
< x|+ M < F+ M,
[1(x)| = |h(x) = h(0) + 1(0)| < [1(x) = h(0)] + |R(O)| < Lljx|[ + Lo < L7 + Lo. (25)

Then, for x € B;, we obtain

IT@ = sup |T(x)(H)]

te[0,1]

_ )1
P 1 t[m{ Ot/o At SF(L:T)) |f (o, x(u))|du ds
S—u o—1
Fler() / / F(U)) |f(u, x(u))|du ds
! s—y)1
+2|]z|/’7 / A(’?i)r(a))|f(u,X(u))|duds]

-1

Hloa(t) // G b x(u))du ds

IN
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+M|/ / (em2(0-5) _1) _ (eml(ﬁ—s)—l))(s;g,la))a—l (o) ds]}

my

n
+‘h(x>|[|em2t|+P1(t)(|€m2§‘+Z|ji‘|€m2m+l|)
i=1

e+ \[Je7 + 1
+0a() ] )]
< (fT’—FM / ’ mzt O m(t—s) s7 i
N |q2( tE[Ol r(0'+1)

o

m2 ) S
+lp1(t) / ‘ ((H_l)ds
+Zml/ | |eali=s) — gmi=s) LdS}

(c+1)

my(1—s) _ —s)
+ le2(t) /’ 2( (0+1)d

emz (6—s) _ 1) (eml(b‘—s) o 1) s ]
H/\'/o ‘ ) B my ‘1’(0—1—1)[13} + (L7 +Lo)yy

(67 + M)
|gamymy(my — mq)|T(0+ 1)

n
+ 3 il fma (1 — ™) — (1= €"27)[] + po[|ma (1 — €™) — my (1 — €™
i=1
67[A|
|mym|
= (F+M)a+ (LF+ Lo)A <T,

IN

{e+B1(g7 ma(1 — e™E) — my (1 - e"2)|

(16 — 19 +1) = md (o8 — "2 + 1))} + (LP + Lo)Ay

which clearly shows that Jx € Br for any x € B;. Thus JBr C Br. Now, for x,y € C and for each
€ [0,1], we have

IN

||(JX) — (I
! (s—u) !
[q2(mz = m1)] teOl]{ 0 /0 Alt S T(o) |f (u, x(u)) = f(u, y(u))|du ds

_ o—1

ool [ [ A Sr(”;)) o 2(0)) = ) s
_ual

# Sl )" A i x() oyl ]

s—u”l
HoaI[ [ [ A0S w00) — oy as

em2(9=s) _ my(0—s) _ _ o1
+|A|/ / (e - 1))(s F(L;)) F(, x(1)) — £, y(u0))|du ds}}

+[h(x) = h(y)| [|€m2t| +o1(t)([e™ |+ Y [fille™" + 1)
i=1

|mae™| + [Al]e™ +1
tealt )( 2] )]
/ ‘ my(t—s) _ oM (t—s) s7 ds
[q2(ma — )| teOl] T(c+1)
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+|Pl(f)|[ /@‘emz(é—s)ieml(g_s) R
., T(c+1)
“ L / " |ematne) —min) Lds}
G T(c+1)
! g
mz(l—S) _ ml(l—s) 57
+|p2(t)|[/0 ‘e ‘ 1"(0'+1)ds

) (emz(éfs) _ 1) (eml(éfs) _ 1) g7
e = ey ] (I v+ Ll
L

|gamymy(my —my)|T(0+1)

n

IN

(om0 s

+ Y Jilnd ma (1 — €™y — my (1 — e™21)|] + pa[|mp(1 — e™) — mq (1 — €™2)|
i=1
671A|
[myms|

= (la+LA)[lx —yl,

13 (m6 — €™ 1) — mA(mas — "+ 1)[]}x —yl| + LAl — v

« and A are given by (20) and depend only on the parameters involved in the problem. In view of the
condition o 4+ LA; < 1, it follows that J is a contraction. Thus, by the contraction mapping principle
(Banach fixed point theorem), the problem (1) and (2) has a unique solution on [0, 1]. This completes
the proof. O

The next existence result is based on Leray-Schauder nonlinear alternative.

Theorem 4. (Nonlinear alternative for single valued maps [28]). Let E be a Banach space, C a closed, convex
subset of E, U an open subset of C and 0 € U. Suppose that F : U — C is a continuous, compact (that is, F(U)
is a relatively compact subset of C) map. Then either

(i) F has a fixed point in U, or
(i))  thereisa u € oU (the boundary of U in C) and € € (0,1) with u = €F(u).

We need the following assumptions:

(Hy;)  There exist a function g € C([0,1],R"), and a nondecreasing function ¢ : R — R such that
FEl <@y, v(ty) €0,1] xR.
(Hy) h:C(]0,1],R) — R, is continuous function with /(0) = 0 and there exist constant L; > 0 with
L1 < Afl, such that
|h(x)| < Li||x|]] V xeC.

(H3)  There exists a constant K > 0 such that

(1-L1AK

- — 1.
Tsllp(K)a ~

Theorem 5. Let f : [0,1] x R — R be a continuous function. Then the problem (1) and (2) has at least one
solution on [0, 1], if (Hy)—(Hs) are satisfied.

Proof. Consider the operator 7 : C — C defined by (18). We show that J maps bounded sets into
bounded sets in C. For a positive number (, let & = {x € C : ||x|| < {} be a bounded set in C.
Then we have

[T ()l = sup |T(x)(t)]

te[0,1]
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1

t s—u)"
|Q2( — )| te[01 { 0 /O Alt F(U) |f (u,x(u))|du ds
1

+1p1(t) / / S;(L:T); |f(u,x(u))|du ds

i s—u)’ 1
+Z|ji|/ /A(m)r(())|f(u,x(u))|duds]

oc—1
+1p2(t) // F(% |f (1, x(u))|du ds

(em(0=s) — em1(0—s) _ s—u
\/\|/ / b _{ m 1))< I'(0)

IN

)071

[f (ut,x(ae)) | s }

n

i=1

|mae™| + [Al[e"2 +1]
+P2(f)< s )]

_lslyl@) it
[a2(my —m1)] te[01 /’

(7
+lo1(t) /‘mz =3) — gm(E=s)

m
+Z|]z|/ mzry, ) — M (1i=s)

my(1—s) _ mi(1—s)
+oa(1) / e " r(0+1)d
emz (6—s) _1) ( my(6—s) _1
+\A|/O \ o o ]rUH)dS] LA

|”/2m1m2(f|'|1§”—¢1(n§1))|r(a+ 7y (e + P17 Ima(1 = %) —my (1 — "))

n

+ Y lilnf [ma (1 = ™) —my (1= e"™1)[] + pa[[m2(1 — ™) — my (1 — e™?)]
i=1
07| Al
[myms|

SU’

1"((7—|—1)dS

IN

ds

o)

IN

|3 (18 — €™ + 1) — m3(mpé — ™ +1)[]} + Ly AL,

which yields

||‘-7x|| < |q2m1m2(r!z§”—lpr(n€1))|l"(0+1) {g+ﬁ160|m2(1_em1§)_m1(1_6m2§)|

n

+ Y lilyf Ima (1 — ™) — my (1 — ") |] + pa[|mp (1 — €™) — my (1 —e™))|
i=1
S7|A
|myms|

3 (my8 — €™ + 1) — m3(mpé — ™ +1)[]} + Ly AL,

Next we show that J maps bounded sets into equicontniuous sets of C. Let t1, t, € [0,1] with
t1 < trand y € &, where &; is a bounded set of C. Then we obtain

[(Tx)(t2) = (Tx)(t1)]
)071

e (s—u
[ ) - aw) S x(w)du ds

v
|92(ma —my )|
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ty s _ o—1
+_/t /()A(fz)(sl,(?)f(u,x(u))duds

s—u”'l
Her(t2) = pr(t)I [ [ [ A@ S x(wp s

. i —u)
+i§|]z‘|/0 /O.A(Ui)wvw,x(u)ﬂduds]
g s _ o—1
+loa(t2) = pa(t1)]| /1/ A(l)(sr(‘;))|f(u,x(u))|duds

+|/\|/ / mz (6—s) _ 1) . (eml(éfs) — 1)) (s ;(1/10?)01 F o x(a) | ds} }

my

+|h(x)] [|emzt2 — ™| 4+ (p1(t2) — p1(t1)) (|| + Y Jjil e + 1))
i=1

|mpe™2| + |A|[eM2° 4+ 1| >]
|my|

+(p2(t2) — pa(t)) (

my (1 — e™2(=h)y — (1 — eml(tZ*tl))

IN

f a o
|gamymy(my — mq)|T(0+ 1) { (tl B tz)

ml(emzfz _ emzh) _ mZ(emlfz _ emlfl)

+t]
+o1(t2) — p1(t1)[[E7 ma (1 — e™E) — my (1 — e™2F)]

n
+ ) lilni fma (1= ™) —my (1 — e™21)]]
i=1

+lp2(t2) — pa(tr)|[[m2(1 —€™) —my (1 —e™2)|

07|
L (a0 — ™ 1) (g — ™ 1)} ) [l et

n
+(p1(t2) — P1(t1))(|em2¢| + Y il e 4 1|)
i=1
|mae™2| + |A||€m2‘5+1|”
|my| ’

+(pa(t2) — p2(t1))

which tends to zero independently of x € & ast, —t; — 0. As J satisfies the above assumptions,
therefore it follows by the Arzeld-Ascoli theorem that 7 : C — C is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative once it is shown that there
exists Y C C withx # 6 Jx for 6 € (0,1) and x € JU.

Let x € C be such that x = 87 x for 6 € [0,1]. Then, for t € [0, 1], we have

x(t)] = |ejx<t>\
= Tzl —m)] tem{ Ot/OA Sr(?;llf(u,xw))duds
+loa (1) // S;(”(‘T)“|f(u,x(u))|duds
+i2|jz-| " A(’?i);ialf(u,x(u)ﬂdu )
1

+loa(t) / | Aa ) o, () ds
. / / mz (6—s) _ ) . (eml(ﬁfs) — 1)) (s — M)ail |f(u,x(u))|du ds} }

my I'(o)
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n
RGNl + 1 (8) (1e728] + Y il +1)
i=1

(e
I ap [

+lp1(t) / ‘mz _em(E—s) (US"H) i

JrE|]z|/ em2(1i=s) _ gm (= )(asil)ds}

+|/\|/ ‘ 207 1) (eml(éms — ‘ra+1) S}}+|h(x)|A1
: qum1m2|(|7i!¢_(|,;1”))|r(a+ ) {s+ﬁl[c§‘7\m2(1 — ey — oy (1 — 0|

n
+ ) il Ima (1 = ™) —my (1 — e™2)[] + G [|ma(1 — &™) — my (1 —e™2)]|
i=1
07| Al
|m1m2|
= [lgllp(llx[)a + L1Aq|x]],

2 (26 — "2 1) — m3(ms — "+ 1)[] } + L x|

which implies that
(1= L1Aq) || x]|

gl (llx)a

In view of (H3), there is no solution x such that ||x|| # K. Let us set
U={xeC:|x| <K}

The operator J : U — C is continuous and completely continuous. From the choice of U, there is
no u € JoU such that u = 67 (u) for some 6 € (0,1). Consequently, by the nonlinear alternative
of Leray-Schauder type [28], we deduce that J has a fixed point u € U which is a solution of the
problem (1) and (2). O

Example 1. Let us consider the following boundary value problem

—t

2°p12/5 4 3¢p7/5 4 cp2/5 —  _tanlx4cost 0<t<1, 26
( )x(t) = Wiih (26)
subject the boundary condition
1 N 1/6
x(0) = gsinx(f), x(1/5) = (1/4) +2x(1/3) + x(1/2), x(1) = z/ 5. 27)

Here,qz :zlql :3,q0 — 1[0':2/5[5: 1/5,1’]1 = 1/4,172 = 1/3,773 = 1/2,5 = 1/6,]1 = 1,
j2=2,j3=1,A =2, tisafixed value in [0,1] and
et
f(t,x) = ———tan ' x + cost.

4/4 412



Axioms 2020, 9, 70 16 of 21

Clearly g7 — 44092 =1 > 0, and
1
[f(tx) = f(ty)l < glx—yl,

() ~ k()] < gllx — yll.

where ¢/ = 1/8, L = 1/9. Using the given values, we found a ~ 0.095961, A; ~ 6.9171.
—t
TTe
8vV4+ 12
of Theorem 2 are satisfied the problem (26) and (27) has at least one solution on [0, 1]. On the other
hand, o + LA < 1 and thus there exists a unique solution for the problem (26) and (27) on [0, 1] by
Theorem 3.

It is easy to check that |f(t,x)| < + cost = ¥(f) and LA, < 1. As all the condition

Example 2. Consider the following fractional differential equation

1
2°D2/5 +3¢D7/5 + ‘D)x(t) = —— (xtan 'x+7/2), 0<t <1, 28
( 1) = —=—( ) (28)
subject the boundary conditions (27).
Here 1
t,x) = ———(xtan"tx + 71/2).
flt2) = —s( )
Clearly

1
|f(t/x)| SW(HXH—Fl),

with (1) = 5, p(xl) = ] + 1
Then by using the condition (H3), we find that K > 0.241877 (we have used & = 0.27045). Thus,
the conclusion of Theorem 5 applies to problem (28) and (27).

4. Existence Results for Problem (1) and (2) with q% —4q092 =0

In view of Lemma 3, we can transform problem (1) and (2) into equivalent fixed point problem
as follows:
x = Hx, (29)

where the operator H : C — C is defined by

(Hx)(t) = qz{// (s—u) 1f(u,x(u))duds

+xa(t [fo LB a f(u,x(u))du ds
i fo : ﬁ{lf(u,x(u))du ds|
+xa(t [fo I B (suigf(u,x(u))du ds

ALy ( = omsi M(H)H) (s}l(lgj_lf(u,x(u))du ds} }
() [et 401 (1) (€78 = iy jie™ ) + pa() (2],

(30)

where B(-), x1(t) and x»(t) are defined by (14). We set

~

X = max Ix1(t)l, Xz—tfen[g)f Ix2(t)],
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1
= —— 1 (1+X m_ o m 1| Lo e mg _ gm 4 q
P |072|m2f(a+1){( + X2)|me™ —e" + |+X1{C |mce " 41|
or - A% N
+ Y Ll Imagge™s — e 41| + | ||m|X2 ma(em +1)+2(1 - )|}, (31)
i=1
Ay = max |e™| 4+ xy(le"C| + ey + |me™| |
2 = ma e+ (e |+ L ™) + %2 o )

Now we present our main results for problem (1) and (2) with g2 — 4g¢g> = 0. Since the methods
for proof of these results are similar to the ones obtained in Section 3, so we omit the proofs.

Theorem 6. Let f : [0,1] x R — R be a continuous function satisfying the conditions (Gi)-(Gsz). Then the
problem (1) and (2) with g3 — 4qoq2 = 0, has at least one solution on [0,1] if

LA, <1, (32)
where A; is given by (31).

Theorem 7. Assume that f : [0,1] x R — R is a continuous function such that (Gy) is satisfied. Then there
exists a unique solution for problem (1) and (2) with q3 — 4qoqo = 0, on [0,1] if £ + LAy < 1, where B and
Ay are given by (31).

Theorem 8. Let f : [0,1] x R — R be a continuous function. Then the problem (1) and (2) with g3 — 4goqz =
0, has at least one solution on [0,1], if (Hy), (Hz) and the following condition hold:

(HS)  There exists a constant Ky > 0 such that

(1-L1A)Ky

RGO

where B is defined by (31).

Example 3. Consider the sequential fractional differential equation

2CD12/5 4CD7/5 2£D2/5 b = |x| —t ¢ 1
( + + )x(t) —(t+6)(|x|+1)+e , 0<t<, (33)

subject the boundary conditions (27).

Here

o |x| —t
o) = gyt 7€

Clearly g2 — 4qoq2 = 0, and )
() = fty)l < glx—yl,

1
h(x) ~ k()| < gllx—yll
where ¢ = 1/6, L = 1/9. Using the given values, we find that § ~ 0.29913, 1 ~ 0.15022 and
Ay ~ 5.135.
B
It is easy to check that |f(f,x)| < 6 +e ! = 8(t) and LA, < 1. As all the conditions of

Theorem 6 are satisfied, the problem (27)—(33) has at least one solution on [0, 1]. On the other hand,
¢B+ LA; < 1and thus there exists a unique solution for the problem (27)-(33) on [0, 1] by Theorem 7.
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5. Existence Results for Problem (1) and (2) with q% —4q0g92 <0

In view of Lemma 4, we can transform problem (1) and (2) into equivalent fixed point problem
as follows:
x = Kx, (34)

where the operator K : C — C is defined by

_ s—u)" 1
(Kx)(t) = qzb{/ / (o) ~————f(u,x(u))du ds

_ oc—1
+T1 / / (S r(L:T)) y(”)du ds

/m / (s F(L:T))U 1f(u,x(u))du ds}
+1(t / / (s—u) lf(u,x(u))du ds
/ /0 b - be*”(‘sfs) cosb(d —s)

_az + b2 Jo
(s — u)"’1

—ae="=%) sinb(5 — s)) Wf(u,x(u))du ds} }

n
+h(x) [e_”t cos bt + 1 (t) (e~ cos b& — Y jie~™i cos by;)
i=1

ae=" cos b + be™™ smbd))}

_ A
+T2(t)<€ a COSb — m(ﬂ

where F(-), 7y (t) and 1,(t) are defined by (17). We set

T = max |h 7 = max |t

= maxln()l, = max n()|

T = : {(1+?2){|b—b67”cosb—ae*” sinb|}
|92b(a% 4+ b2)[T (0 +1)

n
+7 [g"\b —be " cos b —ae " sinbg| + Y_ |ji|n?|b — be~ i cos br;
i=1

—ae™ " sin by | + |A167% |6 — e~ sinba] | }, (35)
Ay = m[ax le=™ cos bt| + Ty (|e ™ cos bE| + Z |ji||e =" cos by|)
te[0,1 =

~ (1. A _ —ab
—H’z(|e ”cosb|+a2|+|b2(\a—ae 9 cos bd + be ”‘ssmb(5|)).

Here are the existence and uniqueness results for problem (1) and (2) with g2 — 4goq, < 0. As argued
in the last section, we do not provide the proofs for these results.

Theorem 9. Let f : [0,1] x R — R be a continuous function satisfying the conditions (Gy)—(Gs). Then the
problem (1) and (2) with p3 — 4pop, < 0, has at least one solution on [0,1] if

LA; < 1, (36)

where vy, and Az are given by (35).
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Theorem 10. Assume that f : [0,1] x R — R is a continuous function such that (Gy) and (Gy) are satisfied.
Then there exists a unique solution for the problem (1) and (2) with g% — 4qoqp < 0, 0n [0,1] if by + LAz < 1,
where vy and Az are given by (35).

Theorem 11. Let f : [0,1] x R — R be a continuous function. Then the problem (1) and (2) with g3 — 4qoq2 <
0, has at least one solution on [0,1], if (Hy), (Ha) and the following condition are satisfied:

(HY)  There exists a constant Ky > 0 such that

(1-L1A3)Ky

S ik S
o)y

where vy and Az are defined by (35).

Example 4. Consider the following boundary value problem

—2t

cpl2/5 | acp7/5 | 5cp2/5 _ €
(2°D*/° +3°D’/°>+2°D )x(t)—(t+4)2cosx+ 3 0<t<l, (37)
subject the boundary condition
1 . 1/6
x(0) = gx(t), x(1/5) = x(1/4) +2x(1/3) + x(1/2), x(1) = 2/ x(s)ds. (38)
0

Here,0 =2/5,=1/5,11 =1/4, 10 =1/3, 133 =1/2,6 =1/6,j1=1,j =2,j3=1,A =2, Fis

a fixed value in [0, 1] and
o2t

1
f(t,x) = mCOSX"‘ ﬁ

Clearly q] - 4q0q2 =-7< 0, and
! Y 16 Yb

h(x) — k()] < 2[lx — v,

where / = 1/16, L = 1/8. Using the given values, it is found that y ~ 0.34744, 7 ~ 0.17937 and

Az ~ 1.8499.
1 —2t

Obviously |f(t,x)| < tTae + 61—3 = 9(t) and LA3 < 1. As the hypothesis of Theorem 9 holds

true, the problem (37) and (38) has at least one solution on [0, 1]. Furthermore, we have ¢y + LA; < 1,
which implies that there exists a unique solution for the problem (37) and (38) on [0, 1] by Theorem 10.

6. Conclusions

We have presented a detailed analysis for a multi-term fractional differential equation
supplemented with nonlocal multi-point integral boundary conditions. The existence and uniqueness
results are given for all three cases depending on the coefficients of the multi-term fractional differential
equation: (i) g2 — 4q0q2 > 0, (ii) 47 — 49092 = 0 and (iii) 47 — 4q0q2 < 0. Existence results are
proved by means of Krasnoselskii fixed point theorem and Leray-Schauder nonlinear alternative,
while Banach contraction mapping principle is applied to establish the uniqueness of solutions for
the given problem. The obtained results are well-illustrated with examples. Our results are new and
enrich the literature on nonlocal integro-multipoint boundary problems for multi-term Caputo type
fractional differential equations.
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