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Abstract: The article discusses minimal temporal logic systems built on the basis of classical logic
as well as intuitionistic logic. The constructions of these systems are discussed as well as their basic
properties. The Kt system was discussed as the minimal temporal logic system built based on classical
logic, while the IKt system and its modification were discussed as the minimal temporal logic system
built based on intuitionistic logic.
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1. Temporal Logic

Temporal logic is the logic in which they appear, as logical constants, expressions whose meaning
is determined by a reference to time. In its wide sense, temporal logic includes all logical problems of
temporal representation of information. The task of temporal logic is to define and systematize inference
rules for reasoning carried out in a language in which the same expression in terms of shape is used to
pronounce sentences whose logical value may not be the same in different temporal contexts of their use.

The precursor of temporal logics was A. N. Prior. One of Prior’s basic concepts was the temporal
interpretation of modal operators. The enriched language of temporal logic was to enable formalization of
reasoning regarding situations changing in time. Originally, temporal logic was to be a tool for formalizing
philosophical, linguistic and semiotic considerations. Currently, apart from these applications, temporal
logic is also widely used in computer science.

Among temporal logics, tense logic stands out, i.e., logic in a language whose only specific time
operators are grammatical operators.

2. Kt—Minimal Tense Logic

The basic deductive system of logic of time is the Kt system (Kt is a temporal analogue of the K system
(minimal deductive system for modal logic).). Kt is a tense logic system built over classical propositional
calculus by enriching this logic with specific axioms and rules. This is the minimal system. Therefore,
the theses of this system are all and only those sentences that are true regardless of what properties time
has (In fact, one assumption is made about the structure of time, namely it is assumed that a semantic time
in the Kt has a point structure.).

The Kt system, as a minimal system, can be expanded by adding additional rules and specific axioms.
In this sense, the minimality of Kt means that any other temporal logic system built above classical
propositional logic is richer than the Kt. In the tense logics we have the tense operators: F, G, P, H
understood as follows:
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Fϕ - it will be that ϕ,

Pϕ - it was that ϕ,

Gϕ - it always will be that ϕ,

Hϕ - it always was that ϕ.

However, usually the operators F and G and operators P and H are mutually definable (The mutual
definability of operators F and G as well as P and H occur in temporal logic systems based on classical
logic. In temporal logic systems based on intuitionistic or multi-valued logic, the mutual definability of
these operators usually does not take a place.).

Definition 1 (The alphabet of the language LKt ).

• countable set of propositional letters AP ,
• connectives: ¬,→,
• temporal operators: G, H (In some tense logic systems, as a primary operators are assumed F and P.),
• brackets: ), (.

A set of sentences is defined as follows:

Definition 2 (A set of sentences ). The set of sentences is the smallest set FOR(LKt) such that:

• AP ⊆ FOR(LKt),
• if ϕ, ψ ∈ FOR(LKt), then ¬ϕ, ϕ→ ψ, Gϕ, Hϕ ∈ FOR(LKt).

In the language LKt , all boolean symbols retain their meaning. However, there are additional specific
operators in this language. Therefore, when we speak about the validity of propositions due to the meaning
of classical propositional connectives, then we mean the sentences in which new operators occur.

We accept the following abbreviations:

(a) ϕ ∨ ψ ≡ ¬ϕ→ ψ,

(b) ϕ ∧ ψ ≡ ¬ (ϕ→ ¬ψ) ,

(c) ϕ↔ ψ ≡ ¬ [(ϕ→ ψ)→ ¬ (ψ→ ϕ)] ,

(d) Fϕ ≡ ¬G¬ϕ,

(e) Pϕ ≡ ¬H¬ϕ.

Axioms

The Kt system is axiomatizable (The axiomatic system is one of many possible forms of a deductive
system. This approach to construction of a deductive system has many advantages when it comes to
methodological research. However, in case of axiomatic systems, we have some problems when it comes
to practical command. This is due to the unstructured axiomatic systems. The structure of the sentence
does not indicate the method of proving this sentence. In the case of other approaches to construction of a
deductive system, e.g., sequent calculus, natural deduction or semantic tables, it is different.). Various
sets of axioms and rules of this system were proposed. These differences are primarily due to the decision
on a set of specific primitive symbols. Usually, the set of these symbols consists of the symbols G and
H, while F and P are defined. When building a set of axioms for invariant systems, i.e., systems without
the rule of substitution for sentence letters, apart from specific axiom schemes, either all tautologies of
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classical propositional logic or only selected tautology schemes are taken, but they are selected in such a
way that all tautologies of classical propositional logic can be obtained. In this work, we used the second
option and for the purposes of our considerations regarding Kt we will adopt the following set of axioms:

Axioms:

For any sentences ϕ, ψ ∈ LKt (Kt can be axiomatizable in many ways. The completeness of the Kt

with respect of these set of axioms was demonstrated by J. F. A. K. van Benthem [1].).

1. All tautologies of the classicall propositional calculus of the language LKt ,
2. G(ϕ→ ψ)→ (Gϕ→ Gψ),
3. H(ϕ→ ψ)→ (Hϕ→ Hψ),
4. ϕ→ GPϕ,
5. ϕ→ HFϕ.

Rules

MP :
ϕ→ ψ, ϕ

ψ
. RG :

ϕ

Gϕ
RH:

ϕ

Hϕ
.

The specific Kt axioms are the 2–5 axioms. Axioms 2–3 are temporal equivalents of the K axiom for
modal logics. These axioms apply only to the properties of G and H, respectively. Axioms 4–5 bind the
operators G and P as well as H and F respectively.

The proof in Kt is understood in the usual way.

Definition 3 (Proof in Kt). Let Σ be any set of sentences of the language LKt . The sentence string ϕ0, ϕ1, ..., ϕn is
a proof of the sentence ϕ from the set Σ, (we write Σ `Kt ϕ) if and only if ϕ = ϕn and for any i such that 0 ≤ i ≤ n
at least one of the following conditions holds:

1. ϕi is an element of the set Σ,
2. ϕi is an axiom,
3. ϕi is obtained from their predecessors by MP, RG or RH, respectively.

The sentence ϕ, which is derived from the empty set Σ, or ∅ `Kt ϕ, is the thesis of the system Kt.
Instead of writing ∅ `Kt ϕ, we will write `Kt ϕ.

In the Kt system, if a subsentences ϕ of the sentence φ is equivalent to the sentence ψ, entering φ in
the place of the sentence ϕ as the inscription of the sentence ψ, φ(ψ/ϕ), gives the sentence equivalent to φ.

Theorem 1. If Σ `Kt ϕ↔ ψ, then Σ `Kt φ↔ φ(ψ/ϕ). (This theorem is not just the Kt theorem. It is the theorem
of tense priorist logic.)

Proof. We will prove by induction due to the length of the sentence φ. Let Σ `Kt ϕ ↔ ψ. Let φ be
a propositional letter p. The only subsentence of a sentence φ is the propositipnal letter p. Then ϕ is
equal p. Result of replacement ϕ in the φ by ψ will be the sentence ψ. Because by assumption we have
Σ `Kt ϕ↔ ψ, then:

Σ `Kt φ↔ φ(ϕ/ψ).

As an induction assumption, we assume that for any sentence φi witch length is not greater than k the
thesis is true, i.e.,

Σ `Kt φi ↔ φi(ϕ/ψ).
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We will show that this thesis is also true for sentences of length k + 1.
Let the string ϕ1, ϕ2, ..., ϕn(= φi ↔ φi(ψ/ϕ)) be a proof of the sentence: φi ↔ φi(ψ/ϕ). We add the

following sentences to this proof:

n+1. ¬φi(ϕ/ψ)↔ ¬φi TRANS, n
n+2. (¬φi(ϕ/ψ)↔ ¬φi)→ (φi ↔ φi(ϕ/ψ)) axiom 1
n+3. φi ↔ φi(ϕ/ψ) MP,n+1,n+2

The sentence ¬φi(ϕ/ψ) is (¬φi)(ϕ/ψ), then:

Σ `Kt ¬φi ↔ (¬φi)(ϕ/ψ).

Let it now φ will be according to the character φi → φj, with sentences φi and φj meet the induction
assumption, i.e.,

Σ `Kt φi ↔ φi(ϕ/ψ)

and

Σ `Kt φj ↔ φj(ϕ/ψ).

Let the string ϕ1, ϕ2, ..., ϕk(= φi ↔ φi(ψ/ϕ)) be a proof of the sentence φi ↔ φi(ψ/ϕ), while the
string ϕk+1, ϕk+2, ..., ϕn(= φj ↔ φj(ψ/ϕ)) be a proof of the sentence: φj ↔ φj(ψ/ϕ). To the sequence of
the sentences ϕ1, ϕ2, ..., ϕk, ϕk+1, ϕk+2, ..., ϕn we add sentences:

n+1. (φi ↔ φi(ψ/ϕ))→ {(φj ↔ φj(ψ/ϕ))→ [(φi → φj)↔ (φi(ψ/ϕ)→ φj(ψ/ϕ))]} axiom 1
n+2. (φj ↔ φj(ψ/ϕ))→ [(φi → φj)↔ (φi(ψ/ϕ)→ φj(ψ/ϕ))] MP,k,n+1
n+3. [(φi → φj)↔ (φi(ψ/ϕ)→ φj(ψ/ϕ))] MP,n,n+2

(φi(ψ/ϕ)→ φj(ψ/ϕ))] is the sentence (φi(ψ→ φj(ψ/ϕ))], so we received proof that

Σ `Kt (φi → φj)↔ (φi → φj(ψ/ϕ)).

Now let us consider the case when the sentence φ is the sentence of the form Gφi, with the sentence
φi is a sentence satisfying the induction assumption, i.e., Σ `Kt φi ↔ φi(ϕ/ψ). Let the string ϕ1, ϕ2, ..., ϕn

be a proof of the sentence φi ↔ φi(ϕ/ψ) from the sentence Σ. To the proof we add:

n+1. Gφi ↔ Gφi(ϕ/ψ).

Gφi(ϕ/ψ) is the sentence (Gφi)(ϕ/ψ). So we received proof that

Σ `Kt Gφi ↔ Gφi(ϕ/ψ).

The case where the sentence φ is according to the form Hφi is similar to the case when φ is the sentence
Gφi.

The Theorem 1 will be used in the proof of the next Theorem, which says that one of the Kt inference
rules is the REQ replacement rule. This rule is a very useful rule in proving the theses of the Kt system.

Theorem 2 (Rule REQ). If Σ `Kt ϕ↔ ψ, then
φ

φ(ψ/ϕ)
.

Proof. Let Σ `Kt ϕ ↔ ψ and Σ `Kt φ. According to the Theorem 1 there is a proof of the sentence
φ ↔ φ(ϕ/ψ) from the set Σ. To this proof we add the proof of the sentence φ. We add to the proof
sequence the sentence φ(ϕ/ψ), which is a result from applying the Modus Ponens rule to sentences: φ and
φ↔ φ(ϕ/ψ).
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In addition to the three inference rules proposed in this version of the axiomatics of the Kt system can
be used to derive in this system the rules corresponding to the regularity rule for modal logics.

Theorem 3. The RRG rule :
ϕ→ ψ

Gϕ→ Gψ
is a rule of Kt.

Proof. To demonstrate that RRG is a secondary rule Kt, it must be demonstrated that

if Σ `Kt ϕ→ ψ, then Σ `Kt Gϕ→ Gψ.

Let Σ `Kt ϕ→ ψ. Let the sequence ϕ1, ..., ϕn will prove the sentence ϕ→ ψ from the set Σ. To this we
add the following sentences:

n+1. G(ϕ→ ψ) RG,n
n+2. G(ϕ→ ψ)→ (Gϕ→ Gψ) axiom 2
n+3. Gϕ→ Gψ MP,n+1,n+2.

The resulting sequence is a proof of the sentence Gϕ→ Gψ from the set Σ.

Theorem 4. The RRH rule :
ϕ→ ψ

Hϕ→ Hψ
is a secondary rule of Kt.

Proof. Analogical to the proof of the previous theorem (using the axiom 3 and the rule RH).

Based on Theorems 3 and 4 two further inference rules can be derived in Kt.

Theorem 5. The RF rule :
ϕ→ ψ

Fϕ→ Fψ
is a secondary rule of Kt.

Proof. Let Σ `Kt ϕ→ ψ. Let the sequence: ϕ1, ..., ϕn will prove the sentence ϕ→ ψ from the set Σ. To this
we add the following sentences:

n+1. ¬ψ→ ¬ϕ TRANS,n
n+2. G¬ψ→ G¬ϕ RRG,n+1
n+3. ¬G¬ϕ→ ¬G¬ψ TRANS,n+2
n+4. Fϕ→ Fψ REQ(¬G¬ϕ/Fϕ), REQ(¬G¬ψ/Fψ).

The resulting sequence is proof of the sentence Fϕ→ Fψ from the set Σ.

Theorem 6. The RP rule :
ϕ→ ψ

Pϕ→ Pψ
is a secondary rule of Kt.

Proof. Analogical to the proof of the Theorem 5.

Operators H,P and G,F have the Mirror Image Property.

Definition 4 (Mirror Image Property). The mirror image of the ϕ formula is created by simultaneously replacing
each instance of the H operator with the G operator and the G operator with the H operator in the ϕ formula,
and simultaneously replacing each instance of the P operator with the F operator and the F operator with the
P operator.

The Mirror Image of the ϕ we will mean by MI(ϕ). E.g: MI(ϕ → GPϕ) = ϕ → HFϕ. The mirror
image of the set of Σ is the mirror image set of the Σ elements. We mean the mirror image of Σ by MI(Σ)
and define as follows:
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Definition 5 (A mirror image of a set of formulas). M(Σ) = {MI(ϕ) : ϕ ∈ Σ}.

If ϕ is derivable from Σ, then mirror image of ϕ is derivable from mirror image of the Σ.

Theorem 7. For any Σ(⊂ FOR(LKt)): if Σ `Kt ϕ, then MI(Σ) `Kt MI(ϕ).

Proof. Let Σ `Kt ϕ. Let the sequence ϕ1, ϕ2, ..., ϕn will be a proof of ϕ from the Σ. We will show that
the sequence MI(ϕ1), MI(ϕ2), ..., MI(ϕn) is a prooof of the sentence MI(ϕ) from the MI(Σ), MI(Σ) `Kt

MI(ϕ). We will carry out the proof by induction due to the length of the proof of the sentence ϕ.
If ϕ1 is an axiom, then MI(ϕ1) is also an axiom. If ϕ1 is an element of Σ, then MI(ϕ1) is also

an element of MI(Σ). Then if Σ `Kt ϕ1, then MI(Σ) `Kt MI(ϕ1).
Let us assume that for i, i ≤ k :

if Σ `Kt ϕi, then MI(Σ) `Kt MI(ϕi).

We will show that if Σ `Kt ϕk+1, then MI(Σ) `Kt MI(ϕk+1). Let Σ `Kt ϕk+1. The sentence ϕk+1 can
be an axiom or an element of a set Σ. There are cases discussed for the sentence ϕ1. Now let us consider
the cases where the sentence ϕk+1 was obtained using one of the inference rules. Let them ϕk+1 will be a
sentence derived from sentences ϕm and ϕm → ϕk+1 by applying the rule MP. By induction, we have that

MI(Σ) `Kt MI(ϕm)

and

MI(Σ) `Kt MI(ϕm → ϕk+1).

Because MI(ϕm → ϕk+1) has the form MI(ϕm) → MI(ϕk+1), so applying the rule MP to the
sentences MI(ϕm)→ MI(ϕk+1) and MI(ϕm), we obtain MI(ϕk+1). Let it now ϕk+1 will be the sentence
derived from the sentence ϕm by applying the rule RG. By induction, we have that MI(Σ) `Kt MI(ϕm).
After applying the rule RH to the sentence MI(ϕm) we obtain HMI(ϕm). However, this sentence is equal
to the sentence MI(Gϕm). Then MI(Σ) `Kt MI(Gϕm). The case when the sentence ϕk+1 was obtained by
applying the RH rule to the sentence ϕk is similar to the previous case.

Corollary 1. Let MI(Σ) ⊆ Σ.

If Σ `Kt ϕ, then Σ `Kt MI(ϕ)

or
ϕ

MI(ϕ)

is a secondary rule.

Corollary 2. Let MI(Σ) ⊆ {ϕ : Σ `Kt ϕ}.

If Σ `Kt ϕ, then Σ `Kt MI(ϕ)

or
ϕ

MI(ϕ)

is a secondary rule.
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3. IKt—Minimal Intuitionistic Temporal Logic

Now we will discuss a system of temporal logic over intuitionistic propositional logic. It is a system
of minimal intuitionistic temporal logic IKt (IKt is the intuitionistic analogue of the system Kt - minimal
temporal logic built over classical propositional logic.).

This system can be used to formally describe knowledge that changes over time, although there are no
explicit epistemic operators in the language of this system. Knowledge representation is not implemented
at the syntactic level, but because of the properties of intuitionistic logic, knowledge is represented at the
semantic level. This is the result of semantics proposed for intuitionistic logic, using terms such as proof (It
was proposed by Kolmogorov.), information, or knowledge (Kripke-style semantics.).

Kripke-style semantics are proposed for intuitionistic temporal logic. Thus, in Kripke models we have
a set of worlds W and the relationship R. In the case of intuitionistic logic, we do not speak about elements
of the W set as possible worlds, but rather as information states, states of knowledge, etc. The reachability
relationship between the elements w and v (i.e., wRv) is interpreted as w has access to v, which means
that the v information state is available from the w information state. The key difference between Kripke
models for intuitionistic logic and Kripke models for modal logic built over classical logic lies in the fact
that in the case of modal logic built over classical logic, the R relation is only used to interpret modal
operators, and in the case of intuitionistic logic, this relation is used to interpret the intuitionistic negation
and implication.

The formula ¬ϕ is true (In intuitionistic logic the term forced is also used.) in some information state w
if and only if there is no information state available from w in which ϕ is true. In other words, the formula
¬ϕ is true in the state w if there is no possibility that ϕ is true in any information state accessible from the
state w.

The same is true with the intuitionistic implication. The formula ϕ → ψ is true in the information
state w, if and only if, in any information state available from the state w , the truth of ϕ implies the truth
of ψ. In addition, Kripke models assume monotonicity for intuitionistic logic. The formula fulfilled in a
given information state remains fulfilled in any extension of this state.

Modality in intuitionistic logic can be seen on the example of the syntactic definition of intuitionistic
negation. The ¬ϕ formula is equivalent to the ϕ → ⊥ formula. Intuitionistic negation can therefore be
seen as a kind of impossibility operator.

Kripke’s intuitionistic model is a triangle M = 〈W, R, V〉, where V : AP → 2W . The formula ϕ is
satysfied in the model M, in the state w, when:

M, w |= ϕ ≡ w ∈ V(ϕ), when ϕ ∈ AP ,

M, w |= ¬ϕ ≡ for any wRw′ : M, w′ 2 ϕ,

M, w |= ϕ ∧ ψ ≡ M, w |= ϕ and M, w |= ψ,

M, w |= ϕ ∨ ψ ≡ M, w |= ϕ or M, w |= ψ,

M, w |= ϕ→ ψ ≡ for any w′ such that wRw′, if M, w′ |= ϕ, then M, w′ |= ψ.

In intuititionistic logic from the truth of the ¬ϕ formula in the current information state, we do not
only know that ϕ is not true in the current information state (such information is obtained in the case of
classical logic), but we also know that the formula ϕ will never be true, and our never applies to all available
extensions of the current information state. In addition to the information provided explicitly, we therefore
have an additional information in intuitionistic logic. This feature of intuitionistic logic van Benthem calls
knowledge implicite [2]. No additional specific operators are needed to express it in intuitionistic logic.
Despite similar semantics, this feature definitely distinguishes intuitionistic logic from epistemic logic
built on classical logic. The language of epistemic logic is used to represent knowledge explicitly, and to
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represent it, in addition to classical sentence connectives, the epistemic operator K is used. The language
of intuitionistic logic allows expressing certain concepts without explicitly referring to epistemic operators.
For example, based on the truth of the formula ¬¬ϕ, we say that for each information state there is such
an extension in which ϕ is true. Apart from details, it is very close to that we know that ϕ must be true.

In Kripke semantics for epistemic logic built over classical propositional calculus, the formula Kϕ in
the M model, in the w information state, was defined as follows:

M, w |= Kϕ ≡ for any wRw′ : M, w′ |= ϕ.

Let us consider the truth of the formula K¬ϕ in the model M, in the state w. In accordance with the
condition of satisfy with the operator K we have:

M, w |= K¬ϕ ≡ for any wRw′ : M, w′ |= ¬ϕ.

Taking into account the condition of fulfilling of the negation in epistemic logic built over classical
logic, we have:

M, w |= K¬ϕ ≡ for any wRw′ : M, w′ 2 ϕ.

The condition of fulfilling of the intuitionistic negation, i.e.,

M, w |= ¬ϕ ≡ for any wRw′ : M, w′ 2 ϕ

Indicates that intuitionistic negation (¬) can be seen as a combination of the K operator and classical
negation (K¬). Similarly, it can be shown that the intuitionistic formula ϕ⇒ ψ can be seen, aside from the
details, as modalized implication K(ϕ→ ψ), i.e., a combination of the K epistemic operator and the classic
implication.

IKt (The construction of the IKt system and proof of the system’s completeness with respect to the
proposed semantics was provided by W.B. Ewald [3].) is a system of temporal logic built over intuitionistic
propositional calculus. The language LIKt is the language of intuitionistic propositional logic enriched
with temporal operators: G, H, F, P.

Definition 6. The set of sentences FOR(LIKt) is the smallest set of finite sequences of elements of the language
alphabet LIKt such that:

1. if ϕ ∈ AP , then ϕ ∈ FOR(LIKt),
2. if ϕ, ψ ∈ FOR(LIKt), then ¬ϕ, Gϕ, Fϕ, Hϕ, Pϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), (ϕ↔ ψ) ∈ FOR(LIKt).

In the IKt system, the operators G and F as well as H and P, unlike systems built over classical logic,
are not mutually definable.

4. Semantics for IKt Proposed by Ewald

The construction of semantics for IKt is based on a partially ordered set of states of knowledge,
which is considered by the cognitive subject. Each state of knowledge is assigned a set of time moments
and temporal order. When the cognitive subject reaches a greater state of knowledge (According to
Ewald [3], the cognitive subject moves to a greater states of knowledge.), retains all the information that he
had in lower states of knowledge. To define semantics for this system, Ewald constructs an intuitionistic
temporal structure.
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Definition 7 (intuitionistic temporal structure [3]). An intuitionistic temporal structure M is
an ordered quintuple

〈S,≤, {Ts}s∈S, {µs}s∈S, {Rs
t}s∈S,t∈Ts〉

where:

• (S,≤) is a partially ordered set,
• Ts is a non-empty set,
• µs is a binary relation to Ts,
• Rs

t is a formula relation that satisfies the conditions:

1. Rs
t(ϕ) ≡ Rs′

t (ϕ), when ϕ ∈ AP and s ≤ s′,

2. Rs
t(ϕ ∧ ψ) ≡ Rs

t(ϕ) and Rs
t(ψ),

3. Rs
t(ϕ ∨ ψ) ≡ Rs

t(ϕ) or Rs
t(ψ),

4. Rs
t(¬ϕ) ≡ for any s ≤ s′ it is not true that Rs′

t (ϕ),

5. Rs
t(ϕ→ ψ) ≡ for any s ≤ s′ (if Rs′

t (ϕ), then Rs′
t (ψ)),

6. Rs
t(Fϕ) ≡ there is t′, tµst′ : Rs

t′ (ϕ),

7. Rs
t(Pϕ) ≡ there is t′, t′µst : Rs

t′ (ϕ),

8. Rs
t(Gϕ) ≡ for any s′, t′ such that: s ≤ s′, t′ ∈ Ts′ , tµs′ t′ : Rs′

t′ (ϕ),

9. Rs
t(Hϕ) ≡ for any s′, t′ such that: s ≤ s′, t′ ∈ Ts′ , t′µs′ t : Rs′

t′ (ϕ),

We will now give intuitions related to individual elements of the above structure. The (S,≤) pair
is a partially ordered set of states of knowledge. Ts is a set of time moments in the state s. µs is a binary
relation on the set Ts. In addition, to fulfill the postulate that the cognitive entity, achieving a greater
state of knowledge, retains all information from smaller states, it is required that for s ≤ s′ the following
conditions holds: Ts ⊆ Ts′ and µs ⊆ µs′ . In other words, a cognitive subject achieving a higher state of
knowledge maintains a set of time moments and temporal order from smaller states of knowledge.

The truth of a formula in an intuitionistic temporal structure and the truth of the formula are defined
as follows:

Definition 8 (the truth in an intuitionistic temporal structure). M |= ϕ, the formula ϕ is true in the
intuitionistic temporal structure M, if and only if for any s ∈ S and any t ∈ Ts : Rs

t(ϕ).

Definition 9 (the truth of the formula). |= ϕ, formula ϕ is true if and only if, for any M : M |= ϕ.

5. Axioms IKt

(1) ϕ, if ϕ is a tautology of the intuitionistic logic of the language LIKt .
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(2) G (ϕ→ ψ)→ (Gϕ→ Gψ) (2’) H (ϕ→ ψ)→ (Hϕ→ Hψ)

(3) G (ϕ ∧ ψ)↔ (Gϕ ∧ Gψ) (3’) H (ϕ ∧ ψ)↔ (Hϕ ∧ Hψ)

(4) F (ϕ ∨ ψ)↔ (Fϕ ∨ Fψ) (4’) P (ϕ ∨ ψ)↔ (Pϕ ∨ Pψ)

(5) G (ϕ→ ψ)→ (Fϕ→ Fψ) (5’) H (ϕ→ ψ)→ (Pϕ→ Pψ)

(6) (Gϕ ∧ Fψ)→ F (ϕ ∧ ψ) (6’) (Hϕ ∧ Pψ)→ P (ϕ ∧ ψ)

(7) G¬ϕ→ ¬Fϕ (7’) H¬ϕ→ ¬Pϕ

(8) FHϕ→ ϕ (8’) PGϕ→ ϕ

(9) ϕ→ GPϕ (9’) ϕ→ HFϕ

(10) (Fϕ→ Gψ)→ G (ϕ→ ψ) (10’) (Pϕ→ Hψ)→ H (ϕ→ ψ)

(11) F (ϕ→ ψ)→ (Gϕ→ Fψ) (11’) P (ϕ→ ψ)→ (Hϕ→ Pψ)

Rules: MP, RH, RG.

Ewald [3] proves the adequacy of the IKt system with respect to the class of intuitionistic temporal
structures. For the purposes of proof of adequacy, the concept of consistent pair of sets is introduced.

Definition 10 (consistent pair of sets). The (X, Y) pair of set of sentences is consistent if and only if such finite
subsets do not exist X0(= {ϕ1, ϕ2, ..., ϕm}) ⊆ X and Y0(= {ψ1, ψ2, ..., ψn}) ⊆ Y such that ` (ϕ1 ∧ ϕ2 ∧ ... ∧
ϕm)→ (ψ1 ∨ ψ2 ∨ ...∨ ψn)

In the IKt we can to prove the intuitionistic equivalent of the Lindenbaum lemma, namely:

Theorem 8. If the pair (X, Y) is consistent, then there is the consistent pair of (X′, Y′) such that:

1. X ⊆ X′ and Y ⊆ Y′,
2. X′ ∩Y′ = ∅,
3. for any formula ϕ : ϕ ∈ X′ or ϕ ∈ Y′.

The pair that fulfills these conditions is maximum consistent pair. Each (X, Y) maximum consistent pair
can be represented by a valuation v : v : FOR(IKt)→ {0, 1}, such that v(ϕ) = 1 iff ϕ ∈ X. Ewald proves
for the IKt system the strong completeness Theorem in the following version:

Theorem 9 (Adequacy IKt [3]). For any IKt− valuation v there is an intuititionistic structure
M = 〈S,≤, {Ts}s∈S, {us}s∈S, {Rs

t}s∈S,t∈Ts〉, state on knowledge s ∈ S and moment t ∈ Ts such that for any
formula ϕ ∈ FOR(LIKt) holds Rs

t(ϕ) iff v(ϕ) = 1.

In the semantic of the IKt system, we did not impose any conditions on the temporal order in
intuitionistic temporal structures. The IKt system is therefore an analogue of the Kt system, i.e., it is
a minimal system of intuitionistic temporal logic.

6. Modified Semantics for IKt

We will consider the modified semantics for IKt and examine its basic properties. IKt is used to
describe states of knowledge that change as knowledge gains. Acquiring knowledge in IKt is understood
as moving to states of knowledge; however, as in the IKt system, it is assumed that all knowledge from a
given state of knowledge is available in any state of knowledge not lesser than contemplated. Therefore,
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the monotonicity of the knowledge acquisition process is assumed. We achieve knowledge by enriching
our knowledge with new facts. This can occur in several cases.

We can enrich our knowledge when by research we describe events from the past that took place at
times that were not known in a given state of knowledge. We did not have any information about these
events in this state of knowledge. In this case, the temporal structure in not lesser state of knowledge
expands into the past and is a superset of the temporal structure of a given state of knowledge. For the
same reasons, the time structure of the state of knowledge may expand into the future.

The expansion of the temporal structure (regardless of whether it takes place in the past or in the
future) causes a change in the domain of the relationship. Therefore, in the new state of knowledge,
the changed relation between moments of time should be considered.

Another possible option to achieve knowledge is the situation when the set of moments of time does
not change, but the powers of sets of formulas increase, which we can determine if they are fulfilled in
given time moments. Therefore, in this case there is no expansion of the time structure, neither into the past
nor into the future, but by getting to know the present, past or future better within the known temporal
structure, we attribute to moments more numerous sets of formulas fulfilled in these moments.

In the proposed semantics, the state of knowledge consists of a set of facts, which are semantic
correlates of formulas, a set of moments of time, and the relationship at the set of moments of time.
A subset of the set of facts assigned to a specific moment is understood as the set of facts known at
that moment.

Achievable states of knowledge are different in their level of knowledge. The level of knowledge is
determined by its constituent elements, namely: a set of moments of time , the temporal order relation and
sets of formulas fulfilled at individual time moments. We will say that the state of knowledge of m′′ has
not lesser level of knowledge than the state of knowledge of m′, if and only if the following conditions
are satisfied:

1. The set of moments of time in the state m′ is included in the set of moments of time in the state m′′.
(Changing the number of moments of time causes a change in the level of knowledge.)

2. In the m′′ , there are - occurring between moments of time - earlier-later relationships that existed in
the m′ state of knowledge. Also, in the m′′ , such relationships can occur that did not take place in
the state m′.

3. All events that are known in the state of knowledge m′ are also known in the state of knowledge m′′.
(What is known does not cease to be known also when new known events occur.) In addition at the
moments of time of the state of knowledge m′′, may be known some events that are not known in
the equivalents of these moments in the state of knowledge m′.

There are specific relationships between conditions 1, 2 and 3. Fulfillment of condition 1 implies
fulfillment of condition 2, because we skip situations in which new moments of time are not in any
relationship earlier-later with other moments. A change in the set of moments of time therefore entails a
change in the relationship between the moments of time. It is not the other way round. Changing the
relationship between the moments of time does not have to involve changing the set of time moments.
In the state of knowledge with no less level of knowledge, new relationships earlier-later can occur between
time moments in the state of knowledge with a lower level of knowledge. Therefore, fulfillment of
condition 2 does not entail fulfillment of condition 1. Similarly, fulfillment of condition 3 does not entail
fulfillment of condition 1 or 2, because new facts may be known without new time moments or new
relationships earlier-later.

Each moment is assigned a non-empty set of known events. If there are new moments, there are also
new facts known. The fulfillment of condition 1 implies the fulfillment of condition 3.
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The existence of new relationships earlier-later, on the other hand, entails the existence of new facts
known at the times in which new relationships earlier-later take place. Thus, as in the case of condition 1,
the fulfillment of condition 2 implies the fulfillment of condition 3.

We have two types of time. The first is the time that is assigned to the state of knowledge. It is a
structure consisting of a set of moments of time and relationship earlier-later of a given state of knowledge.
The other is time that is not relativized to any state of knowledge. This time is the sum of the times
assigned to all possible states of knowledge.

We write theese intuitions in a formal way.

• I is a non-empty set (indexes of state of knowledge).
• Ti (i ∈ I) is a non-empty set (of moments in the state of knowledge indexed by i).
• Ri(⊆ Ti × Ti) is a binary relation defined on a set of moments of time in the state of knowledge

indexed by i. Relation Ri is understood as the relation earlier-later on the set of moments of time of
state of knowledge indexed by i.

• Ti = 〈Ti, Ri〉. It is a time in the state of knowledge indexed by i.
• T =

⋃
i∈I

Ti is a set of all time moments existing in any state of knowledge.

• R =
⋃
i∈I

Ri is a binary relation on the set T. This relation is understood as the earlier-later relation for a

time not relativized to any state of knowledge. We note that R ⊆ T × T.
• T = 〈T, R〉 it is a time not relativized to any state of knowledge.
• Vi ⊆ Ti × 2AP , where i ∈ I. Vi is a function that assigns t ∈ Ti subsets Vi(t) to a set of sentence letters.
• F = {Vi : i ∈ I} is a set of valuations.
• mi = 〈Ti, Ri, Vi〉 where i ∈ I. (mi is the state of knowledge indexed by i.)

• M = {〈Ti, Ri, Vi〉 : Vi ∈ F , i ∈ I}, or M = {mi : i ∈ I}. M is a model based on the T and class
F function.

We define the relationship ≤ (⊆M×M)

Definition 11. For any i, j ∈ I :
mi ≤ mj iff

(
Ti ⊆ Tj and Ri ⊆ Rj and for any t ∈ Ti : Vi(t) ⊆ Vj(t)

)
.

That for the states of knowledge mi, mj the relation ≤ (mi ≤ mj) is understood as follows: state of
knowledge mj has no lower level of knowledge than the state of knowledge mi.

The relationship ≤ is determined by the inclusions of a set of moments of time, the relationship
between the moments of time and sets of events known at particular moments of time. The ≤ relation is
therefore reflexive and transitive.

Theorem 10 ([4]). For any mi(∈M) : mi ≤ mi.

Theorem 11 ([4]). For any mi, mj, mk(∈M) :

if (mi ≤ mj and mj ≤ mk), then mi ≤ mk.

The relationship ≤ partially organizes the set of states of knowledge. In the states of knowledge,
various relationships may occur between sets of time moments, earlier-later relations and valuations. Let
us consider some of them.

The first possible situation is:
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Ti = Tj and Ri = Rj and ∀
t∈Ti

(
Vi(t) ⊆ Vj(t)

)
.

This situation occurs when sets of time moments of states of knowledge mi and mj are the same(
Ti = Tj

)
. The relations

(
Ri = Rj

)
are the same in both states of knowledge. The state of knowledge mj,

as a state of knowledge with no lower level of knowledge than the state of knowledge mi, is created by
changing the value of the function Vi that assigns moments to subsets of the set AP . In other words,
in this case, the state of knowledge about a not lower level of knowledge is created by increasing the
amount of facts known at particular times.

The second possible situation may be as follows:

Ti ⊆ Tj, Ri ⊆ Rj and ∀
t∈Ti

(
Vi(t) = Vj(t)

)
.

In this case, the mj, as a state of knowledge with not lesser level of knowledge than the mi, is created
by adding to the structure of the state of knowledge mi new moments of time. For any time t (∈ Ti)

does not change the set Vi (t). The change in the level of knowledge is that in the state of knowledge mj
new time moments appear (in the future or in the past). Due to the new time moments, in the state of
knowledge mj all the components change. The set of time moments changes. The relation earlier-later is
changing, because certain time moments of the state of knowledge mi will be in relation earlier-later with
new time moments. The evaluating function is also changing, assigning subsets of the sentence letter set
to moments of time because its domain is changing (subsets of the set of sentence letters will be assigned
new time moments).

Yet another option is:

Ti = Tj, Ri ⊆ Rj and ∀
t∈Ti

(
Vi(t) ⊆ Vj(t)

)
.

It may also be that the change in the level of knowledge of the state of knowledge does not consist of
changing the set of time moments known in the state of knowledge mi but on the change of the property
of time in the state of knowledge mi. In other words, the change of ownership of the relationship in this
state of knowledge. Such a change, however, entails a change in the number of facts known at these times.

Further states of knowledge - with an increasingly higher level of knowledge—can arise by increasing
the level of knowledge regarding the various components of the state of knowledge.

To shorten the entries we will introduce the designation:
Mark
m∗i (= 〈T∗i , R∗i , V∗i 〉) (where i ∈ I ) is any mj (∈M) such that mi ≤ mj.

Definition 12 (the truth of a formula in the state of knowledge at some moment of time). The truth of the
formula ϕ(∈ FOR(LIKt)) in the model M, state of knowledge mi(= 〈Ti, Ri, Vi〉), at the moment t(∈ Ti) we define
as follows:
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1. M, mi, t |= ϕ ≡ ϕ ∈ Vi(t), if ϕ ∈ AP ,

2. M, mi, t |= ¬ϕ ≡ for any m∗i ∈M : M, m∗i , t 2 ϕ

3. M, mi, t |= ϕ ∨ ψ ≡ M, mi, t |= ϕ or M, mi, t |= ψ,

4. M, mi, t |= ϕ ∧ ψ ≡ M, mi, t |= ϕ and M, mi, t |= ψ,

5. M, mi, t |= ϕ→ ψ ≡ for any m∗i ∈M : (M, m∗i , t 2 ϕ or M, m∗i , t |= ψ),

6. M, mi, t |= Fϕ ≡ there exists t′ ∈ Ti, tRit′ : M, mi, t′ |= ϕ,

7. M, mi, t |= Gϕ ≡ for any m∗i (∈M), for any t′(∈ T∗i ) such that tR∗i t′: M |= m∗i , t′ϕ,

8. M, mi, t |= Pϕ ≡ there exists t′ ∈ Ti, t′Rit : M, mi, t′ |= ϕ,

9. M, mi, t |= Hϕ ≡ for any m∗i (∈M), for any t′(∈ T∗i ) such that t′R∗i t: M |= m∗i , t′ϕ,

The necessary condition for the sentence Fϕ to be true in the state of knowledge mi, at the time of t
(∈ Ti) is the existence in the time structute of the state of knowledge mi the moment t′ (∈ Ti) , later than t
(tRit′), in which the sentence ϕ is true. If such a moment exists in the structure of time of mi, then from the
definition of the relationship ≤ and the theory of multiplicative properties of inclusions it follows that
such a moment also exists in the structure of time of each state of knowledge with a level of knowledge
not less than the level of state of knowledge mi. Hence verification of the truth of the sentence Fϕ in the
state of knowledge mi can be limited to the state of knowledge mi. Please note that if the sentence Fϕ is
not true at the time t it does not mean that in t the sentence F¬ϕ is true.

For the G operator the situation is different. According to understanding the G operator, the sentence
Gϕ reads: it will always be in the future that ϕ. For the sentence Gϕ to be true in the state of knowledge mi
at t (∈ Ti), it is necessary that the sentence ϕ is true in any state of knowledge m∗i at any time t′

(
∈ T∗i

)
later than t (tR∗i t′). The truth of the sentence Gϕ cannot be considered only within the temporal limits of
a given state of knowledge. Just because the sentence ϕ is always true in the future means that ϕ is true at
any point in the future. Since the state of knowledge mi is assigned only a certain fragment of the time
structure, when defining the concept of the truth for a sentence built using the operator G, all states of
knowledge with a level of knowledge not lower than the level of knowledge of state mi .

If the definition of the truth of the sentence Gϕ were in the form that was adopted in the system, e.g.,
in the system Tm [5] (intuitionistic temporal logic of unchanging time (By unchanging time (in accepted
terminology) is understood a time such that for any i, j ∈ I: (Ti = Tj and Ri = Rj).)), i.e.,

M, mi, t |= Gϕ iff for any t′ ∈ Ti, such that tRit′ : M, mi, t′ |= ϕ

this would lead to contradictions. It would be possible that in some state of knowledge mi would occur at
the moment t

M, mi, t |= Gϕ. (1)

and at some level of knowledge mj, with a level of knowledge not lesser than the level of knowledge of
the state of knowledge mi, i.e., mi ≤ mj, there would be a moment t1

(
∈ Tj

)
such that: t1 /∈ Ti, tRjt1 and

M, mj, t1 2 ϕ. Therefore, we have:
M, mj, t 2 Gϕ. (2)

What is known does not cease to be known when the level of knowledge increases. Since the state of
knowledge of mj is a state of knowledge with a level of knowledge of not less than the level of knowledge
of the state of mi, so that M, mi, t |= Gϕ we conclude that M, mj, t |= Gϕ. This is contrary to (2).
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The understanding of the truth of the formula Gϕ, in the state of knowledge mi, at the moment t
excludes the situation described above.

We will now give some basic definitions.

Definition 13. M |= ϕ, ϕ is true in the model M, iff for any state of knowledge mi(∈ M) and for any
t(∈ Ti) : M, mi, t |= ϕ.

Definition 14. T |= ϕ, ϕ is true in time T, iff ϕ is true in the model M for any non-empty class F (= {Vi : i ∈ I})
of function.

Definition 15. |= ϕ, ϕ is true iff for any T : T |= ϕ.

In some sciences (e.g., empirical sciences) it happens that sentences considered to be true at some time,
with the development of scientific theories, turn out to be false. It happens that certain laws of empirical
sciences in force in a given period are subject to verification and are changed, and sometimes even rejected,
as laws that inaccurately or even misrepresent the state of the world. Such verification is possible due
to the increase in the level of knowledge. In our terminology, we would write this fact as follows: the
sentence true in some state of knowledge mi, in some state of knowledge which level of knowledge is not
lesser than the level of knowledge of mi may not be true. In the IKt system, this is not possible. What is
true in the state of knowledge mi is also true in any state of knowledge, with a level of knowledge not
lesser than the level of knowledge of mi.

There are many differences between temporal logic systems based on classical logic and temporal
logic systems based on intuitionistic logic. One of them is that failing to the truth of ϕ does not entail the
truth of ¬ϕ.

Let us consider the following situation. The sentence ϕ is not known in the state of knowledge mi at
the moment t(∈ Ti), while is known at this moment in a state of knowledge mj, whose level knowledge is
not lesser than the level of knowledge in the state mi. If the sentence ϕ is not known at the time t in the state
mi, it would be considered that at the time t the sentence ¬ϕ is known, then—according to the accepted
condition of fulfilling ¬ϕ - the sentence ϕ could not be known at the time of t in any state of knowledge
with a level of knowledge not lesser than the level of knowledge of mi. In particular, the sentence ϕ could
not be known at the time t, in the state of knowledge mj. This leads to a contradiction, since we get that
ϕ is known at the time of t, in the state mj, and we conclude that it is known and unknown at the same
time. When the sentence ϕ is known at some moment of time, in some state of knowledge mi, then in any
state of knowledge with the level of knowledge not lesser than the level of knowledge of state mi at this
moment the sentence ϕ is known. However, when ¬ϕ is not known at some moment of time, it does not
mean that at this moment, in any state of knowledge with a level of knowledge no lesser than the level of
knowledge of mi, is known ϕ. It only means that it is not true that in every state of knowledge in which
the level of knowledge is not lesser than the level of knowledge of mi, ϕ is currently unknown.

We will prove a lemma that expresses the monotonicity of knowledge in the IKt system. What is
known in the state of knowledge mi is also known in every state of knowledge whose level of knowledge
is not lesser than the level of knowledge of the state mi.

Lemma 1. For any formula ϕ(∈ FOR(LIKt)), for any mi, mj(∈M) :

if (mi ≤ mj and M, mi, t |= ϕ), then M, mj, t |= ϕ.

Proof. We will prove by induction, due to the length of the formula ϕ. Suppose that mi ≤ mj.
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(ϕ ∈ AP) Let us first consider the case when ϕ is a sentence letter.
By Definition 11 if mi ≤ mj, then for any t ∈ Ti holds

Vi(t) ⊆ Vj(t). (3)

If M, mi, t |= ϕ, then from the Definition 12

ϕ ∈ Vi(t). (4)

From (3) and (4) we receive
ϕ ∈ Vj(t). (5)

Because ϕ is a sentence letter, so from (5) and the definition of 12 we have M, mj, t |= ϕ.

Induction assumption: Let ϕ, ψ be such that :

(a) if M, mi, t |= ϕ, then M, mj, t |= ϕ,
and
(b) if M, mi, t |= ψ, then M, mj, t |= ψ.

We will consider complex formulas built from the formulas ϕ, ψ using sentence connectives and
temporal operators.

(¬ϕ) Let us assume that M, mi, t |= ¬ϕ.
From the definition of the condition for negation (Definition 12) we have:

for any mk, such that mi ≤ mk : M, mk, t 2 ϕ. (6)

Let us consider any state of knowledge ml with a level of knowledge not lesser than the level of
mj, i.e.,

mj ≤ ml . (7)

From (7), the assumption that mi ≤ mj and the transitivity of the ≤, we have that mi ≤ ml . Therefore,
from (6) we have: M, ml , t 2 ϕ. Because ml is any state of knowledge whose level of knowledge is
not lesser than the level of knowledge of mj, we get:

for any ml such that mj ≤ ml we have: M, ml , t 2 ϕ. (8)

From (8) and the condition for negation (Definition 12) we have: M, mj, t |= ¬ϕ.
(ϕ ∧ ψ) Let us assume that M, mi, t |= ϕ ∧ ψ.

So from the condition for the conjunction (Definition 12) we have:

M, mi, t |= ϕ, (9)

and
M, mi, t |= ψ. (10)

From (9) and point a) of the induction assumption we get:

M, mj, t |= ϕ. (11)
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Similarly, from (10) and point b) of the induction assumption we get:

M, mj, t |= ψ. (12)

From (11), (12) and the condition for the conjunction (Definition 12) we get M, mj, t |= ϕ ∧ ψ.
(ϕ ∨ ψ) Reasoning analogous to conjunction.
(ϕ→ ψ) Let us assume that M, mi, t |= ϕ→ ψ.

From the condition for the implication (Definition 12) we have:

for any m∗i (∈M) : (M, m∗i , t 2 ϕ or M, m∗i , t |= ψ), (13)

Let us consider the state of knowledge ml with a level of knowledge not lesser than the level of
knowledge of mj, i.e.,

mj ≤ ml . (14)

From (14), the assumption that mi ≤ mj and the transitivity of the relationship≤we get that mi ≤ ml .
From (13) we have: M, ml , t 2 ϕ or M, ml , t |= ψ. Because ml is any state of knowledge in which the
level of knowledge is not lesser than the level of knowledge in the state mj, we get:

for any ml such that mj ≤ ml : M, ml , t 2 ϕ or M, ml , t |= ψ. (15)

From (15) and the condition for the implications (Definition 12) we get M, mj, t |= ϕ→ ψ.

(Gϕ) Suppose M, mi, t |= Gϕ. From the condition for the G operator (Definition 12) we have:

for any m∗i (∈M), for any t1(∈ T∗i ) such that tR∗i t1 : M, m∗i , t1 |= ϕ, (16)

Let us consider any state of knowledge ml witch a level of knowledge is not lesser than the level of
knowledge of the state mj, i.e.,

mj ≤ ml . (17)

From (17), the assumption that mi ≤ mj and the transitivity of the relationship≤, we get that mi ≤ ml .
Som from (16) we get :

for any t1(∈ Tl) such that tRlt1 holds: M, ml , t |= ϕ. (18)

Because the state of knowledge ml is a state of knowledge with a level of knowledge not lower than
the level of knowledge in the state mj we have:

for any ml , for any t1(∈ Tl) if (mj ≤ ml and tRlt1), then M, ml , t1 |= ϕ. (19)

From (19) and the condition for the G operator (Definition 12) we obtain: M, mj, t |= Gϕ
(Hϕ) Reasoning similar to the G operator.
(Fϕ) Let us assume that M, mi, t |= Fϕ. From the condition for the operator F (Definition 12) there is the

moment t1(∈ Ti), tRit1, such that:
M, mi, t1 |= ϕ. (20)

From (2) and point a) of the induction assumption we have:

M, mj, t1 |= ϕ. (21)
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Assuming that mi ≤ mj and the definition of 11 we get that:

t ∈ Tj, t1 ∈ Tj, tRjt1. (22)

From (21), (22) and the condition for the F operator (Definition 12) we obtain M, mj, t |= Fϕ.
(Pϕ) Reasoning similar to the F operator.

We have therefore shown that what is true in a given state of knowledge mi it is also true in any state
of knowledge in which the level of knowledge is not lesser than the level of knowledge in the state mi.

7. Simplified Axiomatics IKt

The axioms proposed by Ewald IKt are dependent axioms. Some axioms can be derived from other
axioms. Proofs of dependencies of selected axioms were provided by Surowik [6]. We offer a simplified set
of axioms for IKt:

A1) ϕ, if ϕ is a tautology of the intuitionistic logic of the language LIKt .
(A2) G (ϕ→ ψ)→ (Gϕ→ Gψ) (A2’) H (ϕ→ ψ)→ (Hϕ→ Hψ)

(A3) F (ϕ ∨ ψ)→ (Fϕ ∨ Fψ) (A3’) P (ϕ ∨ ψ)→ (Pϕ ∨ Pψ)

(A4) G (ϕ→ ψ)→ (Fϕ→ Fψ) (A4’) H (ϕ→ ψ)→ (Pϕ→ Pψ)

(A5) Fϕ→ ¬G¬ϕ (A5’) Pϕ→ ¬H¬ϕ

(A6) FHϕ→ ϕ (A6’) PGϕ→ ϕ

9A7) ϕ→ GPϕ (A7’) ϕ→ HFϕ

(A8) (Fϕ→ Gψ)→ G (ϕ→ ψ) (A8’) (Pϕ→ Hψ)→ H (ϕ→ ψ)

Rules: MP, RH, RG.

We will prove that this axiomatics is equivalent to the axiomatics proposed by Ewald. To demonstrate
the derivability of some IKt axioms with the other axioms of this system, the following Theorems will
be useful.

Theorem 12.

(a) The RRG rule :
ϕ→ ψ

Gϕ→ Gψ
is a rule of IKt.

(b) The RRH rule :
ϕ→ ψ

Hϕ→ Hψ
is a rule of IKt.

Proof. We will prove only (a). Proof (b) is analogous.

(a)

1. `IKt ϕ→ ψ assumption
2. `IKt G(ϕ→ ψ) 1,RG
3. `IKt G(ϕ→ ψ)→ (Gϕ→ Gψ) A2
4. `IKt Gϕ→ Gψ 2,3,MP
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Theorem 13.

(a) The RF rule :
ϕ→ ψ

Fϕ→ Fψ
is a rule of IKt.

(b) The RP rule :
ϕ→ ψ

Pϕ→ Pψ
is a rule of IKt.

The proof of this theorem is obtained in a manner analogous to the proof of the theorem of the
previous one, with the difference that instead of the axiom A2 (A2 ’) we use the A4 (A4’) axiom.

We will show that in IKt’ “old” axioms 3, 3′, 6, 6′, 7, 7′, 11, 11′ are inferable. The implications of the
“old” 4 and 4′ axioms are also inferable.

Lemma 2. `IKt G (ϕ ∧ ψ)↔ (Gϕ ∧ Gψ)

Proof.

(A) `IKt G (ϕ ∧ ψ)→ (Gϕ ∧ Gψ)

1. `IKt (ϕ ∧ ψ)→ ϕ A1
2. `IKt (ϕ ∧ ψ)→ ψ A1
3. `IKt G(ϕ ∧ ψ)→ Gϕ 1, RRG
4. `IKt G(ϕ ∧ ψ)→ Gψ 2,RRG

5. `IKt

(
G (ϕ ∧ ψ)→ Gϕ

)
→
((

G (ϕ ∧ ψ)→ Gψ
)
→
(
G (ϕ ∧ ψ)→ (Gϕ ∧ Gψ)

))
A1

6. `IKt

(
G (ϕ ∧ ψ)→ Gψ

)
→
(
G (ϕ ∧ ψ)→ (Gϕ ∧ Gψ)

)
3,5,MP

7. `IKt G(ϕ ∧ ψ)→ (Gϕ ∧ Gψ) 4,6,MP

(B) `IKt (Gϕ ∧ Gψ)→ G (ϕ ∧ ψ)

1. `IKt ϕ→
(
ψ→ (ϕ ∧ ψ)

)
A1

2. `IKt Gϕ→ G
(
ψ→ (ϕ ∧ ψ)

)
1,RRG

3. `IKt G
(
ψ→ (ϕ ∧ ψ)

)
→
(
Gψ→ G(ϕ ∧ ψ)

)
A2

4. `IKt Gϕ→
(
Gψ→ G(ϕ ∧ ψ)

)
2,3,SYLL

5. `IKt

(
Gϕ→

(
Gψ→ G(ϕ ∧ ψ)

))
→
(
(Gϕ ∧ Gψ)→ G(ϕ ∧ ψ)

)
A1

6. `IKt (Gϕ ∧ Gψ)→ G(ϕ ∧ ψ) 4,5,MP

With (A) and (B) we get a thesis.

The next lemma is proved similarly.

Lemma 3. `IKt H (ϕ ∧ ψ)↔ (Hϕ ∧ Hψ)

Lemma 4. `IKt (Fϕ ∨ Fψ)→ F (ϕ ∨ ψ)

Proof.

1. `IKt ϕ→ (ϕ ∨ ψ) A1
2. `IKt ψ→ (ϕ ∨ ψ) A1
3. `IKt Fϕ→ F (ϕ ∨ ψ) 1,RF
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4. `IKt Fψ→ F (ϕ ∨ ψ) 2,RF

5. `IKt

(
Fϕ→ F (ϕ ∨ ψ)

)
→
((

Fψ→ F (ϕ ∨ ψ)
)
→
(
(Fϕ ∨ Fψ)→ F (ϕ ∨ ψ)

))
A1

6. `IKt

(
Fψ→ F (ϕ ∨ ψ)

)
→
(
(Fϕ ∨ Fψ)→ F (ϕ ∨ ψ)

)
3,5,MP

7. `IKt (Fϕ ∨ Fψ)→ F (ϕ ∨ ψ) 4,6,MP

Lemma 5. `IKt (Pϕ ∨ Pψ)→ P (ϕ ∨ ψ)

Proof analogous to the proof of the previous lemma.

Lemma 6. `IKt (Gϕ ∧ Fψ)→ F(ϕ ∧ ψ)

Proof.

1. `IKt ϕ→
(
ψ→ (ϕ ∧ ψ)

)
A1

2. `IKt Gϕ→ G
(
ψ→ (ϕ ∧ ψ)

)
1, RRG

3. `IKt G
(
ψ→ (ϕ ∧ ψ)

)
→
(

Fψ→ F (ϕ ∧ ψ)
)

A4
4. `IKt Gϕ→

(
Fψ→ F (ϕ ∧ ψ)

)
2,3, SYLL

5. `IKt

(
Gϕ→

(
Fψ→ F (ϕ ∧ ψ)

))
→
(
(Gϕ ∧ Fψ)→ F(ϕ ∧ ψ)

)
A1

6. `IKt (Gϕ ∧ Fψ)→ F(ϕ ∧ ψ) 4,5, MP

Lemma 7. `IKt (Hϕ ∧ Pψ)→ P (ϕ ∧ ψ)

Proof analogous to the proof of the previous lemma.

Lemma 8. `IKt G¬ϕ→ F¬ϕ

Proof.

1. `IKt Fϕ→ ¬G¬ϕ A5
2. `IKt (Fϕ→ ¬G¬ϕ)→ (G¬ϕ→ ¬Fϕ) A1
3. `IKt (G¬ϕ→ ¬Fϕ) 1,2,MP

Lemma 9. `IKt H¬ϕ→ ¬Pϕ

Proof analogous to the proof of the previous lemma.

Lemma 10. `IKt F (ϕ→ ψ)→ (Gϕ→ Fψ)

Proof.

1. `IKt ϕ→
(
(ϕ→ ψ)→ ψ

)
A1

2. `IKt Gϕ→ G
(
(ϕ→ ψ)→ ψ

)
1,RRG

3. `IKt G
(
(ϕ→ ψ)→ ψ

)
→
(

F (ϕ→ ψ)→ Fψ
)

A4
4. `IKt Gϕ→

(
F (ϕ→ ψ)→ Fψ

)
2,3, SYLL
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5. `IKt

(
Gϕ→

(
F (ϕ→ ψ)→ Fψ

))
→
(

F (ϕ→ ψ)→
(
Gϕ→ Fψ

))
A1

6. `IKt F (ϕ→ ψ)→
(
Gϕ→ Fψ

)
4,5, MP

Lemma 11. `IKt P (ϕ→ ψ)→ (Hϕ→ Pψ)

Proof analogous to the proof of the previous lemma.
We will show that the ” new ” A5 and A5′ axioms are we can derive from the’ ’old’ ’8 and 8′ axioms.

Lemma 12. G¬ϕ→ ¬Fϕ `IKt Fϕ→ ¬G¬ϕ

Proof.

1. `IKt G¬ϕ→ ¬Fϕ assumption
2. `IKt (G¬ϕ→ ¬Fϕ)→ (Fϕ→ ¬G¬ϕ) axiom 1
3. `IKt (Fϕ→ ¬G¬ϕ) 1,2,MP

It is likewise proved that:

Lemma 13. H¬ϕ→ ¬Pϕ `IKt Pϕ→ ¬H¬ϕ

Thus, we have shown that the given axioms are equivalent. In further considerations we will use
“new” axiomatics of IKt.

8. The Adequacy of IKt Relative to Modified Semantics

The natural question is the question about the relationship between modified semantics and the
assumed set of axioms for IKt.

Theorem 14. The IKt axioms are true in any model, and the IKt inference rules are infallible.

Proof. We will prove only A2′, A4′ axioms and RH rule. Proofs for the other rules and axioms is carried
out in analogous manner.

A2’ For any M, mi(∈M), and t(∈ Ti): M, mi, t |= H (ϕ→ ψ)→ (Hϕ→ Hψ) .

Suppose for some M, mi (∈M) and t (∈ Ti) : M, mi, t 2 H (ϕ→ ψ)→ (Hϕ→ Hψ) .

Therefore, from the condition of the truth for the implications, there is a state of knowledge mj,
mi ≤ mj, such that:

M, mj, t |= H (ϕ→ ψ) , (23)

M, mj, t 2 Hϕ→ Hψ. (24)

From (24) and the condition of the truth for the implications, in a certain state of knowledge mk,
with a level of knowledge not lesser than the level of knowledge of the state mj, i.e., such that
mj ≤ mk:

M, mk, t |= Hϕ, (25)

M, mk, t 2 Hψ. (26)
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From (25) and the condition of the truth for the H operator we get:

for any state of knowledge ml such that mk ≤ ml and

for any t1 ∈ Tl such that t1Rlt holds: M, ml , t1 |= ϕ. (27)

From (26) and the condition of the truth for the H operator, there is a state mp sucht that mk ≤ mp)

and there is a moment t2 ∈ Tp such that t2Rpt, in which:

M, mp, t2 2 ψ. (28)

Because mk ≤ mp and t2Rpt therefore from (27) we have that at the moment t2 holds M, mp, t2 |= ϕ.
Hence, from (28) and the condition of the truth of the implications we get:

M, mp, t2 2 ϕ→ ψ. (29)

From (23) and the condition of the truth of the operator H we have:

for any mr such that mj ≤ mr and

for any t3 ∈ Tr such that t3Rrt holds : M, mr, t3 |= ϕ→ ψ. (30)

Because: mj ≤ mk, mk ≤ mp, so from the transitivity of the relationship ≤ we get mj ≤ mp.
The moment t2 is such that t2Rpt. Therefore, from (30) we have:

M, mp, t2 |= ϕ→ ψ.

This is contrary to 29.
A4’ For any M, mi (∈M) and t (∈ Ti): M, mi, t |= H (ϕ→ ψ)→ (Pϕ→ Pψ) .

Suppose for some M, mi(∈M) and t (∈ Ti) M, mi, t 2 H (ϕ→ ψ)→ (Pϕ→ Pψ) .

Thus, from the condition of the truth of the implications, in a certain state of knowledge mj, such that
mi ≤ mj we have:

M, mj, t |= H (ϕ→ ψ) , (31)

M, mj, t 2 Pϕ→ Pψ. (32)

From (32) and the condition of the truth of the implications, in some state of knowledge mk, such that
mj ≤ mk :

M, mk, t |= Pϕ, (33)

and
M, mk, t 2 Pψ. (34)

From (33) and the condition of the truth of the P operator we have:

there exists t1 (∈ Tk) , t1Rkt such that M, mk, t1 |= ϕ. (35)

From (34) and the condition of the truth of the P operator we obtain:

does not exist moment of time t2 (∈ Tk) , t2Rkt, such that M, mk, t2 |= ψ. (36)
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Let us consider the moment t1 satisfying (35). Because t1Rkt, so from (36) we have:

M, mk, t1 2 ψ. (37)

If M, mk, t1 |= ψ, it would be against (36).

From (35), (37) and the condition of the truth of the implications, we get that M, mk, t1 2 ϕ → ψ.
From (31) and condition the truth of the operator H we have:

for any ml such that mj ≤ ml and for any t3 (∈ Tl) such that t3Rlt : M, ml , t3 |= ϕ→ ψ. (38)

Because mj ≤ mk, t1Rkt and M, mk, t1 2 (ϕ→ ψ) , so we get a contradiction with (38).
RH If M |= ϕ, then M |= Hϕ.

Let us assume that M |= ϕ. So for any mi and for any t(∈ Ti) holds M, mi, t |= ϕ. So especially for
any t1(∈ Ti) such that t1Rit : M, mi, t1 |= ϕ. So for any t(∈ Ti) holds M, mi, t |= Hϕ. Because we
were considering any mi, therefore M |= Hϕ.

Adequacy IKt with respect to modified semantics was demonstrated by Surowik [4].

Theorem 15. Σ `IKt ϕ iff Σ |=IKt ϕ.

The proof of this theorem is similar to the proof of the adequacy theorem demonstrated by Ewald
in [3].

9. Mutual Undefinability in IKt Operators H, P and G, F

We will now prove theorems that show some special properties of the IKt system, essentially
distinguishing this system from systems built on the basis of classical logic. For the formula to be
the tautology of the IKt system, it needs to be true at any time, in any state of knowledge. To show that a
formula is not true, it is enough to indicate the state of knowledge and the moment in which this formula
is not true.

We will show that some relationships between the operators H and P and G and F holds in the system
Kt but do not occur between the equivalents of these operators in the system IKt.

Theorem 16.

(a) 2IKt ¬P¬p→ Hp,
(b) 2IKt ¬H¬p→ Pp
(c) 2IKt ¬Hp→ P¬p
(d) 2IKt ¬F¬p→ Gp
(e) 2IKt ¬G¬p→ Fp

Proof.

(a) Let T = {t1, t2} , R = {(t1, t2)} . Let I be a set of indexes. For any i: Ti = T, Ri = R. Let k, k > 1,
be a certain index of state of knowledge. Let F = {Vi}i∈I be a class of functions satisfied the
following conditions:

for any i such that i ≤ k holds p /∈ Vi(t1), (39)
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and
for any i such that k < i holds p ∈ Vi(t1). (40)

The Vi valuations are therefore selected so that the sentence p is true at the time of t1 in the states of
knowledge with index not greater than k and at the same time it was not true at the time of t1 in the
states of knowledge with index greater than k.

Let T = 〈T, R〉. Let M = {mi : i ∈ I} . From the construction of the M model, we get that there are
states of knowledge in the M which level of knowledge is not lesser than the level of knowledge of m1

in which at the moment t1 p is true and there are states of knowledge with a level of knowledge not
lesser than the level of knowledge of m1, in which at the moment t1 is not true that p. Therefore, it is not
true that in any state of knowledge m∗1 (∈M) holds M, m∗1 , t1 2 p. Therefore, by Definition 12 we get
M, m1, t1 2 ¬p. From the construction of the M model we get that in any state of knowledge m∗1 (∈M)

holds M, m∗1 , t1 2 ¬p. Because t1R∗1t2, therefore, by the Definition 12 we have M, m∗1 , t2 2 P¬p. By the
Definition 12 we get

M, m1, t2 � ¬P¬p. (41)

Because the moment t1 is such that t1R1t2 and M, m1, t1 2 p so by the Definition 12

M, m1, t2 2 Hp. (42)

From (41), (42) and the Definition 12: we have M, m1, t2 2 ¬P¬p→ Hp. Therefore 2IKt ¬P¬p→ Hp.

(b) The M model proposed in the proof of a) will be used to prove that ¬H¬p→ Pp is not a tautology
of IKt. Please note that from the construction of the model and by Definition 12 we have M, m∗1 , t1 2
¬p. Because in any state of knowledge m∗1 (∈M) the only time before t2 is the time t1, so by the
Definition 12 for any m∗1 holds M, m∗1 , t2 2 H¬p. Hence, by the Definition 12

M, m1, t2 � ¬H¬p. (43)

From the construction of the model M we have M, m1, t1 2 p. Because t1R1t2, therefore by the
Definition 12

M, m1, t2 2 Pp. (44)

From (43), (44) and the Definition of 12 we obtain: M, m1, t2 2 ¬H¬p → Pp. Therefore
2 IKt¬H¬p→ Pp.

(c) We will now show that ¬Hp → P¬p is not a tautology of IKt. Let T1 = {t1, t2} , R1 = {(t2, t1)} .
Let the function V1 be such that p 6∈ V1 (t2) . States of knowledge in which the level of knowledge is
not lower than the level of m1 we construct as follows:

Ti+1 = Ti ∪ {ti+2} , (45)

Ri+1 = Ri ∪ {(ti+2, t1)} . (46)

Vi+1 is such that for t 6= ti+2 : p ∈ Vi+1 (t) , and for t = ti+2 : p /∈ Vi+1 (t) . (47)
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State of knowledge mi+1 is an ordered triple 〈Ti+1, Ri+1, Vi+1〉. Let F = {Vi}i∈I will be a class of
functions satisfying the condition (47), T = 〈⋃

i∈I
Ti,

⋃
i∈I

Ri〉, M = {mi : i ∈ I} , the states of knowledge

mi are constructed in accordance with conditions (45), (46) and (47). From the construction of the M

model we get that in every state of knowledge m∗1 (∈M), there is a moment t, earlier than t1 such
that tR∗1t1 in which such that M, m∗1 , t 2 p. So by the Definition 12 for any state of knowledge m∗1 we
have M, m∗1 , t1 2 Hp. From the definition of 12 we have that:

M, m1, t2 � ¬Hp. (48)

From the construction of the model we have that if at some moment of time t, in any state of
knowledge mi (∈M) is that M, mi, t 2 p, then in every state of knowledge m∗i (∈M) holds M, m∗i , t �
p. In the state of knowledge m1 (∈M) the only time before t1 is the moment t2. The moment t2 is
such that p /∈ V1 (t2) . In the classical model, this would suffice to say that M, m1, t2 � ¬p. This is not
the case in the temporal logic model built upon intuitionistic logic. From the way of constructing
states of knowledge with no lower level of knowledge than the level of knowledge in the state m1 we
have p ∈ V2 (t2) . Therefore, by the Definition 12

M, m1, t2 2 ¬p. (49)

By the Definition 12 we have M, m1, t1 2 ¬Hp→ P¬p.

We construct counter-examples for d), e) and f) in an analogous way.

In the IKt system, between the G and F and H and P operators there are no relationships usually
found in temporal logic systems that are based on classical logic. However, the above conclusion is
not sufficient to state that the operators G and F as well as H and P are not mutually definable in IKt.
The conclusion is only that they do not occur between these operators definition relationships the same
as those in classical tense logics. We will show that in intuitionistic temporal logic, temporal operators
are not definable as they are in temporal logics based on classical propositional logic. We will show that
intuitionistic temporal operators are not definable in any other way using sentence connectives and other
intuitionistic temporal operators.

To show that a temporal operator is not definable in the IKt, two structures should be indicated such
that the sentence with the considered operator at a moment t in one structure is true, and it is false in the
other. On the other hand, all sentences in which the operator does not appear have the same logical value
in both structures at the moment t.

Theorem 17 ([4]). The intuitionistic temporal operators F and G as well as P and H are not each other definable in
the IKt.

Proof. We will show first that the operator F is not definable if we use of intuitionistic sentence connectives
and other temporal operators. We will show that Fp is not equivalent to any temporal formula in which
the F operator does not occur.

F: Let T1 = {t1, t2}, T2 = {t1, t2, t3}, R1 = {(t1, t2)}, R2 = {(t1, t2) , (t1, t3)}, T = T1 ∪ T2. Let V1 : T1 →
2AP be such that p 6∈ V1 (t2) while V2 : T2 → 2AP will be such a function that: V2 (t1) = V1 (t1),
V2 (t2) = V1 (t2) ∪ {p}, V2 (t3) = V1 (t2) . Let F = {V1, V2} , m1 = 〈T1, R1, V1〉, m2 = 〈T2, R2, V2〉,
M = {m1, m2} .

By means of structural induction, it can be shown that for any ϕ without the F operator we have
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M, m1, t1 � ϕ iff M, m2, t1 � ϕ. (50)

At the same time, M, m2, t1 � Fp and M, m1, t1 2 Fp. Therefore, the F operator is not definable in IKt.
G: We will now show that the operator G is not definable if we use of intuitionistic sentence connectives

and other temporal operators. We will show that Gp is not equivalent to any temporal formula in
which the G operator is not present.
Let T1 = {t1, t2, t3}, T2 = {t1, t2, t3} , R1 = {(t1, t2)}, R2 = {(t1, t2) , (t1, t3)} , T = T1 ∪ T2. Let V1 :
T1 → 2AP will be such a function that p 6∈ V1 (t2) . Let V2 : T2 → 2AP will be such a function
that: V2 (t1) = V1 (t1) , V2 (t2) = V1 (t2) ∪ {p} , V2 (t3) = V1 (t3) , p ∈ V1 (t3) . Let F = {V1, V2} .
Let m1 = 〈T1, R1, V1〉, m2 = 〈T2, R2, V2〉. Let M = {m1, m2} . By means of structural induction, it can
be shown that for any ϕ sentence without the G operator we have:

M, m1, t1 � ϕ iff M, m2, t1 � ϕ. (51)

At the same time, M, m2, t1 � Gp and M, m1, t1 2 Gp. So the G operator is not definable in IKt.

Similarly, we can to show that P and H are not each other definable in IKt.

It is not, however, that the operators G, F, H, P are completely independent of each other. Certain
relationships between the operators H and P and G and F occur in IKt. We will prove some of them:

Theorem 18.

(a) `IKt H¬ϕ→ ¬Pϕ,
(b) `IKt Hϕ→ ¬P¬ϕ,
(c) `IKt P¬ϕ→ ¬Hϕ,
(d) `IKt G¬ϕ→ ¬Fϕ,
(e) `IKt Gϕ→ ¬F¬ϕ,
(f) `IKt F¬ϕ→ ¬Gϕ.

Proof.

(a) `IKt (H¬ϕ→ ¬Pϕ)

1. `IKt (Pϕ→ ¬H¬ϕ)→ (H¬ϕ→ ¬Pϕ) axiom 1,
2. `IKt H¬ϕ→ ¬Pϕ A5’,1,MP.

(b) `IKt Hϕ→ ¬P¬ϕ

1. `IKt ϕ→ ¬¬ϕ axiom 1,
2. `IKt H(ϕ→ ¬¬ϕ) 1,RH,
3. `IKt H(ϕ→ ¬¬ϕ)→ (Hϕ→ H¬¬ϕ) A2’,
4. `IKt Hϕ→ H¬¬ϕ 2,3,MP,
5. `IKt H¬¬ϕ→ ¬P¬ϕ case (a),
6. `IKt Hϕ→ ¬P¬ϕ 4,5, SYLL.

(c) `IKt (P¬ϕ→ ¬Hϕ)
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1. `IKt (Hϕ→ ¬P¬ϕ)→ (P¬ϕ→ ¬Hϕ) axiom 1,
2. `IKt P¬ϕ→ ¬Hϕ 1, case (b),MP.

The proofs of the cases (d), (e) and (f) are similar, so we skip them.

10. Summary

Temporal logic systems can be built in a variety of ways. They can be based on classical logic, but also,
as we presented in this article, based on intuitionistic logic. The discussed systems are minimal systems,
which means that no properties have been imposed on the time structure. One can, however, enrich these
systems with additional specific axioms, build a temporal logic systems adequate to various time structures,
e.g., reflexive, symmetrical, transitive, linear or branched. However, while in tense logic systems based on
classical logic, the thesis of logical determinism can be rejected by modifying the structure of time and
assuming, as a semantic time, a branching time into the future, in tense logics based on intuitionistic logic,
modification of the time structure is not necessary. Formulas expressing the thesis of logical determinism
are not theses of the minimal system because of its basic properties, no matter what time structure is
adopted as a semantic time.

There is a relationship between the systems being discussed. Each thesis of the IKt system is also the
thesis of Kt, so:

IKt ⊂ Kt.

In addition, as we have shown in this article, intuitionistic temporal logic can be used to represent
knowledge that changes over time. Intuitionistic logic and knowledge are closely related. This epistemic
approach is the epicenter of Brouwer’s intuitionistic explanation of truth as provability by an ideal
mathematician, or more generally by an ideal cognitive subject. Kripke’s intuitionistic models are good
tools for modelling the evolutionary learning process of the cognitive subject.

The intuitionistic temporal logic IKt has many advantages when we understand it as a formal tool
for the logical representation of knowledge changing over time. Knowledge is implemented in this
system on a semantic level in a natural way. In a natural way, by means of a set of partially ordered
states of knowledge, the way of acquiring knowledge is also modeled. However, this system has some
imperfections and limitations. The first is the limited applicability of this system. Due to the adopted
monotonicity of knowledge, i.e., a fact recognized in a given state of knowledge is known in all states of
knowledge with a not lower level of knowledge, this system is a good tool for a modelling of mathematical
or logical knowledge that changes over time.
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