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Abstract: This paper mainly deals with introducing and studying the properties of generalized nabla
differentiability for fuzzy functions on time scales via Hukuhara difference. Further, we obtain
embedding results on En for generalized nabla differentiable fuzzy functions. Finally, we prove a
fundamental theorem of a nabla integral calculus for fuzzy functions on time scales under generalized
nabla differentiability. The obtained results are illustrated with suitable examples.

Keywords: fuzzy functions time scales; Hukuhara difference; generalized nabla Hukuhara derivative;
fuzzy nabla integral

1. Introduction

The theory of dynamic equations on time scales is a genuinely new subject and the research
related to this area is developing rapidly. Time scale theory has been developed to unify continuous
and discrete structures, and it allows solutions for both differential and difference equations at a time
and extends those results to dynamic equations. Basic results in time scales and dynamic equations on
time scales are found in [1–6]. In [7], the author illustrated an example where delta derivative needs
more assumptions than nabla derivative. Some recent studies in economics [8], production, inventory
models [9], adaptive control [10], neural networks [11], and neural cellular networks [12] suggest nabla
derivative is also preferable and it has fewer restrictions than delta derivative on time scales.

On the other hand, when we expect to investigate a real world phenomenon absolutely,
it is important to think about a number of unsure factors too. To specify these vague or imprecise
notions, Zadeh [13] established fuzzy set theory. The theory of fuzzy differential equations (FDEs)
and its applications was developed and studied by Kaleva [14], Lakshmikantham and Mohapatra [15].
The concept based on Hukuhara differentiability has a shortcoming that the solution to a FDEs exists
only for increasing length of support. To overcome this shortcoming, Bede and Gal [16] studied
generalized Hukuhara differentiability for fuzzy functions. In light of this preferred advantage, many
authors [17–19] tend their enthusiasm to the generalized Hukuhara differentiability for fuzzy set
valued functions.

The calculus of fuzzy functions on time scales was studied by Fard and Bidgoli [20].
Vasavi et al. [21–24] introduced Hukuhara delta derivative, second-type Hukuhara delta derivative,
and generalized Hukuhara delta derivatives by using Hukuhara difference, and they studied
fuzzy dynamic equations on time scales. Wang et al. [25] introduced and studied almost periodic
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fuzzy vector-valued functions on time scales. Deng et al. [26] studied fractional nabla-Hukuhara
derivative on time scales. Recently, Leelavathi et al. [27] introduced and studied properties of
nabla Hukuhara derivative for fuzzy functions on time scales. However, this derivative has the
disadvantage that it exists only for the fuzzy functions on time scales which have a diameter with
an increasing length. For the fuzzy functions with decreasing length of diameter on time scales,
Leelavathi et al. [28] introduced the second-type nabla Hukuhara derivative and studied its properties.
Later, they continued to study fuzzy nabla dynamic equations under the first and second-type nabla
Hukuhara derivatives in [29] under generalized differentiability by using generalized Hukuhara
difference in [30]. Consider a simple fuzzy function F(s) = s� c, s ∈ T∩ [−2, 2], where c = (1, 2, 3) is a
triangular fuzzy number. Clearly, F(s) has decreasing length of diameter in T∩ [−2, 0] and increasing
length of diameter in T ∩ [0, 2]. Therefore, the fuzzy function F(s) is neither a nabla Hukuhara
differentiable (as defined in [27]) nor a second-type nabla Hukuhara differentiable (as defined in [28])
on T∩ [−2, 2]. In this context, it is required to define a nabla Hukuhara derivative for a fuzzy function
which may have both increasing and decreasing length of diameter on a time scale. To address this
issue, in the present work, we define a new derivative called generalized nabla derivative for fuzzy
functions on time scales via Hukuhara difference and study their properties. In [31], the authors
introduced a nabla integral for fuzzy functions on time scales and obtained fundamental properties.
In the present work, we continue to study nabla integral for fuzzy functions on time scales and prove a
fundamental theorem of nabla integral calculus for generalized nabla differentiable functions.

The rest of this paper is arranged as follows. In Section 2, we present some basic definitions,
properties, and results relating to the calculus of fuzzy functions on time scales. In Section 3,
we establish the nabla Hukuhara generalized derivative for fuzzy functions on time scales and obtain
its fundamental properties. The results are highlighted with suitable examples. In Section 4, we prove
an embedding theorem on En and obtain the results connecting to generalized nabla differentiability
on time scales. Using these results, we finally prove the fundamental theorem of nabla integral calculus
for fuzzy functions on time scales under generalized nabla differentiability and a numerical example is
provided to verify the validity of the theorem.

2. Preliminaries

Let <k(<n) be the family of all nonempty convex compact subsets of <n. Define the set addition
and scalar multiplication in <k(<n) as usual. Then, by [14], <k(<n) is a commutative semi-group
under addition with cancellation laws. Further, if β, γ ∈ < and U, V ∈ <k(<n), then

β� (U ⊕V) = (β�U)⊕ (β�V), β(γ�U) = (βγ)�U, 1�U = U, and if

β, γ ≥ 0 then(β⊕ γ)U = β�U ⊕ γ�U.

Let P and Q be two bounded nonempty subsets of <n. By using the Pampeiu–Hausdorff metric,
we define the distance between P and Q as follows:

dH(P, Q) = max{sup
p∈P

inf
q∈Q
‖p− q‖, sup

q∈Q
inf
p∈P
‖p− q‖},

where ‖.‖ is the Euclidean norm in <n. Then, (<k(<n), dH) becomes a separable and complete metric
space [14].

Define:
En = {u : <n → [0, 1]|u satisfies(a)–(d) below}, where

(a) If there exists a t ∈ <n such that u(t) = 1, then u is said to be normal.
(b) u is fuzzy convex.
(c) u is upper semi-continuous.
(d) The closure of {t ∈ <n/u(t) > 0} = [u]0 is compact.
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For 0 ≤ λ ≤ 1, denote [u]λ = {t ∈ <n : u(t) ≥ λ}; then, from the above conditions, we have that
the λ-level set [u]λ ∈ <k(<n). By Zadeh’s extension principle, a mapping h : Rn ×Rn → Rn can br
extended to g : En ×En → En by

g(s, t)(z) = sup
z=g(x,y)

min{s(x), t(y)}.

We have [h(p, q)]λ = h([p]λ, [q]λ), for all p, q ∈ En and h is continuous. The scalar multiplication
� and addition ⊕ of p, q ∈ En is defined as [p ⊕ q]λ = [p]λ + [q]λ, [c � p]λ = c[p]λ, where p, q ∈
En, c ∈ <, 0 ≤ λ ≤ 1.

Define DH : En ×En → [0, ∞) by the equation

DH(s, t) = sup
0≤λ≤1

dH([s]λ, [t]λ),

where dH is the Pampeiu–Hausdorff metric defined in <k(<n). Then, (En, DH) is a complete metric
space [14]. The following theorem extends the properties of addition and scalar multiplication of fuzzy
number valued functions (<F = E1) to En [14].

The properties of addition and scalar multiplication of fuzzy number valued functions (<F = E1)
are easily extended to En.

Theorem 1 ([32]).

(a) If we denote 0̂ = χ{0}, then 0̂ ∈ En is the zero element with respect to⊕, i.e., p⊕ 0̂ = 0̂⊕ p = p, ∀ s ∈ En.
(b) For any p ∈ En has no inverse with respect to ‘⊕′.
(c) For any γ, β ∈ < with γ, β ≥ 0 or γ, β ≤ 0 and p ∈ En, (γ + β)� p = (γ� p)⊕ (β� p).
(d) For any γ ∈ < and p, q ∈ En, we have γ� (p⊕ q) = (γ� p)⊕ (γ� q).
(e) For any γ, β ∈ < and p ∈ En, we have γ� (β� p) = (γβ)� p.

Definition 1 ([14]). Let K, L ∈ En. If there exists M ∈ En such that K = L⊕M, then we say that M is the
Hukuhara difference of K and L and is denoted by K	h L.

For any K, L, M, N ∈ En and β ∈ <, the following hold:

(a) DH(K, L) = 0⇔ K = L;
(b) DH(β� K, β� L) = |β|DH(K, L);
(c) DH(K⊕M, L⊕M) = DH(K, L);
(d) DH(K	h M, L	h M) = DH(K, L);
(e) DH(K⊕ L, M⊕ N) ≤ DH(K, M) + DH(L, N); and
(f) DH(K	h L, M	h N) ≤ DH(K, M) + DH(L, N).

provided the Hukuhara differences exists.
A triangular fuzzy number is denoted by three points as t = (t1, t2, t3). This representation is

denoted as membership function

µt(x) =



0, x < t1
x− t1

t2 − t1
, t1 ≤ x ≤ t2

t3 − x
t3 − t2

, t2 ≤ x ≤ t3

0, x > t3

In addition, λ-level sets of triangular fuzzy number t is an interval defined by λ-cut operation,
tλ = [(t2 − t1)λ + t1, t3 − (t3 − t2)λ], for all λ ∈ [0, 1]. Clearly, the triangular fuzzy number is in E1.
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Let T = (t1, t2, t3), S = (s1, s2, 33) be two triangular fuzzy numbers in E1. The addition and scalar
multiplication are defined as:

S⊕ T = (t1 + s1, t2 + s2, t3 + s3),

k� T =


(kt1, kt2, kt3) i f k > 0,

(kt3, kt2, kt1) i f k < 0,

0̂ i f k = 0

Remark 1. From Theorem 1(c), we can deduce that, for any β, γ ∈ < and s ∈ En.

(a) If β > γ ≥ 0, then (β� s)	h (γ� s) exists and (β� s)	h (γ� s) = (β− γ)� s.
(b) If β < γ ≤ 0, then (β� s)	h (γ� s) exists and (β� s)	h (γ� s) = (β− γ)� s.

Proof.

(a) Since β− γ > 0 and γ > 0, from Theorem 1(c), we get (β− γ)� s⊕ γ� s = (β− γ + γ)� s =
β� s. Therefore, (β− γ)� s⊕ γ� s = β� s. Hence, (β� s)	h (γ� s) = (β− γ)� s.

(b) Since β− γ < 0 and γ < 0, from Theorem 1(c), it is easily proven that (β� s)	h (γ� s) =

(β− γ)� s.

Now, we discuss the differentiability and integrability of fuzzy functions on I = [a, b] ⊂ < (where
I is a compact interval).

Definition 2 ([14]). A mapping Φ : I → En is said to be strongly measurable if, for each λ ∈ [0, 1], the fuzzy
function Φλ : I → <k(<n) defined by Φλ(s) = [Φ(s)]λ is measurable.

Remark 2 ([14]). A mapping Φ : I → En is said to be integrably bounded if there exists an integrable function
h such that ‖x‖ ≤ h(s), for all x ∈ Φ0(s).

Definition 3 ([14]). Let Φ : I → En. The integral of Φ over I is denoted by
∫

I Φ(s)ds or
∫ y

x Φ(s)ds,

[∫
I

Φ(s)ds
]λ

=
∫

I
Φλ(s)ds

=

{∫
I

g(s)ds /φ : I → <n
}

,

where g is a level wise selection of measurable functions of Φλ for 0 < λ ≤ 1.

A mapping Φ : I → En is said to be integrable over I if Φ is integrably bounded and strongly
measurable function and also

∫
I Φ(s)ds ∈ En.

Theorem 2 ([14]). Let Φ, Ψ : I → En be integrable. Then,

(a)
∫

Φ⊕Ψ =
∫

Φ⊕
∫

Ψ;
(b)

∫
α�Φ = α�

∫
Φ, where α ∈ <;

(c)
∫ y

x Φ =
∫ z

x Φ⊕
∫ y

z Φ, where z ∈ <;
(d) DH(Φ, Ψ) is integrable; and
(e) DH(

∫
Φ,
∫

Ψ) ≤
∫

DH(Φ, Ψ).

Definition 4 ([18]). A fuzzy function Φ : I → En is said to be differentiable from left at s0 if for δ > 0, there
exists P ∈ En, such that the following holds:
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(a) for 0 < h̄ < δ, Φ(s0)	h Φ(s0 − h̄) exist and limh̄→0+
1
h̄
� (Φ(s0)	h Φ(s0 − h̄)) = P;

or

(b) for 0 < h̄ < δ, Φ(s0 − h̄))	h Φ(s0) exist and limh̄→0+
−1
h̄
� (Φ(s0 − h̄))	h Φ(s0) = P.

Here, P is the derivative of Φ from left at s0 and is denoted as Φ
′
−(s0).

Definition 5 ([18]). A fuzzy function Φ : I → En is said to be differentiable from right at s0 if, for δ > 0, there
exists P ∈ En, such that the following holds:

(a) for 0 < h̄ < δ, Φ(s0 + h̄)	h Φ(s0) exist and limh̄→0+
1
h̄
� (Φ(s0 + h̄)	h Φ(s0)) = P;

or

(b) for 0 < h̄ < δ, Φ(s0)	h Φ(s0 + h̄) exist and limh̄→0+
−1
h̄
� (Φ(s0)	h Φ(s0 + h̄)) = P.

Here, P is the derivative of Φ from right at s0 and is denoted as Φ
′
+(s0). The limits are taken over

(En, DH).

Definition 6 ([18]). If Φ is both left-differentiable and right-differentiable at s0, then Φ is said to be differentiable
at s0 and Φ

′
−(s0) = Φ

′
+(s0) = P . Here, P is called the derivative of Φ at s0 and we consider one-sided derivative

at the end points of I.

Remark 3 ([18]). If Φ is differentiable at s0, then there exists a δ > 0, such that:

(a) For 0 < h̄ < δ, Φ(s0 − h̄)	h Φ(s0) or Φ(s0)	h Φ(s0 − h̄) exists.
(b) For 0 < h̄ < δ, Φ(s0 + h̄)	h Φ(s0) or Φ(s0)	h Φ(s0 + h̄) exists.

3. Generalized Nabla Hukuhara Differentiability on Time Scales

This section is concerned with defining and studying the properties of ∇g derivative for fuzzy
functions on time scales. In addition, we illustrate the results with suitable examples.

Definition 7 ([21]). For any given ε > 0, there exists a δ > 0, such that the fuzzy function Φ : T[a,b] → En

has a unique T-limit P ∈ En at s ∈ T[a,b] if DH(Φ(s)	h P, 0̂) ≤ ε, for all s ∈ NT[a,b](s, δ) and it is denoted
by T− lim

s→s0
Φ(s).

Here, T-limit denotes the limit on time scale in the metric space (En, DH).

Remark 4. From the above definition, we have

T− lim
s→s0

Φ(s) = P ∈ En ⇐⇒ T− lim
s→s0

(Φ(s)	h P) = 0̂,

where the zero element in En is given by 0̂.

Definition 8. A fuzzy mapping Φ : T[a,b] → En is continuous at s0 ∈ T, if T− lim
s→s0

Φ(s) ∈ En exists and

T− lim
s→s0

Φ(s) = Φ(s0), i.e.,

T− lim
s→s0

(Φ(s)	h Φ(s0)) = 0̂.

Remark 5. If Φ : T[a,b] → En is continuous at s0 ∈ T[a,b], then, for every ε > 0, there exists a δ > 0, such that

DH(Φ(s)	h Φ(s0), 0̂) ≤ ε, for all s ∈ NT[a,b] .
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Remark 6. Let Φ : T[a,b] → En and s0 ∈ T[a,b].

(a) If T− lim
s→s+0

Φ(s) = Φ(s0), then Φ is said to be right continuous at s0.

(b) If T− lim
s→s−0

Φ(s) = Φ(s0), then Φ is said to be left continuous at s0.

(c) If T− lim
s→s+0

Φ(s) = Φ(s0) = T− lim
s→s−0

Φ(s), then Φ is continuous at s0.

Definition 9. A fuzzy function Φ : T[a,b] → En is said to be ∇g left-differentiable at s ∈ T[a,b]
k , if there exists

an element Φ∇
g
− (s) ∈ En with the property that, for any given ε > 0, there exists a NT[a,b] of s for some δ > 0

and 0 ≤ h̄ ≤ δ,
DH [Φ($(s))	h Φ(s− h̄), (h̄− ν(s))�Φ∇

g

− (s)] ≤ ε|h̄− ν(s)| (1)

or
DH [Φ(s− h̄)	h Φ($(s)),−(h̄− ν(s))�Φ∇

g

− (s)] ≤ ε| − (h̄− ν(s))|, (2)

for all s− h̄ ∈ NT[a,b] , where ν(s) = s− $(s), Φ∇
g
− (s) is the generalized nabla left-derivative of Φ at s.

Definition 10. A fuzzy function Φ : T[a,b] → En is said to be ∇g right-differentiable at s ∈ T[a,b]
k , if there

exists an element Φ∇
g

+ (s) ∈ En with the property that, for every given ε > 0, there exists a neighborhood NT[a,b]

of s for some δ > 0 and 0 ≤ h̄ ≤ δ,

DH [Φ(s + h̄)	h Φ($(s)), (h̄ + ν(s))�Φ∇
g

+ (s)] ≤ ε|h̄ + ν(s)| (3)

or
DH [Φ($(s))	h Φ(s + h̄),−(h̄ + ν(s))�Φ∇

g

+ (s)] ≤ ε| − (h̄ + ν(s))|, (4)

for all s + h̄ ∈ N[a,b]
T , where ν(s) = s− $(s), Φ∇

g
+ (s) is the generalized nabla right-derivative of Φ at s.

Definition 11. A fuzzy function Φ : T[a,b] → En is said to be∇g differentiable at s ∈ T[a,b]
k , if Φ is both right-

and left-differentiable at s ∈ T[a,b]
k and

Φ∇
g

+ (s) = Φ∇
g

− (s) = Φ∇
g
(s).

Here, Φ∇
g

+ (s) or Φ∇
g
− (s) is called ∇g-derivative of Φ at s ∈ T[a,b]

k and it is denoted by Φ∇
g
(s). Moreover,

if ∇g derivative exists at each s ∈ T[a,b]
k , then Φ is ∇g differentiable on T[a,b]

k .

Theorem 3. Let Φ : T[a,b] → En be a fuzzy function and s ∈ T[a,b]
k , then:

(a) If Φ : T[a,b] → En is ∇g differentiable at s, then Φ is continuous at s ∈ T[a,b]
k .

(b) If s is left dense and Φ : T[a,b] → En is ∇g differentiable at s iff the limits

lim
h̄→0+

1
h̄
� (Φ(s)	h Φ(s− h̄))or lim

h̄→0+

−1
h̄
� (Φ(s− h̄)	h Φ(s))

and

lim
h̄→0+

1
h̄
� (Φ(s + h̄)	h Φ(s))or lim

h̄→0+

−1
h̄
� (Φ(s)	h Φ(s + h̄))

exist as a finite number and holds any one of the following:

(i) lim
h̄→0+

1
h̄
� (Φ(s)	h Φ(s− h̄)) = Φ∇

g
(s) = lim

h̄→0+

1
h̄
� (Φ(s + h̄)	h Φ(s));
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(ii) lim
h̄→0+

1
h̄
� (Φ(s)	h Φ(s− h̄)) = Φ∇

g
(s) = lim

h̄→0+

−1
h̄
� (Φ(s)	h Φ(s + h̄));

(iii) lim
h̄→0+

−1
h̄
� (Φ(s− h̄)	h Φ(s)) = Φ∇

g
(s) = lim

h̄→0+

1
h̄
� (Φ(s + h̄)	h Φ(s));

(iv) lim
h̄→0+

−1
h̄
� (Φ(s− h̄)	h Φ(s)) = Φ∇

g
(s) = lim

h̄→0+

−1
h̄
� (Φ(s)	h Φ(s + h̄)).

Proof. (a) Suppose that Φ is ∇g differentiable at s. Let ε ∈ (0, 1). Choose ε1 = ε[1 + K + 2ν(s)]−1,
where K = DH [Φ∇

g
− (s), 0̂]. Clearly, ε1 ∈ (0, 1). Since Φ is ∇g left-differentiable, there exists NT[a,b] a

neighborhood of s such that, for all h̄ ≥ 0 with s− h̄ ∈ NT[a,b] ,

DH [Φ($(s))	h Φ(s− h̄), (h̄− ν(s))�Φ∇
g

− (s)] ≤ ε|h̄− ν(s)|,

or
DH [Φ(s− h̄)	h Φ($(s)),−(h̄− ν(s))�Φ∇

g

− (s)] ≤ ε| − (h̄− ν(s))|.

For 0 ≤ h̄ < ε1 and for all h̄ ≥ 0, to each s− h̄ ∈ NT[a,b] ∩ (s− h̄, s + h̄), we have,

DH [Φ(s), Φ(s− h̄)] = DH [Φ(s)	h Φ(s− h̄), 0̂]

= DH [Φ(s)	h Φ($(s))⊕Φ($(s))	h Φ(s− h̄),

(h̄− ν(s))�Φ∇
g

− (s)⊕ ν(s)�Φ∇
g

− (s)

⊕ (−h̄)�Φ∇
g

− (s)]

≤ DH [Φ($(s))	h Φ(s− h̄), (h̄− ν(s))�Φ∇
g

− (s)]

+ DH [Φ(s)	h Φ($(s)), ν(s)�Φ∇
g

− (s)]

+ hDH [Φ∇
g

− (s), 0̂]

≤ ε1|h̄− ν(s)|+ ε1ν(s) + hK

= ε1h̄ + hK + 2ε1ν(s)

< ε1(1 + K + 2ν(s)) = ε.

Similarly, we can prove Φ is continuous at s, if ∇g is right-differentiable at s.
(b) Suppose that Φ is ∇g differentiable at s and s is left dense. To each ε ≥ 0, there exists a

neighborhood NT[a,b] of s such that

DH

[
Φ($(s))	h Φ(s− h̄), (h̄− ν(s))�Φ∇

g

− (s)
]
≤ ε|h̄− ν(s)|

or
DH

[
Φ(s− h̄)	h Φ($(s)), (ν(s)− h̄)�Φ∇

g

− (s)
]
≤ ε| − (h̄− ν(s))|,

and
DH

[
Φ(s + h̄)	h Φ($(s)), (h̄ + ν(s))�Φ∇

g

+ (s)
]
≤ ε|h̄ + ν(s)|

or
DH

[
Φ($(s))	h Φ(s + h̄),−(h̄ + ν(s))�Φ∇

g

+ (s)
]
≤ ε| − (h̄ + ν(s))|,
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for all s− h̄, s + h̄ ∈ NT[a,b] , 0 ≤ h̄ ≤ δ. Since s is left dense, $(s) = s, ν(s) = 0, we have

DH

[
1
h̄
[Φ(s)	h Φ(s− h̄)], Φ∇

g

− (s)
]
≤ ε

or

DH

[
−1
h̄

[Φ(s− h̄)	h Φ(s)], Φ∇
g

− (s)
]
≤ ε

and

DH

[
1
h̄
[Φ(s + h̄)	h Φ(s)], Φ∇

g

+ (s)
]
≤ ε

or

DH

[
−1
h̄

[Φ(s)	h Φ(s + h̄)], Φ∇
g

+ (s)
]
≤ ε,

for s− h̄, s + h̄ ∈ NT[a,b] , 0 ≤ h̄ ≤ δ. Since ε is arbitrary, we get any one of (i)–(iv).

The converse proposition of Theorem 3(a) may not be true. That is a fuzzy function which is
continuous may not be differentiable.

Example 1. Let Φ : T[0,4π] → E1 be a fuzzy function defined as follows:

Φ(s) =

sin(s)� c, if mπ ≤ s ≤ (4m + 1)
π

4
cos(s)� c, if (4m + 1)

π

4
≤ s ≤ (4m + 1)

π

2
,

where m = 0, 1, 2, 3, T = Pπ
2 , π

2
=

∞⋃
k=0

[
kπ, kπ +

π

2

]
and c = (2, 4, 6) is a triangular fuzzy number. Since

T− lim
s→ π

4
−

Φ(s) = sin(
π

4
)� c =

1√
2
� c

and

T− lim
s→ π

4
+

Φ(s) = cos(
π

4
)� c =

1√
2
� c.

In addition, T− lim
s→ π

4

Φ(s)) = Φ(π
4 ) =

1√
2
� c. Then, from Remark 6(c), Φ is continuous at s = π

4

(See Figure 1). Since s = π
4 is dense, sin π

4 > sin(π
4 − h) > 0, for h sufficiently small, and, from Remark 1(a),

we have

Φ∇
g

− (s) = lim
h̄→0

1
h̄
�
(

Φ(
π

4
)	h Φ(

π

4
− h̄)

)
= lim

h̄→0

1
h̄
�
((

sin
π

4
� c
)
	h

(
sin(

π

4
− h̄)� c

))
= lim

h̄→0

(
sin(π

4 )− sin(π
4 − h̄)

)
h̄

� c

=
1√
2
� c.
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In a similarly way,

Φ∇
g

+ (s) = lim
h̄→0

1
−h̄
�
(

Φ(
π

4
� c)	h Φ(

π

4
+ h̄)� c)

)
= lim

h̄→0

(
cos(π

4 )− cos(π
4 + h̄)

)
−h̄

� c

=
−1√

2
� c.

Therefore, Φ∇
g
− (s) 6= Φ∇

g
+ (s). Hence, Φ is not ∇g differentiable at s =

π

4
.

Figure 1. Graphical Representation of Φ(s) in Example 1.

Definition 11 can equivalently be written as follows:

Remark 7. If Φ : T[a,b] → En is ∇g differentiable at s ∈ T[a,b]
k if and only if there exists an element

Φ∇
g
(s) ∈ En, such that any one of the following holds:

(GH1) for 0 < h̄ < δ, provided the Hukuhara difference Φ($(s))	h Φ(s− h̄), Φ(s + h̄)	h Φ($(s)) and the
limits exist

T− lim
h̄→0

1
h̄− ν(s)

� (Φ($(s))	h Φ(s− h̄))

= T− lim
h̄→0

1
h̄ + ν(s)

� (Φ(s + h̄)	h Φ($(s)))

= Φ∇
g
(s)

or
(GH2) for 0 < h̄ < δ, provided the Hukuhara difference Φ(s− h̄)	h Φ($(s), Φ($(s)	h Φ(s + h̄) and the

limits exist

T− lim
h̄→0

−1
h̄− ν(s)

� (Φ(s− h̄)	h Φ($(s)))

= T− lim
h̄→0

−1
h̄ + ν(s)

� (Φ($(s)	h Φ(s + h̄))

= Φ∇
g
(s)
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or
(GH3) for 0 < h̄ < δ, provided the Hukuhara difference Φ($(s))	h Φ(s− h̄), Φ($(s))	h Φ(s + h̄) and the

limits exist

T− lim
h̄→0

1
h̄− ν(s)

� (Φ($(s))	h Φ(s− h̄))

= T− lim
h̄→0

−1
h̄ + ν(s)

� (Φ($(s))	h Φ(s + h̄))

= Φ∇
g
(s)

or
(GH4) for 0 < h̄ < δ, provided the Hukuhara difference Φ(s− h̄)	h Φ($(s)), Φ(s + h̄)	h Φ($(s)) and the

limits exist

T− lim
h̄→0

−1
h̄− ν(s)

� (Φ(s− h̄)	h Φ($(s)))

= T− lim
h̄→0

1
h̄ + ν(s)

� (Φ(s + h̄)	h Φ($(s)))

= Φ∇
g
(s).

Thus, Φ∇
g

: T[a,b]
k → En is called the ∇g derivative of Φ on T[a,b]

k .

Remark 8. Let Φ : T[a,b] → En be ∇g differentiable.

(a) If Φ is (GH1)-nabla differentiable at s ∈ T[a,b]
k , then there exists a δ > 0, such that, for 0 ≤ λ ≤ 1,

we have

diam[Φ(s− h̄)]λ ≤ diam[Φ($(s))]λ

≤ diam[Φ(s + h̄)]λ, for 0 < h̄ < δ.

Thus, if Φ is (GH1)-nabla differentiable on T[a,b], then diam[Φ(s)]λ is non-decreasing on T[a,b].

(b) If Φ is (GH2)-nabla differentiable at s ∈ T[a,b]
k , then there exists a δ > 0, such that, for 0 ≤ λ ≤ 1,

we have

diam[Φ(s− h̄)]λ ≥ diam[Φ($(s))]λ

≥ diam[Φ(s + h̄)]λ, for 0 < h̄ < δ.

Thus, if Φ is (GH2)-nabla differentiable on T[a,b], then diam[Φ(s)]λ is non-increasing on T[a,b].

(c) If Φ is (GH3)-nabla differentiable at s ∈ T[a,b]
k , then there exists a δ > 0, such that, for 0 ≤ λ ≤ 1,

we have

diam[Φ(s− h̄)]λ ≤ diam[Φ($(s))]λand

diam[Φ(s + h̄)]λ ≤ diam[Φ($(s))]λ, for 0 < h̄ < δ.

Therefore, diam[Φ(s)]λ is non-decreasing in the left neighborhood and non-increasing in the right
neighborhood of s. Thus, monotonicity of diam[Φ(s)]λ fails at s.

(d) If Φ is (GH4)-nabla differentiable at s ∈ T[a,b]
k , then there exists a δ > 0 such that, for 0 ≤ λ ≤ 1,

diam[Φ($(s))]λ ≤ diam[Φ(s− h̄)]λand

diam[Φ($(s))]λ ≤ diam[Φ(s + h̄)]λ, for 0 < h̄ < δ.
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Therefore, diam[Φ(s)]λ is non-increasing in the left neighborhood and non-decreasing in the right
neighborhood of s. Thus, monotonicity of diam[Φ(s)]λ fails at s.

Example 2. Let Φ : T[0,3π] → E1 be a fuzzy function defined as Φ(s) = sin(s)� c, where c = (2, 4, 6) is a

triangular fuzzy number. Let T = Pπ,π =
∞⋃

k=0
[2kπ, (2k + 1)π].

In Figure 2, it is easily seen that Φ(s) is (GH1)-nabla differentiable on T[0, π
2 )∪(2π, 5π

2 ), Φ(s) is
(GH2)-nabla differentiable on T(

π
2 ,π,]∪( 5π

2 ,3π]. Now, we check the ∇g differentiability at s = π
2 . Since

s = π
2 is dense, ν(s) = 0. In addition, sin(π

2 ) > sin(π
2 + h̄) > 0, and, from Remark 1(a), we have

(sin(π
2 )� c)	h (sin(π

2 + h̄)� c) = (sin(π
2 )− sin(π

2 + h̄))� c. Consider

Φ∇
g

+ (
π

2
) = lim

h̄→0+

−1
h̄
�
(

Φ(
π

2
)	h Φ(

π

2
+ h̄))

)
= lim

h̄→0

−1
h̄
�
((

sin
π

2
� c
)
	h

(
sin(

π

2
+ h̄)� c

))
= lim

h̄→0

(
sin(π

2 )− sin(π
2 + h̄)

)
−h̄

� c

= 0� c = 0̂.

In a similar way, we get Φ∇
g
− (π

2 ) = 0̂. Hence, Φ is (GH3)-nabla differentiable at s = π
2 . Similarly,

we can show that Φ is also (GH3)-nabla differentiable at s = 5π
2 .

Figure 2. Graphical Representation of Φ(s) in Example 2.

Theorem 4. If Φ : T[a,b] → En is continuous at s and s is left scattered, then:

(a) Φ is ∇g differentiable at s as in (GH1) or (GH2) with

Φ∇
g
(s) =

1
ν(s)

� (Φ(s)	h Φ($(s)))

=
−1
ν(s)

� (Φ($(s))	h Φ(s))

and Φ∇
g
(s) = 0̂ (or) Φ∇

g
(s) ∈ <n;

or
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(b) Φ is ∇g differentiable at s as in (GH3) with Φ∇
g
(s) =

−1
ν(s)

� (Φ($(s))	h Φ(s));

or

(c) Φ is ∇g differentiable at s as in (GH4) with Φ∇
g
(s) =

1
ν(s)

� (Φ(s)	h Φ($(s))) .

Proof. (a) Suppose s ∈ T[a,b]
k and Φ is continuous at left scattered point s. Then, from (GH1) or (GH2),

we have

T− lim
h̄→0

1
h̄− ν(s)

� (Φ($(s))	h Φ(s− h̄)) =
−1
ν(s)

� (Φ($(s))	h Φ(s)),

T− lim
h̄→0

1
h̄ + ν(s)

� (Φ(s + h̄)	h Φ($(s))) =
1

ν(s)
� (Φ(s)	h Φ($(s))) .

Since the Hukuhara differences (Φ($(s))	h Φ(s)), (Φ(s)	Φ($(s))) exists, then

Φ($(s)) = Φ(s)⊕ u(s) and Φ(s) = Φ($(s))⊕ v(s),

where u(s), v(s) are in En. By adding the above equations, we get u(s)⊕ v(s) = 0̂. Then, u(s) = 0̂ =

v(s) or u(s), v(s) are in <n and hence the result is obvious.
(b) Suppose s ∈ T[a,b]

k and Φ is continuous at left scattered point s. Then, from (GH3), we have

T− lim
h̄→0

1
h̄− ν(s)

� (Φ($(s))	h Φ(s− h̄)) =
−1
ν(s)

� (Φ($(s))	h Φ(s))

T− lim
h̄→0

−1
h̄ + ν(s)

� (Φ($(s))	h Φ(s + h̄)) =
−1
ν(s)

� (Φ($(s))	h Φ(s))

Hence, Φ∇
g
(s) =

−1
ν(s)

� (Φ($(s))	h Φ(s)).

(c) Suppose s ∈ T[a,b]
k and Φ is continuous at left scattered point s. Then, from (GH4), we have

T− lim
h̄→0

−1
h̄− ν(s)

� (Φ(s− h̄)	h Φ($(s))) =
1

ν(s)
� (Φ(s)	h Φ($(s))),

T− lim
h̄→0

1
h̄ + ν(s)

� (Φ(s + h̄)	h Φ($(s))) =
1

ν(s)
� (Φ(s)	h Φ($(s))).

Hence, Φ∇
g
(s) =

1
ν(s)

� (Φ(s)	h Φ($(s))).

Remark 9. A fuzzy function Φ : T[a,b] → E1 is defined as Φ(s) = (φ1(s), φ2(s), φ3(s)), where φk : T[a,b] →
R, k = 1, 2, 3 are nabla differentiable such that φ1(s) < φ2(s) < φ3(s), for all s ∈ T[a,b].

(a) If Φ is∇g differentiable as in (GH1) at ld-point s or∇g differentiable as (GH4) at left scattered point s,
then Φ∇

g
(s) = (φ∇1 , φ∇2 , φ∇3 ), for s ∈ T[a,b]

k .
(b) If Φ is ∇g differentiable as (GH2) at ld-point s or ∇g differentiable as (GH3) at left scattered point s,

then Φ∇
g
(s) = (φ∇3 , φ∇2 , φ∇1 ), for s ∈ T[a,b]

k .

Theorem 5. Let Φ, Ψ : T[a,b] → En be ∇g differentiable at s ∈ T[a,b]
k .
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(1) If Φ and Ψ are both ∇g differentiable of same kind, then:

(a) (Φ⊕Ψ) : T[a,b]
k → En is also ∇g differentiable of same kind at s with

(Φ⊕Ψ)∇
g
(s) = Φ∇

g
(s)⊕Ψ∇

g
(s).

(b) (Φ	h Ψ) : T[a,b]
k → En also ∇g differentiable of same kind at s, provided (Φ	h Ψ) exists and

(Φ	h Ψ)∇
g
(s) = Φ∇

g
(s)	h Ψ∇

g
(s).

(2) If Φ and Ψ are different kinds of∇g differentiable at s, and (Φ	h Ψ) exists for s ∈ T[a,b]
k , then (Φ	h Ψ)

is ∇g differentiable at s with (Φ	h Ψ)∇
g
(s) = Φ∇

g
(s)⊕ (−1)�Ψ∇

g
(s).

Proof. If s is ld-point, then $(s) = s, ν(s) = 0. The proof of this theorem is similar to the proof of
Lemma 4 and Theorem 4 in [17].

1(a). Suppose that Φ and Ψ are both (GH3)-nabla differentiable at left scattered point s ∈ T[a,b]
k .

Then, Φ($(s))	h Φ(s) exists with Φ($(s)) = Φ(s)⊕ u(s) and Ψ($(s))	h Ψ(s) exists with Ψ($(s)) =
Ψ(s)⊕ v(s). Now,

(Φ($(s))	h Φ(s))⊕ (Ψ($(s))	h Ψ(s)) = u(s)⊕ v(s).

Multiplying the above equation with
−1
ν(s)

, we get

−1
ν(s)

� ((Φ($(s))⊕Ψ($(s)))	h (Φ(s)⊕Ψ(s)))

=
−1
ν(s)

� (u(s)⊕ v(s)) ,

and it follows that
(Φ⊕Ψ)($(s))	h (Φ⊕Ψ)(s)

−ν(s)
=

u(s)
−ν(s)

⊕ v(s)
−ν(s)

.

Hence, (Φ⊕Ψ) is ∇g differentiable as in (GH3) with

(Φ⊕Ψ)∇
g
(s) = Φ∇

g
(s)⊕Ψ∇

g
(s).

The case when Φ and Ψ are ∇g differentiable as in (GH4) is similar to the previous one.
1(b). Suppose Φ and Ψ are both (GH3)-nabla differentiable at left scattered points s ∈ T[a,b]

k ,
similar to 1(a), we have Φ($(s)) = Φ(s)⊕ u(s) and Ψ($(s)) = Ψ(s)⊕ v(s). Consider

(Φ	h Ψ)($(s)) = Φ($(s))	h Ψ($(s))

= (Φ(s)⊕ u(s))	h (Ψ(s)⊕ v(s))

= (Φ(s)	h Ψ(s))⊕ (u(s)	h v(s)).

It implies that
(Φ	h Ψ)($(s))	h (Φ	h Ψ)(s) = u(s)	h v(s).

Multiplying the above equation with
−1
ν(s)

, we get the desired result. In a similar way, we can

easily prove the other case.
(2). Suppose that Φ is ∇g differentiable as in (GH3) and Ψ is ∇g differentiable as in (GH4) at

left scattered points s ∈ T[a,b]
k , then the Hukuhara difference Φ($(s))	h Φ(s) exists with Φ($(s)) =
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Φ(s)⊕ u(s) and Ψ(s)	h Ψ($(s)) exists with Ψ(s) = Ψ($(s))⊕ v(s). Now, by adding these equations,
we get

Φ($(s))⊕Ψ(s) = Φ(s)⊕ u(s)⊕Ψ($(s))⊕ v(s).

Since the Hukuhara difference of Φ($(s))	h Ψ($(s)) and Φ(s)	h Ψ(s) exist, we have

(Φ($(s))	h Ψ($(s))	h (Φ(s)	h Ψ(s)) = u(s)⊕ v(s). (5)

Now, by multiplying (5) with
1

−ν(s)
, we get Φ	Ψ is (GH3)-nabla differentiable.

In a similar way, if Φ is ∇g differentiable as in (GH4) and Ψ is ∇g differentiable as in (GH3) at
left scattered points s ∈ T[a,b]

k , then we can easily prove that

(Φ(s)	h Ψ(s))	h (Φ($(s))	h Ψ($(s))) = ũ(s) + ṽ(s). (6)

Now, by multiplying (6) with
1

ν(s)
, we get Φ	Ψ is (GH4)-nabla differentiable. Therefore,

(Φ	h Ψ)∇
g
(s) = Φ∇

g
(s)⊕ (−1)�Ψ∇

g
(s).

The following example illustrates the feasibility of Theorem 5.

Example 3. Let Ω, Ψ : T[0,3π] → E1 be fuzzy functions defined as follows:

Ω(s) =

{
(π

2 − s)� c, 0 ≤ s ≤ π

(s− 5π
2 )� c, 2π ≤ s ≤ 3π

and

Ψ(s) =

{
cos(s)� c, 0 ≤ s ≤ π

− cos(s)� c, 2π ≤ s ≤ 3π

where T = Pπ,π , c = (2, 4, 6) is a triangular fuzzy number.
IN Figures 3 and 4, it is easily seen that Ω and Ψ are (GH2)-nabla differentiable on T[0, π

2 )∪(2π, 5π
2 ),

(GH1)-nabla differentiable on T( π
2 ,π]∪( 5π

2 ,3π], and (GH4)-nabla differentiable at s = π
2 , 5π

2 . Thus, Ω⊕ Ψ,
Ω	h Ψ are ∇g differentiable at left scattered point s = 2π. Now, from Remark 1, we have

(Ω⊕Ψ)(s) =

{
(π

2 − s + cos(s))� c, s ∈ [0, π]

(s− 5π
2 − cos(s))� c, s ∈ [2π, 3π].

and

(Ω	h Ψ)(s) =

{
(π

2 − s− cos(s))� c, ∈ [0, π]

(s− 5π
2 + cos(s))� c, ∈ [2π, 3π].
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Figure 3. Graphical Representation of Ω(s) in Example 3.

Figure 4. Graphical Representation of Ψ(s) in Example 3.

In Figure 5, (Ω ⊕ Ψ) is (GH2)-nabla differentiable on T[0, π
2 )∪[2π, 5π

2 ), (GH1)-nabla differentiable on
T( π

2 ,π]∪( 5π
2 ,3π]. At s = π

2 , Ω and Ψ are (GH4)-nabla differentiable with Ω∇
g
(π

2 ) = (−1)� c, and Ψ∇
g
(π

2 ) =

(−1)� c. Now,

(Ω⊕Ψ)∇
g
+(

π

2
) = lim

h̄→0

1
h̄

(π

2
− (

π

2
+ h̄) + cos(

π

2
+ h̄)

)
� c	h

(π

2
− (

π

2
) + cos(

π

2
)
)
� c

=

(
lim
h̄→0

−h̄ + cos(π
2 + h̄)

h̄

)
� c

=

(
−1 + (−1) lim

h̄→0

sin h̄
h̄

)
� c = −2� c.

Similarly, we can show that (Ω⊕Ψ)∇
g
−(π

2 ) = −2� c. Thus, (Ω⊕Ψ) is (GH4)-nabla differentiable at
π
2 and Theorem 5 1(a) is verified.
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In Figure 6, it is easily seen that (Ω 	h Ψ) is (GH2)-nabla differentiable on T[0, π
2 )∪[2π, 5π

2 ) and
(GH1)-nabla differentiable on T( π

2 ,π]∪( 5π
2 ,3π]. Again, from Remark 1, we have

(Ω	h Ψ)∇
g
+(

π

2
) = lim

h̄→0

1
h̄

(π

2
− (

π

2
+ h̄)− cos(

π

2
+ h̄)

)
� c	h

(π

2
− π

2
− cos(

π

2
)
)
� c

=

(
lim
h̄→0

−h̄− cos(π
2 + h̄)

h̄

)
� c

= (−1 + lim
h̄→0

sin h̄
h̄

)� c = 0� c = 0̂.

Similarly, we can show that (Ω	Ψ)∇
g
−(π

2 ) = 0̂. Thus, (Ω	Ψ) is (GH4)-nabla differentiable at π
2 and

Theorem 5 1(b) is verified.

Figure 5. Graphical Representation of (Ω⊕Ψ)(s) in Example 3.

Figure 6. Graphical Representation of (Ω	h Ψ)(s) in Example 3.
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Consider Φ(s) as in Example 2, Φ is (GH3)-nabla differentiability at s = π
2 and Ψ is (GH4)-nabla

differentiability at s = π
2 . Hence, Φ and Ψ are different kinds of ∇g differentiable at s = π

2 , and (Φ	h Ψ)

exists at s = π
2 . Now, from Theorem 5(2), we have

(Φ	h Ψ)∇
g
−(

π

2
) = lim

h̄→0

1
h̄
� (sin(

π

2
)− cos(

π

2
)� c)	h ((sin(

π

2
− h̄)− cos(

π

2
− h̄)� c)

=

(
lim
h̄→0

1− cos h̄
h

+ lim
h̄→0

sin h̄
h̄

)
� c = c.

Similarly, we can show that (Φ	h Ψ)∇
g
+(π

2 ) = c. Hence, Theorem 5(2) is verified.
Now, we check the ∇g-differentiable at s = 2π. It is left scattered and $(2π) = π, ν(2π) = π. Clearly,

Ω, Φ, and Ψ are (GH3)- and (GH4)-nabla differentiable at s = 2π. We get Ω∇
g
(2π) = 0̂, Φ∇

g
(2π) = 0̂

and Ψ∇
g
(2π) = 0̂. In addition, the results of Theorem 5 hold at left scattered point s = 2π.

4. Integration of Fuzzy Functions on Time Scales

In this section, we prove fundamental theorem of nabla integral calculus for fuzzy functions on
time scales under generalized fuzzy nabla differentiable functions on time scales.

First, we prove an embedding theorem on En and obtain some results which are useful to prove
the main theorem. To prove the these results, we make use of Definitions 1–3 and Theorem 4 in [31].

Let C[0, 1] be the set of all functions F : [0, 1] → <n, F is bounded on [0, 1], left-continuous for
each x ∈ (0, 1], right-continuous on 0, and F has right limit for each x ∈ [0, 1). Endowed with the
norm ||F ||C = sup {|F (λ)|<n ; x ∈ [0, 1]}, C[0, 1] is a Banach space. It is known that the following
result which embeds En into X = C[0, 1]× C[0, 1] isometrically and isomorphically.

Theorem 6. If we define i : En → X by i(u) = (u−, u+), where u−, u+ : [0, 1] → <n, u−(λ) = uλ
−,

u+(λ) = uλ
+, then i(En) is a closed convex cone with vertex 0 in X (here X is a Banach space with the norm

||( f , g)|| = max(|| f ||C , ||g||C)).

Proof. First, we show that X = C[0, 1]× C[0, 1] is a Banach space. Consider a cauchy sequence ln0 =

( fn0 , gn0) and for ε∗ > 0, there exists N > 0, n0 > N such that n0, m0 > N implies ‖lm0 − ln0‖ < ε∗,
that is

‖lm0 − ln0‖ = ‖( fm0 , gm0)− ( fn0 , gn0)‖
= ‖( fm0 − fn0 , gm0 − gn0)‖
= max(|| f ||C , ||g||C).

which yields the result that fn0(λ) → f and gn0(λ) → g as n0 → ∞ where ||F ||C = sup{|F (x)|; x ∈
[0, 1]}, C[0, 1] is a Banach space. Hence, X = C[0, 1]× C[0, 1] is a Banach space. To obtain i embeds En

into X = C[0, 1]× C[0, 1] isometrically and isomorphically, we need to prove the following:

(a) i(p� u⊕ q� v) = pi(u) + qi(v), for any u, v ∈ En and p, q ≥ 0; and
(b) DH(u, v) = ‖i(u)− i(v)‖.

Let i(u) = (u−, u+). The λ-level set of u ∈ En can be written as

[u]λ = βuλ
− + (1− β)uλ

+ for all 0 ≤ β ≤ 1.
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Now,

[p� u⊕ q� v]λ = p[u]λ + q[v]λ

= p[βuλ
− + (1− β)uλ

+]

+ q[βvλ
− + (1− β)vλ

+]

= β
(

uλ
− + vλ

−

)
+ (1− β)

(
uλ
+ + vλ

+

)
.

Therefore,

i(p� u⊕ q� v) =
(

puλ
− + qvλ

−, puλ
+ + qvλ

+

)
= p(uλ

−, uλ
+) + q(vλ

−, vλ
+)

= pi(u) + qi(v).

Thus, (a) is proved.
Now, consider

‖i(u)− i(v)‖ = ‖(u−, u+)− (v−, v+)‖
= ‖(u− − v−), (u+ − v+)‖
= max{‖u− − v−‖C , ‖u+ − v+‖C}
= max{sup

λ

‖uλ
− − vλ

−‖Rn , sup
λ

‖uλ
+ − vλ

+‖Rn

= sup
λ

{max{‖uλ
− − vλ

−‖Rn , ‖uλ
+ − vλ

+‖Rn}},

= sup
λ

dH([u]λ, [v]λ)

= DH(u, v).

We make use the Proposition 3.1 and Remark 3.4 in [18] to prove the following results.

Theorem 7. Suppose Φ : T[a,b] → En is
∇g left-differentiable at s0; then, (i ◦Φ)(s) = i(Φ(s)) is nabla-differentiable at s0 ∈ T[a,b]. Moreover,

(a) If there exists a δ > 0 3 (Φ(s0 − h̄) 	h Φ($(s0))) exists for 0 < h̄ < δ, then (i ◦ Φ)∇(s0) =

−i∗(Φ∇
g
− (s0)).

(b) If there exists a δ > 0 3 (Φ($(s0) 	h Φ(s0 − h̄)) exists for 0 < h̄ < δ, then (i ◦ Φ)∇(s0) =

i∗(Φ∇
g
− (s0)).

Proof. Let Φ be ∇g left-differentiable at s0 ∈ T[a,b].
(a) If there exists a δ > 0 such that Φ(s0 − h̄)	h Φ($(s0)) exists for 0 < h̄ < δ, then
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∥∥∥∥ −1
(h̄− ν(s0))

[(i ◦Φ)(s0 − h̄)− (i ◦Φ)($(s0))]− [−i∗(Φ∇
g

− (s0))]

∥∥∥∥
=

∥∥∥∥ −1
(h̄− ν(s0))

[(i ◦Φ)(s0 − h̄)− (i ◦Φ)($(s0))] + [i∗(Φ∇
g

− (s0))]

∥∥∥∥
≤
∥∥∥∥ 1
(h̄− ν(s0))

[i(Φ($(s0))−Φ(s0 − h̄))]

+i∗
[

1
(h̄− ν(s0))

� [Φ($(s0))	h Φ(s0 − h̄)]
]∥∥∥∥

+

∥∥∥∥−i∗
[
(

1
h− ν(s0))

� [Φ($(s0))	h Φ(s0 − h̄)]
]

i∗(Φ∇
g

− (s0))]

∥∥∥∥ .

From Remark 3.4.1 in [18], we have∥∥∥∥i∗
[

1
(h̄− ν(s0))

� (Φ($(s0))	h Φ(s0 − h̄))
]
− i∗(Φ∇

g

− (s0))]

∥∥∥∥
= DH

[
1

(h̄− ν(s0))
� (Φ($(s0))	h Φ(s0 − h̄)), Φ∇

g

− (s0)

]
→ 0, as h̄→ 0.

Consider

i∗
[

1
(h− ν(s0))

� (Φ($(s0))	h Φ(s0 − h̄))
]
= −i

[
1

(h− ν(s0))
� (Φ($(s0))	h Φ(s0 − h̄))

]
=

−1
(h− ν(s0))

[i(Φ($(s0))−Φ(s0 − h̄))] ,

we have ∥∥∥∥ (i ◦Φ)(s0 − h̄)− (i ◦Φ)($(s0))

−(h̄− ν(s0))
− [−i∗(Φ∇

g

− (s0))]

∥∥∥∥→ 0, as h̄→ 0.

Thus, (i ◦Φ)∇(s0) = −i∗(Φ∇
g
− (s0)).

Similarly, we can prove (b).

Theorem 8. Suppose Φ : T[a,b] → En is ∇g right-differentiable s0; then, (i ◦ Φ)(s) = i(Φ(s)) is
nabla-differentiable at s0 ∈ T[a,b]

k . Moreover,

(a) If there exists a δ > 0 3 (Φ(s0 + h̄)	h Φ($(s0))) exists for 0 < h̄ < δ, then

(i ◦Φ)∇(s0) = i(Φ∇
g

+ (s0)).

(b) If there exists a δ > 0 3 (Φ($(s0)	h Φ((s0 + h̄)) exists for 0 < h̄ < δ, then

(i ◦Φ)∇(s0) = −i∗(Φ∇
g

+ (s0)).

Proof. The proof of this theorem is similar to that of Theorem 7.

Theorem 9. If Φ : T[a,b] → En is ∇g differentiable at s, then i ◦ Φ(s) is nabla-differentiable and
(i ◦Φ)∇(s) ∈ i(En). In this case, either (i ◦Φ)∇(s) = i(Φ∇

g
(s)) or (i ◦Φ)∇(s) = −i∗(Φ∇

g
(s)), s ∈ T[a,b]

k .
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Proof. Let Φ : T[a,b] → En be∇g differentiable at s ∈ T[a,b]
k and s is left dense; then, the proof is similar

to the proof of Theorem 8 [16]. Now, for s being left scattered, we have

1
ν(s)

[i(Φ(s))−Φ($(s))] =


1

ν(s)
[i ◦Φ(s)− i ◦Φ($(s))] or

−1
ν(s)

[i ◦Φ($(s))− i ◦Φ(s)] .

Consider ∥∥∥∥ 1
ν(s)

[(i ◦Φ)(s)− (i ◦Φ)($(s))]− i(Φ∇
g
(s))

∥∥∥∥
=

∥∥∥∥ −1
ν(s)

[(i ◦Φ)($(s))− (i ◦Φ)(s)]− i(Φ∇
g
(s))

∥∥∥∥
=

∥∥∥∥i
(

1
ν(s)

� [Φ(s)	h Φ($(s))]
)
− i(Φ∇

g
(s))

∥∥∥∥
= DH

[
1

ν(s)
� [Φ(s)	h Φ($(s)] , Φ∇

g
(s)
]

.

Then, (i ◦Φ)∇(s) = i(Φ∇
g
(s)).

Again, in the same way,∥∥∥∥ 1
ν(s)

[(i ◦Φ)(s)− (i ◦Φ)($(s))]− [−i∗(Φ∇
g
(s))

∥∥∥∥
=

∥∥∥∥ −1
ν(s)

[(i ◦Φ)($(s))− (i ◦Φ)(s)] + [i∗(Φ∇
g
(s))

∥∥∥∥
≤
∥∥∥∥ −1

ν(s)
[(i ◦Φ)($(s))− (i ◦Φ)(s)]

+i∗
[

1
ν(s)

� [Φ(s)	h Φ($(s))]
]∥∥∥∥

+

∥∥∥∥i∗
[

1
ν(s)

� [Φ(s)	h Φ($(s))]
]
− i∗(Φ∇

g
(s))

∥∥∥∥ .

However,∥∥∥∥i∗
(

1
ν(s)

� [Φ(s)	h Φ($(s))]
)
− i∗(Φ∇

g
(s))

∥∥∥∥
= DH

(
1

ν(s)
� (Φ(s)	h Φ($(s))) , Φ∇

g
(s)
)
= 0.

Since i((−1)� ũ) = i∗(ũ), we have∥∥∥∥ −1
ν(s)

[(i ◦Φ)($(s))− (i ◦Φ)(s)]− i∗
[

Φ(s)	h Φ($(s))
−ν(s)

]∥∥∥∥
=

∥∥∥∥ −1
ν(s)

[(i ◦Φ)($(s))− (i ◦Φ)(s)] −
[
−i∗(Φ∇

g
(s))

]∥∥∥∥ = 0.

Thus,
∥∥∥∥ (i ◦Φ)(s)− (i ◦Φ)($(s))

ν(s)
−
[
−i∗(Φ∇

g
(s))

]∥∥∥∥ = 0. Therefore, (i ◦Φ)∇(s) = −i∗(Φ∇
g
(s)).

Finally, (i ◦Φ)∇(s) = i(Φ∇
g
(s)) = −i∗(Φ∇

g
(s)).

From Remark 8, it is clear that, the fuzzy function Φ(s) is (GH3)- or (GH4)-nabla differentiable
at discrete points. For example, if Φ(s) is ∇g-differentiable on T[a,b], a < c < d < b and
Φ is only (GH3)-nabla differentiable at s = c, (GH4)-nabla differentiable at s = d, then Φ is
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(GH1)-nabla differentiable on T[a,c)∪(d,b] and (GH2)-nabla differentiable on T(c,d). Therefore, if Φ(s) is
∇g-differentiable on T[a,b], then it is possible to partition the T[a,b] into sub-intervals such that in each
sub-interval Φ(s) is either (GH1)- or (GH2)-nabla differentiable.

Now, we prove the main theorem of this section fundamental theorem of nabla integral calculus
of fuzzy functions on time scales.

Theorem 10. Let Φ : T[a,b] → En and a = a0 < a1 < a2 < . . . < ak = b be a division of the interval [a, b]
such that Φ is (GH1) or (GH2)-nabla differentiable on each of the interval T[am−1,am ], m = 1, 2, . . . , k with
same kind of differentiability on each sub-interval. Then,

∫ b

a
Φ∇

g
(τ)∇τ = ∑

m∈M
(Φ(am 	h Φ(am−1))⊕ (−1)� ∑

n∈N
(Φ(an−1)	h Φ(an)),

where M = {m ∈ {1, 2, . . . , k} such that Φ is (GH1)-nabla differentiable on T(am−1,am) } and N = {n ∈
{1, 2, . . . , k} such that Φ is (GH2)-nabla differentiable on T(an−1,an) }

Proof. Let Φ : T[a,b] → En is ∇g differentiable on T[a,b]
k . Suppose Φ is (GH1)-nabla differentiable on

(ai−1, ai). Then, for m ∈ M, we have∫ am

am−1

Φ∇
g
(τ)∇τ = Φ(am)	h Φ(am−1) for all m ∈ M. (7)

Let n ∈ N; using Cauchy formula for functions with values in Banach space, we have

(i ◦Φ)(an) = (i ◦Φ)(an−1) +
∫ an

an−1

(i ◦Φ)∇
g
(τ)∇τ.

By Theorem 9, there exists (i ◦ Φ)∇(s) and we get (i ◦ Φ)(an) = (i ◦ Φ)(an−1) +∫ an
an−1

(−i∗(Φ∇
g
)(τ)∇τ.

Since the embedding i commutes with the integral, we obtain

(i ◦Φ)(an) = (i ◦Φ)(an−1)− i∗
(∫ an

an−1

Φ∇
g
(τ)∇τ

)
.

Then, it follows that

i∗
(∫ an

an−1

Φ∇
g
(s)∇s

)
+ (i ◦Φ)(an) = (i ◦Φ)(an−1).

By the definition of i∗, we obtain

i
(
(−1)�

∫ an

an−1

Φ∇
g
(τ)∇τ

)
+ i(Φ(an)) = i(Φ)(an−1).

By the additive property of the embedding i, we have

(−1)�
∫ an

an−1

Φ∇
g
(τ)∇τ = Φ(an−1)	h Φ(an).

Finally, ∫ an

an−1

Φ∇
g
(τ)∇τ = (−1)�Φ(an−1)	h Φ(an), (8)
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for all n ∈ N. Adding Equations (7) and (8), we get the desired result

∫ b

a
Φ∇

g
(τ)∇τ = ∑

m∈M
(Φ(am 	h Φ(am−1))⊕ (−1)� ∑

n∈N
(Φ(an−1)	h Φ(an)).

Example 4. Consider Φ(s) as in Example 2. We partition [0, 3π] as a0 = 0 < a1 = π
2 < a2 = π < a3 =

2π < a4 = 5π
2 < a5 = 3π such that Φ(s) is (GH1)-nabla differentiable on T[am−1,am ], m ∈ M = {1, 3} and

(GH2)-nabla differentiable on T[an−1,an ], n ∈ N = {2, 5}. Thus, from Theorem 10, we have

∫ b

a
Φ∇

g
(τ)∇τ = ∑

m∈M
(Φ(am 	h Φ(am−1))⊕ (−1)� ∑

n∈N
(Φ(an−1)	h Φ(an))

= (Φ(
π

2
)	h Φ(0))⊕ (Φ(

5π

2
)	h Φ(2π))

⊕ (−1)� (Φ(
π

2
)	h Φ(π))⊕ (−1)(Φ(

5π

2
)	h Φ(3π))

= 2� c⊕ (−2)� c

= (4, 8, 12)⊕ (−12,−8,−4) = (−8, 0, 8).

5. Conclusions

This paper is concerned with investigating a new derivative called generalized nabla derivative
for fuzzy functions on time scales and studies some basic properties of ∇g derivative. In addition,
we prove a fundamental theorem of nabla integral calculus for fuzzy functions on time scales under
generalized differentiability on time scales. The advantage of ∇g derivative is that it is exists even
for a fuzzy function having increasing and decreasing length of diameter on a time scale. The results
obtained in this paper include results of Leelavathi et al. [27], when the function having only increasing
length of diameter, and the results of Leelavathi et al. [28], when the function having only decreasing
length of diameter. The obtained results are illustrated with numerical examples. In the future, we
propose to study fuzzy nabla dynamic equations on time scales under generalized nabla derivative
and their applications.

Author Contributions: All authors contributed equally and significantly to writing this article. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: he authors declare no conflict of interest.

References

1. Agarwal, R.P.; Bohner, M. Basic calculus on time scales and some of its applications. Results Math. 1999, 35,
3–22. [CrossRef]

2. Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhauser:
Boston, MA, USA, 2001.

3. Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhauser: Boston, MA, USA, 2003.
4. Guseinov, G.S. Integration on time scales. J. Math. Anal. Appl. 2003, 285, 107–127. [CrossRef]
5. Hilger, S. Ein Makettenkalkuls mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis, Universitat

Wurzburg, Würzburg, Germany, 1988.
6. Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math.

1990, 18, 18–56. [CrossRef]
7. Atici, F.M.; Biles, D.C. First order dynamic inclusions on time scales. J. Math. Anal. Appl. 2004, 292, 222–237.

[CrossRef]

http://dx.doi.org/10.1007/BF03322019
http://dx.doi.org/10.1016/S0022-247X(03)00361-5
http://dx.doi.org/10.1007/BF03323153
http://dx.doi.org/10.1016/j.jmaa.2003.11.053


Axioms 2020, 9, 65 23 of 23

8. Atici, F.M.; Daniel, C.B.; Alex, L. An application of time scales to economics. Math. Comput. Model. 2006, 43,
718–726. [CrossRef]

9. Atici, F.M.; Usynal, F. A production-inventory model of HMMS model on time scales. Appl. Math. Lett. 2008,
21, 236–243. [CrossRef]

10. Jackson, B.J. Adaptive control in the nabla setting. Neural Parallel Sci. Comput. 2008, 16, 253–272.
11. Liu, B.; Do, Y.; Batarfi, H.A.; Alsaadi, F.E. Almost periodic solution for a neutral-type neural networks with

distributed leakage delays on time scales. Neuro Comput. 2016, 173, 921–929.
12. Gao, J.; Wang, Q.R.; Zhang, L.W. Existence and stability of almost-periodic solutions for cellular neural

networks with time-varying delays in leakage terms on time scales. Appl. Math. Comput. 2015, 237, 639–649.
[CrossRef]

13. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [CrossRef]
14. Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [CrossRef]
15. Lakshmikantham, V.; Mohapatra, R.N. Theory of Fuzzy Differential Equations and Inclusions; Taylor and Francis:

Abingdon, UK, 2003.
16. Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy-number-valued functions with application

to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [CrossRef]
17. Bede, B.; Rudas, I.J.; Bencsik, A.L. First order linear fuzzy differential equations under generalized

differentiability. Inf. Sci. 2007, 177, 1648–1662. [CrossRef]
18. Li, J.; Zhao, A.; Yan. J. Cauchy problem of fuzzy differential equations under generalized differentiability.

Fuzzy Sets Syst. 2012, 200, 1–24. [CrossRef]
19. Stefanini, L.; Bede, B. Generalized Hukuhara differentiability of interval-valued functions and interval

differential equations. Nonlinear Anal. 2009, 71, 1311–1328. [CrossRef]
20. Fard, O.S.; Bidgoli, T.A. Calculus of fuzzy functions on time scales(I). Soft Comput. 2015, 19, 293–305.

[CrossRef]
21. Vasavi, C.; Suresh Kumar, G.; Murty, M.S.N. Fuzzy Hukahara delta differential and applications to fuzzy

dynamic equations on time scales. J. Uncertain Syst. 2016, 10, 163–180.
22. Vasavi, C.; Suresh Kumar, G; Murty, M.S.N. Fuzzy dynamic equations on time scales under second type

Hukuhara delta derivative. Int. J. Chem. Sci. 2016, 14, 49–66.
23. Vasavi, C.; Suresh Kumar, G.; Murty, M.S.N. Generalized differentiability and integrability for fuzzy

set-valued functions on time scales. Soft Comput. 2016, 20, 1093–1104. [CrossRef]
24. Vasavi, C.; Suresh Kumar, G.; Murty, M.S.N. Fuzzy dynamic equations on time scales under generalized

delta derivative via contractive-like mapping principles. Indian J. Sci. Technol. 2016, 9, 1–6. [CrossRef]
25. Wang, C.; Agarwal, R.P.; O’Regan, D. Calculus of fuzzy vector-valued functions and almost periodic fuzzy

vector-valued functions on time scales. Fuzzy Sets Syst. 2019, 375, 1–52. [CrossRef]
26. Deng, J.; Xu, C.; Sun, L.; Cao, N.; You, X. On conformable fractional nabla-Hukuhara derivative on time scales.

In Proceedings of the International Conference on Fuzzy Theory and Its Applications (iFUZZY), Yilan,
Taiwan, 13–16 November 2017. [CrossRef]

27. Leelavathi, R.; Suresh Kumar, G.; Murty, M.S.N. Nabla Hukuhara differentiability for fuzzy functions on
time scales. IAENG Int. J. Appl. Math. 2018, 49, 114–121.

28. Leelavathi, R.; Suresh Kumar, G.; Murty, M.S.N. Second type nabla Hukuhara differentiability for fuzzy
functions on time scales. Ital. J. Pure Appl. Math. 2020, 43, 779–801.

29. Leelavathi, R.; Suresh Kumar, G.; Murty, M.S.N.; Srinivasa Rao, R.V.N. Existence-uniqueness of solutions for
fuzzy nabla initial value problems on time scales. Adv. Differ. Equ. 2019, 2019, 269. [CrossRef]

30. Leelavathi, R.; Suresh Kumar, G.; Murty, M.S.N. Charaterization theorem for for fuzzy functions on time
scales under generalized nabla Hukuhara difference. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 1704–1706.

31. Leelavathi, R.; Suresh Kumar, G.; Murty, M.S.N. Nabla Integral for Fuzzy Functions on Time Scales. Int. J.
Appl. Math. 2018, 31, 669–678. [CrossRef]

32. Anastassiou, G.A.; Gal, S.G. On a fuzzy trigonometric approximation theorem of Weierstrass-type.
J. Fuzzy Math. 2001, 9, 701–708.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.mcm.2005.08.014
http://dx.doi.org/10.1016/j.aml.2007.03.013
http://dx.doi.org/10.1016/j.amc.2014.03.051
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/0165-0114(87)90029-7
http://dx.doi.org/10.1016/j.fss.2004.08.001
http://dx.doi.org/10.1016/j.ins.2006.08.021
http://dx.doi.org/10.1016/j.fss.2011.10.009
http://dx.doi.org/10.1016/j.na.2008.12.005
http://dx.doi.org/10.1007/s00500-014-1252-6
http://dx.doi.org/10.1007/s00500-014-1569-1
http://dx.doi.org/10.17485/ijst/2016/v9i25/85323
http://dx.doi.org/10.1016/j.fss.2018.12.008
http://dx.doi.org/10.1109/ifuzzy.2017.8311815
http://dx.doi.org/10.1186/s13662-019-2201-6
http://dx.doi.org/10.12732/ijam.v31i5.11
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries 
	Generalized Nabla Hukuhara Differentiability on Time Scales 
	Integration of Fuzzy Functions on Time Scales 
	Conclusions
	References

