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1. Introduction

A Ricci soliton is a triple (M, g, X), where (M, g) is a pseudo-Riemannian manifold and X a smooth
tangent vector field on M, such that

LX g + $ = λg, (1)

with LX, $ and λ respectively denoting the Lie derivative in the direction of X, the Ricci tensor and
a real constant. The Ricci soliton is respectively called shrinking, steady or expanding, depending on
whether λ > 0, λ = 0 or λ < 0. Trivial solutions of the Ricci soliton Equation (1) are given by an
Einstein manifold (M, g) together with a Killing vector field X.

Ricci solitons have been originally introduced in the Riemannian case [1,2] and then investigated
in pseudo-Riemannian settings. Several studies have been made in the Lorentzian case, with particular
regard to spacetimes, because of their relevance in Theoretical Physics. Some examples of these studies
may be found in [3–16] and references therein.

In a given system of local coordinates, the Ricci soliton equation is equivalent to an overdetermined
system of nonlinear second order PDEs, whose resolution is in general very hard, and often hopeless.

When trying to solve completely the Ricci soliton equation, it is natural to consider manifolds
admitting some Killing vector fields. In fact, the solutions of the Ricci soliton Equation (1) are
determined up to a Killing vector field: if Y is a Killing vector field and X satisfies (1), then also X + Y
satisfies the Ricci soliton equation. This fact can make somehow easier to determine solutions of the
Ricci soliton equation. Indeed, several examples of complete classifications of Ricci solitons have been
obtained for Lorentzian manifolds which, being homogeneous (at least, spatially), admit a large Lie
algebra of killing vector fields (see for example [4,8,9,11,14]).

The purpose of this paper is to study and solve the Ricci soliton equation for conformally flat Siklos
metrics, that is, for Siklos metrics which are in the conformal class of a flat metric. Siklos metrics [17]
are a class of spacetimes, solving Einstein’s field equations with an Einstein-Maxwell source. They are
of Petrov type N with cosmological constant Λ < 0 and always admit a null non-twisting Killing field.
The whole class of Siklos metrics, in global coordinates (v, u, x, y) = (x1, x2, x3, x4), is given by

g = − 3
Λx2

3

(
2dx1dx2 + Hdx2

2 + dx2
3 + dx2

4

)
, (2)

where H = H(x2, x3, x4) is an arbitrary smooth function (see [17,18]). Such metrics have been studied
under several different points of view. As proved in [18], they are exact gravitational waves propagating
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in the anti-de Sitter universe. Moreover, they coincide with the Kundt spacetimes belonging to the
subclass (IV)0 [19].

In [11], the author investigated the Ricci soliton equation for the one-parameter class of
homogeneous Siklos spacetimes determined by H = ±x2k

3 , where k is a real constant. We shall now
make a corresponding study for the large class of locally conformally flat Siklos metrics, which depend
on four arbitrary functions of one variable. After describing explicitly these metrics, we completely
solve the Ricci soliton equation, proving the following main result.

Theorem 1. All non-Einstein conformally flat Siklos metrics are expanding Ricci solitons. These Ricci solitons
are not of gradient type.

We recall that a gradient Ricci soliton satisfies Equation (1) for some vector field X = gradg( f ),
where f is a smooth function.

The paper is organized in the following way. In Section 2 we shall report some needed information
on the curvature of Siklos metrics and determine explicitly the general form of the locally conformally
flat examples. In Section 3 we shall prove that all these metrics are Ricci solitons, also proving that
the solutions are never of gradient type. Completely explicit solutions are obtained in Section 4 for all
conformally flat Siklos metrics admitting some additional Killing vector fields. Calculations have been
checked using the software Maple 16 c©.

2. Locally Conformally Flat Siklos Spacetimes

We may refer to [11,18] for the description of the Levi-Civita connection and curvature of an
arbitrary Siklos metric g. We shall report below the information we need to write down the Ricci
soliton equation and to identify the locally conformally flat cases.

With respect to the system of global coordinates (x1, x2, x3, x4) used in (2), the Levi-Civita
connection ∇ of g is completely determined by the following possibly non-vanishing components:

∇∂1 ∂2 = 1
x3

∂3, ∇∂1 ∂3 = − 1
x3

∂1,

∇∂2 ∂2 = 1
2 (∂2H)∂1 +

1
2x3

(2H − x3∂3H)∂3 − 1
2 (∂4H)∂4, ∇∂2 ∂3 = 1

2 (∂3H)∂1 − 1
x3

∂2,

∇∂2 ∂4 = 1
2 (∂4H)∂1, ∇∂3 ∂3 = − 1

x3
∂3,

∇∂3 ∂4 = − 1
x3

∂4, ∇∂4 ∂4 = 1
x3

∂3.

(3)

In particular, as proved in [11], Siklos metrics do not admit any parallel vector field. Consequently,
they are neither locally reducible, nor strictly Walker manifolds (i.e., Lorentzian manifolds admitting a
parallel null vector field).

The possibly non-vanishing components of the Riemann-Christoffel curvature tensor R of g are
the following:

R1212 = − 3
Λx4

3
, R1323 = 3

Λx4
3
, R1424 = 3

Λx4
3
,

R2323 =
3(2H−x3(∂3 H)+x2

3(∂
2
33 H))

2Λx4
3

, R2324 =
3(∂2

34 H)
2Λx2

3
, R2424 =

3(2H−x3(∂3 H)+x2
3(∂

2
44 H))

2Λx4
3

,

R3434 = − 3
Λx4

3

(4)
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and the Ricci tensor of g, defined by $(X, Y) = tr(Z 7→ R(Z, X)Y), is completely described by the matrix

$ =


0 −3x−2

3 0 0

−3x−2
3 − 6H−2x3(∂3 H)+x2

3(∂2
33 H+∂2

44 H)
2x2

3
0 0

0 0 −3x−2
3 0

0 0 0 −3x−2
3

 (5)

in terms of its components with respect to {∂i}. Consequently, the Ricci operator Ric, defined by
condition $(X, Y) = g(Ric(X), Y), is described with respect to {∂i} by the matrix

Ric =


Λ − 1

6 Λx3
{

2(∂3H)− x3
(
∂2

33H + ∂2
44H

)}
0 0

0 Λ 0 0

0 0 Λ 0

0 0 0 Λ

 . (6)

In particular, the scalar curvature of a Siklos metric is then given by τ = 4Λ. Moreover, the
following result holds (see [11,17,18]).

Proposition 1. For an arbitrary Siklos metric g, as described in (2), the following conditions are equivalent:

(i) g is Einstein. More precisely, $ = Λg;
(ii) g is Ricci-parallel (that is, ∇$ = 0);
(iii) the defining function H = H(x2, x3, x4) satisfies the PDE

2
x3

(∂3H)− ∂2
33H − ∂2

44H = 0. (7)

Whenever H does not satisfy (7), a Siklos spacetime (being not Ricci-parallel) is not locally symmetric,
and its Ricci operator is of Segre type (11, 2), having an eigenvalue of multiplicity four associated to a
three-dimensional eigenspace.

Next, we briefly recall that a pseudo-Riemannian manifold (M, g) is said to be (locally)
conformally flat when there exits (at least, locally) some smooth function φ, such that g = eφ · g0,
where g0 is a flat metric. Locally conformally flat metrics are an important topic both in Riemannian and
pseudo-Riemannian (in particular, Lorentzian) geometry. It is well known that in dimension greater
than three, a pseudo-Riemannian manifold (M, g) is conformally flat if and only if its Weyl conformal
curvature tensor W vanishes. The Weyl conformal curvature tensor field C of (M, g) is defined by

C(X, Y)Z = R(X, Y)Z− 1
n− 2

(QX ∧Y + X ∧QY)Z +
S

(n− 1)(n− 2)
(X ∧Y)Z, (8)

where R, Q and S respectively denote the curvature tensor, the Ricci operator and the scalar curvature,
and (X ∧Y)(Z) = 〈Y, Z〉X− 〈X, Z〉Y. It is well known that because of Equation (8), if C = 0 then the
Ricci curvature completely determines the curvature of (M, g).

By (2), (4) and (5), a standard computation shows that for an arbitrary Siklos metric, the Weyl
conformal curvature tensor W is completely determined by the following possibly non-vanishing
components Wijkh with respect to {∂i}:

W2323 = −W2424 = 3
4Λx2

3

(
∂2

33H − ∂2
44H

)
, W2324 = 3

2Λx2
3
∂2

34H. (9)
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Thus, integrating the system of PDEs

3
4Λx2

3

(
∂2

33H − ∂2
44H

)
=

3
2Λx2

3
∂2

34H = 0,

we obtain the following.

Proposition 2. A Siklos metric g, as described in (2), is locally conformally flat if and only if the defining
function H = H(x2, x3, x4) satisfies the system of PDEs{

∂2
33H − ∂2

44H = 0,

∂2
34H = 0,

(10)

that is, when H is explicitly given by

H(x2, x3, x4) =
1
2

T(x2)
(

x2
3 + x2

4

)
+ L(x2) x3 + M(x2) x4 + N(x2), (11)

where T, L, M, N are arbitrary smooth functions.

It is easy to check that an arbitray conformally flat Siklos metric, as described by Equation (2)
with H given by (11), is Einstein (that is, satisfies condition (7)) if and only if L(x2) = 0. In this case
H = T(x2)(x2

3 + x2
4) + M(x2)x4 + N(x2) and one gets the Anti-De Sitter space [17].

3. The Ricci Soliton Equation for Conformally Flat Siklos Metrics

With respect to the system of global coordinates (x1, x2, x3, x4) used to describe Siklos metrics
in (2), consider an arbitrary vector field X = Xi∂i, where Xi = Xi(x1, x2, x3, x4), i = 1, . . . , 4,
are smooth functions. The Lie derivative LX g is completely determined by the components
(LX g)ij = (LX g)(∂i, ∂j), i ≤ j = 1, . . . , 4, and can be obtained by direct computation using (3).
Explicitly, we get:

(LX g)11 = − 6
Λx2

3
∂1X2,

(LX g)12 = − 3
Λx3

3
{x3∂1X1 + x3H∂1X2 + x3∂2X2 − 2X3} ,

(LX g)13 = − 3
Λx2

3
{∂3X2 + ∂1X3} ,

(LX g)14 = − 3
Λx2

3
{∂4X2 + ∂1X4} ,

(LX g)22 = − 3
Λx3

3
{2x3∂2X1 + x3∂2H X2 + 2x3H ∂2X2 − 2H X3 + x3∂3H X3 + x3∂4H X4} ,

(LX g)23 = − 3
Λx2

3
{∂3X1 + H ∂3X2 + ∂2X3} ,

(LX g)24 = − 3
Λx2

3
{∂4X1 + H ∂4X2 + ∂2X4} ,

(LX g)33 = − 6
Λx3

3
{x3∂3X3 − X3} ,

(LX g)34 = − 3
Λx2

3
{∂4X3 + ∂3X4} ,

(LX g)44 = − 6
Λx3

3
{x3∂4X4 − X3} .

(12)

Using the above components of LX g, together with the ones of the metric tensor g and the Ricci
tensor $ with respect to the basis {∂i}, we find that an arbitrary Siklos metric g, together with the
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vector field X, satisfies the Ricci soliton Equation (1) if and only if the components Xi of vector field X
satisfy the following system of ten PDEs:

∂1X2 = 0,

x3∂1X1 + x3H∂1X2 + x3∂2X2 − 2X3 + (Λ− λ)x3 = 0,

∂3X2 + ∂1X3 = 0,

∂4X2 + ∂1X4 = 0,

12x3∂2X1 + 6x3∂2H X2 + 12x3H ∂2X2 − 12H X3 + 6x3∂3H X3 + 6x3∂4H X4

−2Λx2
3∂3H + Λx3

3(∂
2
33H + ∂2

44H) + 6(Λ− λ)x3H = 0,

∂3X1 + H ∂3X2 + ∂2X3 = 0,

∂4X1 + H ∂4X2 + ∂2X4 = 0,

2x3∂3X3 − 2X3 + (Λ− λ)x3 = 0,

∂4X3 + ∂3X4 = 0,

2x3∂4X4 − 2X3 + (Λ− λ)x3 = 0.

(13)

We start integrating the first equation in (13), obtaining

X2 = F2 (x2, x3, x4) , (14)

for some smooth function F2. Substituting from (14) into the third and fourth equations of (13) and
integrating, we respectively get{

X3 = −x1∂3F2 (x2, x3, x4) + F3 (x2, x3, x4) ,

X4 = −x1∂4F2 (x2, x3, x4) + F4 (x2, x3, x4) ,
(15)

where F3, F4 are smooth functions. Because of (15), the ninth equation of (13) becomes

2∂2
34F2 (x2, x3, x4) x1 − (∂4F3 (x2, x3, x4) + ∂3F4 (x2, x3, x4)) = 0,

which, as a polynomial equation in the variable x1, implies at once

∂2
34F2 (x2, x3, x4) = ∂4F3 (x2, x3, x4) + ∂3F4 (x2, x3, x4) = 0.

In particular, integrating ∂2
34F2 (x2, x3, x4) = 0, we get

F2 (x2, x3, x4) = G2 (x2, x3) + H2 (x2, x4) , (16)

for some smooth functions G2, H2. We apply the same argument and use the above expressions into
the eighth equation of (13), which becomes a polynomial in the variable x1. Setting equal to zero the
coefficient of x1, we get

x3∂2
33G2 (x2, x3)− ∂3G2 (x2, x3) = 0

whence, by integration,
G2 (x2, x3) = A2(x2) + B2(x2)x2

3, (17)

for some smooth functions A2, B2. The eighth equation of (13) then reduces to

2x3∂3F3 (x2, x3, x4)− 2F3 (x2, x3, x4) + (Λ− λ)x3 = 0,



Axioms 2020, 9, 64 6 of 13

which by integration gives

F3 (x2, x3, x4) =

(
λ−Λ

2
ln(x3) + G3(x2, x4)

)
x3, (18)

for some smooth function G3. Next, applying the above expressions, the ninth equation in (13) becomes

x3∂4G3(x2, x4) + ∂3F4(x2, x3, x4) = 0,

whence
F4 (x2, x3, x4) = −

1
2

x2
3 ∂4G3(x2, x4) + G4(x2, x4), (19)

for a smooth function G4. The sixth equation in (13) now reduces to

−∂3X1 − 2HB2(x2) + 2x1x3B′2(x2)− x3∂2G3(x2, x4) = 0

and integrating we get

X1 =
1
2
(
2x1B′2(x2)− ∂2G3(x2, x4)

)
x2

3 − 2B2(x2)
∫
(x3H)dx3 + F1(x1, x2, x4), (20)

for a smooth function F1. We then substitute the above expressions into the last equation of (13) and
write it as a polynomial in x1, obtaining

2
(
2B2(x2)− ∂2

44H2(x2, x4)
)

x1

−
(
2G3(x2, x4) + x2

3 ∂2
44G3(x2, x4)− 2∂4G3(x2, x4) + (λ−Λ)(ln(x3) + 1)

)
= 0.

(21)

Since the coefficients of such polynomial must necessarily vanish, by integration we find

H2 (x2, x4) = x2
4 B2(x2) + x4C2(x2) + D2(x2), (22)

with C2, D2 smooth functions, and (21) reduces to

x2
3 ∂2

44G3(x2, x4) + (λ−Λ) ln(x3) +
(
2G3(x2, x4)− 2∂4G4(x2, x4) + (λ−Λ)

)
= 0,

which is a linear combination of linearly independent functions x2
3, ln(x3) and 1 = x0

3. Therefore,
their coefficients must vanish, so that we get λ = Λ,

G3 (x2, x4) = x4 A3(x2) + B3(x2),

G4 (x2, x4) =
1
2 x2

4 A3(x2) + x4B3(x2) + A4(x2),
(23)

for a smooth function A4. By the above equations, the second equation of (13) reduces to the following
polynomial equation in x3:

−2x2
3B′2(x2)−

{
∂1F1(x1, x2, x4) + A′2(x2) + x2

4B′2(x2) + x4C′2(x2) + D′2(x2)

+4x1B2(x2)− 2x4 A3(x2)− 2B3(x2)} = 0,
(24)

which yields at once B′2(x2) = 0. Thus, B2(x2) = b2 is a real constant, and the remaining part of (24) by
integration gives

F1 (x1, x2, x4) = −2b2x2
1−

(
A′2(x2)+ x4C′2(x2)+ D′2(x2)− 2x4 A3(x2)− 2B3(x2)

)
x1 +G1(x2, x4), (25)
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where G1 is a smooth function. Next, we substitute from the above expressions into the seventh
equation of (13). Writing it as a polynomial in the variable x1, we find

4
{

A3(x2)− C′2(x2)
}

x1 +
{

2∂4G1(x2, x4) + (x2
4 − 2x2

3)A′3(x2)

−4b2
∫
(x3∂4H)dx3 + 2(C2(x2) + 2b2x4)H + 2x4B′3(x2) + 2A′4(x2)

}
= 0.

In particular, A3(x2) = C′2(x2).

Remark 1. Replacing from all the above expressions, the system (13) now reduces to its fifth and seventh
equations. Observe that in so far we did not make any assumption on the defining function H, so that
calculations above are valid for any metric (2) in the Siklos class.

In particular, whenever a Siklos metric satisfies the Ricci soliton equation, necessarily λ = Λ, so that the
cosmological constant Λ < 0 naturally appears in such equation, and the Ricci soliton is necessarily expanding.

In the remaining part of this paper we shall focus on the conformally flat cases. Thus, following the
result of the previous section, we shall assume that the defining function H of the Siklos metric is
given by (11), depending on four arbitrary smooth functions T, L, M, N. Moreover, we shall assume
L(x2) 6= 0 everywhere, in order to exclude (even locally) the Einstein case.

We use the description (11) of H into the two remaining equations of (13). The first of such
equations now gives a first order polynomial function in the variable x1, that is, one of the form
P(x2, x3, x4)x1 + Q(x2, x3, x4) = 0, so that necessarily P = Q = 0. In particular, as

P(x2, x3, x4) = −12b2L(x2)x3 + 6
{(

T(x2)C2(x2)− 2b2M(x2)− 2C′′2 (x2)
)
x4

+M(x2)C2(x2)− 4b2N(x2)− 4B′3(x2) + 2A′′2 (x2) + 2D′′2 (x2)
}
= 0,

(26)

which we have written down as a polynomial equation in x3, taking into account L(x2) 6= 0 we
have b2 = 0. Instead of integrating the remaining part of (26), we now replace from the above
expressions into the seventh equation of (13) and write it as a second order polynomial in the variable
x3. The coefficient of x3 in such polynomial equation yields 3L(x2)C2(x2) = 0, whence we get

C2(x2) = 0.

The seventh equation in (13) then reduces to

∂4G1(x2, x4) + x4B′3(x2) + A′4(x2) = 0,

from which by integration we find

G1 (x2, x4) = −
1
2

x2
4B′3(x2)− x4 A′4(x2) + A1(x2), (27)

for some smooth function A1. We are now left with the fifth equation of (13), which we write down as
a first order polynomial equation in the variable x1. From the coefficient of x1 in this equation we find

A′′2 (x2) + D′′2 (x2)− 2B′3(x2) = 0.

Thus, there exists some real constant b3, such that

B3 (x2) =
1
2

A′2(x2) +
1
2

D′2(x2) + b3. (28)

We set the integration function D2(x2) = −A2(x2). By this expression and taking into account
Equation (28), the fifth equation of (13), written now as a polynomial in the variable x3, takes the form
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P(x2)x2
3 + Q(x2, x4)x3 = 0, whence P = Q = 0. In particular, as P(x2) = −(Λ + 3b3)L(x2) and we

assumed L 6= 0, we find

b3 = −1
3

Λ

Thus, also using the above condition for b3, we are left with the equation

Q(x2, x4) =
{

6A′′4 (x2)− 3T(x2)A4(x2)−ΛM(x2)
}

x4

−
{

6A′1(x2) + 3M(x2)A4(x2) + 2ΛN(x2)
}
= 0,

which we wrote down as a first degree polynomial equation in x4, whose coefficients only depend on
the variable x2. By setting equal to zero such coefficients we determine A1(x2) and A4(x2) in function
of terms T(x2), M(x2), N(x2) occurring in the defining function H. Explicitly, we get

A1(x2) = −
∫ (1

3
ΛN(x2) +

1
2

M(x2)A4(x2)

)
dx2 + C1, (29)

with A4 completely determined as solution of

A′′4 (x2) =
1
2

T(x2)A4(x2) + ΛM(x2). (30)

Observe that the above Equation (30) is of type A′′4 (t) = f (t, A4), with f a smooth function of t
and a4. Therefore, the standard existence theorem yields that a solution exists for all values of t = x2.

Once A4 is determined as a solution of (30), all equations of (13) are satisfied. The explicit
description of the components Xi of vector field X with respect to {∂i} are now obtained substituting
all the previous formulas into (14), (15) and (20). We get that an arbitrary conformally flat Siklos
metric (2), with H determined as in (11), is an expanding Ricci soliton, for which Equation (1) holds
with λ = Λ < 0 and X = Xi∂i of components

X1 = − 2
3 Λx1 −

∫ ( 1
3 ΛN(x2) +

1
2 M(x2)A4(x2)

)
dx2 − A′4(x2)x4 + C1,

X2 = 0,

X3 = − 1
3 Λx3,

X4 = A4(x2)− 1
3 Λx4,

(31)

The above conclusion is confirmed by computing separately (LX g)ij and Λgij − $ij for all indices
i, j = 1, . . . , 4. In fact, by (2), (11), (5) and (31), taking into account (30) we find

(LX g)22 = − 1
x3

L(x2) = Λg22 − $22,

(LX g)ij = 0 = Λgij − $ij in the other cases,

so that Equation (1) holds with λ = Λ. It may be noticed that the Einstein case is characterized by
condition L(x2) = 0, in which case the above equations hold trivially for a Killing vector field X
(LX g = 0) and $ = Λg. Thus, we obtained the following result, which proves the first statement of
Theorem 1.

Theorem 2. Conformally flat Siklos metrics g, as described by (2) with the defining function H given by (11),
are expanding Ricci solitons, which satisfy Equation (1) with λ = Λ for a vector field X = Xi∂i described
by (31), where A4 is a smooth function satisfying (30).
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We end this section checking that conformally flat Siklos metrics are not gradient Ricci solitons.
As already recalled in the Introduction, a Ricci soliton is said to be gradient when it satisfies Equation (1)
for a vector field X = gradg( f ), where f is a smooth function. In this case, Equation (1) becomes

Hess( f ) + $ = λg,

with Hess( f ) the Hessian of f . It is worthwhile to remark that the existence of a gradient Ricci soliton
yields some strong restrictions in several classes of Lorentzian manifolds, and this is particularly true
for the locally conformally flat ones. In fact, locally conformally flat Lorentzian gradient Ricci solitons
have been completely described. As proved in [6], they are locally isometric

• to Robertson-Walker warped products of a real interval with a space of constant sectional curvature
in the nonisotropic case (||gradg( f )|| 6= 0);

• to a plane wave in the isotropic case (||gradg( f )|| = 0).

Locally conformally flat Siklos spacetimes do not fit in the above cases, but this does not yield
to any contradiction, as they are Ricci solitons but not of gradient type. In fact, consider the solution
of the Ricci soliton equation described in the above Theorem 2. If such Ricci soliton were gradient,
then there would be some smooth function f = f (x1, x2, x3, x4), such that vector X = gradg( f ).

We use (2) to determine the inverse matrix g−1 = (gij) of the matrix describing the metric tensor
g in coordinates (x1, x2, x3, x4) and then calculate gradg( f ) = ∑i,j gij ∂ f

∂xi
∂i. We find that X = Xi∂i =

gradg( f ), with Xi described as in (31), if and only if the following system of 4 PDEs is satisfied:

Λx2
3
(

x2
3T(x2) + 2x3L(x2) + x2

4T(x2) + 2x4M(x2) + 2N(x2)
)

∂1 f − 2Λx2
3∂2 f

+4Λx1 + 6x4 A′4(x2) + 2Λ
∫

N(x2)dx2 + 3
∫ (

M(x2)A4(x2)
)
dx2 − 6C1 = 0,

Λx2
3∂1 f = 0,

Λx3
(

x3∂3 f − 1
)
= 0,

Λx2
3∂4 f −Λx4 + 3A4(x2) = 0,

(32)

The second equation in (32) yields

f = p(x2, x3, x4), (33)

for some smooth function p. Replacing from the above Equation (33) into the third equation of (32)
and integrating, we get

p(x2, x3, x4) = ln(x3) + q(x2, x4),

where q is a smooth function. We now replace the above expressions into the last equation of (32) and
write it as a polynomial equation in the variable x3, of the form

Λ (∂4q(x2, x4)) x2
3 + (3A4(x2)−Λx4) = 0,

for all values of x3. Therefore, ∂4q(x2, x4) = 0 and 3A4(x2) − Λx4 = 0, for all values of x4,
whence Λ = 0, which can not occur. Therefore, we proved the following result, which completes the
proof of Theorem.

Proposition 3. The expanding Ricci solitons on conformally flat Siklos metrics, as described in Theorem 2,
are not gradient.
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4. Siklos Metrics with Additional Killing Vector Fields

We observe that the results of the present paper hold for a very large class of spacetimes. In fact,
as showed by Equation (11), conformally flat Siklos metrics depend on four arbitrary smooth functions
of one variable, namely, T(x2), L(x2), M(x2), N(x2). We can measure the generality of these results
by comparison with the corresponding study carried out in [11] for a one-parameter family of Siklos
metrics, which were also homogeneous and, as such, admitted many additional symmetries.

The small price to pay for the generality of the actual results is that, as it could be expected,
the explicit solutions we found, which exist for all conformally flat Siklos spacetimes, depend on the
functions occurring in (11). Indeed, also Einstein examples within the class of Siklos metrics are not
explicitly described, but identified through Equation (7).

All Siklos metrics admit at least one Killing vector field. In its pioneering paper [17] (p. 262),
Siklos completely described, in terms of the defining function H, all metrics of the form (2) admitting
one or more additional Killing vector fields. We shall report these special metrics below and give for
each of them the explicit solutions of the Ricci soliton equation.

In each of the following cases we first write down the special form of the defining function H
for which additional Killing vector fields occur, following the notation we used in this paper for the
global coordinates and the gravitational constant. We then write the conditions on functions T, L, M, N
occurring in Equation (11) (L(x2) 6= 0 in order to exclude the Einstein cases), ensuring that H is of such
required form; in other words, we completely determine the locally conformally flat examples within
the special subclass we are considering.

Finally, we completely integrate (29) and (30) in these special cases, writing explicitly the forms of
smooth functions A1 and A4 for the corresponding metrics. Such explicit forms, together with (31),
completely describe the Ricci solitons on these conformally flat metrics. Following [17], A(xi) is an
arbitrary smooth function of variables xi, while the notation Aα(xi) stands for a homogeneous function
of degree α of the specified variables.

(1) H = x−2
2 A(x3, x4).

By Proposition 2, such defining function H determines a conformally flat metric if and only if H
is given by (11) with

T(x2) = Tx−2
2 , L(x2) = Lx−2

2 , M(x2) = Mx−2
2 , N(x2) = Nx−2

2 ,

for some real constants T, L( 6= 0), M, N. Equations (29) and (30) can now be integrated. We treat
separately the cases T = 0 and T > 0 (the case T < 0 being similar to the latter).

For T = 0 we find
A4(x2) = − 1

6 ΛM ln(x2) + c1x2 + c2,

where, here and in the remaining part of the paper, ci denote some real constants. Substituting the
above into (29) and integrating, we get

A1(x2) = −ΛM2

12 x2
(ln(x2) + 1)− c1 M

2 ln(x2) +
1

6 x2
(3c2M + 2ΛN) + c3.

By integration of (29) and (30), the same argument for T > 0 yields the explicit solutions

A4(x2) = c1x
1−
√

1+2T
2

2 + c2x
1+
√

1+2T
2

2 − ΛM
3T

and

A1(x2) = − 1
6T x2

{
3c1M(1−

√
1 + 2T)x

1−
√

1+2T
2

2 + 3c2M(1 +
√

1 + 2T)x
1+
√

1+2T
2

2

+Λ(M2 − 2TN)
}
+ c3.

(2) H = A(x3, x4).
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It is easily seen that such defining function H is of the form (11) if and only if

T(x2) = T, L(x2) = L, M(x2) = M, N(x2) = N,

where T, L( 6= 0), M, N are some real constants. We first integrate Equation (30) and then Equation (29).
If T = 0 we get

A4(x2) =
1
12 ΛMx2

2 + c1x2 + c2

and
A1(x2) = −ΛM2

72 x3
2 −

c1 M
4 x2

2 −
(

c2 M
2 + ΛN

3

)
x2 + c3.

For T > 0 we find

A4(x2) = c1e−
√

T
2 x2 + c2e

√
T
2 x2 − ΛM

3T

and

A1(x2) =
√

2
6
√

T

{
3c1Me−

√
T
2 x2 − 3c2Me

√
T
2 x2 +

√
2TΛ(M2 − 2TN)x2

}
+ c3.

(3) H = A2(x2, x3, x4).

Since H must be a a homogeneous function of degree 2 of variables x2, x3, x4, Equation (11) holds
if and only if

T(x2) = T, L(x2) = Lx2, M(x2) = Mx2, N(x2) = Nx2
2,

for some real constants T, L( 6= 0), M, N.
For T = 0 we find

A4(x2) =
1
36 ΛMx3

2 + c1x2 + c2

and
A1(x2) = −ΛM2

360 x5
2 −

(
6Mc1 + 9NΛ

)
x3

2 −
1
4 c2Mx2

2 + c3,

while for T > 0 by integration we get

A4(x2) = c1e−
√

T
2 x2 + c2e

√
T
2 x2 − ΛM

3T x2

and

A1(x2) =
c1 M

T

(√
T
2 x2 + 1

)
e−
√

T
2 x2 − c2 M

T

(√
T
2 x2 − 1

)
e
√

T
2 x2 + Λ

18T (M2 − 2TN)x3
2.

(4) H = A(x2, x3).

The function H of a conformally flat Siklos metric is of the above form if and only if (11) holds
with T(x2) = M(x2) = 0, for arbitrary smooth functions L(x2)( 6= 0) and N(x2). Then, integrating (30)
we obtain

A4(x2) = c1x2 + c2, (34)

which, replaced into (29) yields

A1(x2) = −Λ
3

∫
N(x2)dx2 + c3.

(5) H = Aα(x3, x4), α 6= −2.

If H, as described by (11), is a homogeneous function of order α of variables x3, x4, then one of the
following cases must occur:

(a) α = 2, T(x2) = T and L(x2) = M(x2) = N(x2) = 0. But then, as L(x2) = 0, the metric is Einstein.
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(b) α = 1, T(x2) = N(x2) = 0 and L(x2) = L, M(x2) = M, for some real constants L( 6= 0), M.

In the latter case, A4(x2) is of the form (34) and A1(x2) = c3.

(6) H = A(x3)ex4 .

This form of H is not compatible with (11).

(7) H = A−2(x3, x4).

This form of H is not compatible with (11).

(8) H = A(x3).

Clearly, this may be treated as a special case of the above case 4). explicitly, we get that A4(x2) is
described by (34) and A1(x2) = c3.

(9) H = A(x2)x2
3.

This form of H is not compatible with (11) (as the coefficients of x2
3 and x2

4 in (11) must coincide).

(10) H = x2β−2
2 A(x3xβ

2 ).

In order of the above H to be compatible with the form (11), we must have

T(x2) = M(x2) = 0, L(x2) = x2β+2
2 L1(x2), N(x2) = x2β+2

2 N1(x2),

for some smooth functions L1, N1. However, being such functions arbitrary, this means that functions
L(x2), N(x2) are arbirtrary. Hence, we get the same explicit solutions of the above case 4).

(11) H = ±xα
3 .

This is the homogeneous case already treated in [11] for arbitrary values of the parameter α. In the
notation of this paper, we have that H = ±xα

3 corresponds to a conformally flat Siklos metric if and
only if α = 1 and (11) holds for T(x2) = M(x2) = N(x2) = 0 and L(x2) = ±1. Then, A4(x2) is given
by (34) and A1(x2) = c3.

(12) H = ±x−2
3 .

This form of H is not compatible with (11).

5. Conclusions

The study of Ricci solitons in Lorentzian settings is an active field of research in Differential
Geometry and Theoretical Physics. On the one hand, this investigation led to determine some strong
restrictions on the geometry of a Lorentzian manifold satisfying the Ricci soliton equation when the
Ricci soliton is of gradient type. This fact is particularly evident in the case of locally conformally
flat Lorentzian manifolds. On the other hand, such rigidity results make natural to ask whether they
extend to the case where the Ricci soliton is not gradient.

The present paper gives a contribution in this line of work, providing a large class of locally
conformally flat Lorentzian examples, all of which are Ricci solitons, but whose geometry is not
strongly restricted by the Ricci soliton equation. Consequently, they do not fit into the classification
obtained in [6] for Lorentzian gradient Ricci solitons.
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