Article

On the Stability of the Generalized Psi Functional Equation

Gwang Hui Kim ${ }^{1(1)}$ and Themistocles M. Rassias ${ }^{2, *}$
1 Department of Mathematics, Kangnam University, Yongin 16979, Gyeonggi, Korea; ghkim@kangnam.ac.kr
2 Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
* Correspondence: trassias@math.ntua.gr

Received: 23 April 2020; Accepted: 18 May 2020; Published: 23 May 2020
Abstract: In this paper, we investigate the generalized Hyers-Ulam stability for the generalized psi functional equation $f(x+p)=f(x)+\varphi(x)$ by the direct method in the sense of P. Gǎvruta and the Hyers-Ulam-Rassias stability.

Keywords: stability; Hyers-Ulam-Rassias stability; psi functional equation; gamma functional equation
MSC: 39B82; 39B52

1. Introduction

Functional equations in a single variable were introduced by Kuczma [1] in 1968. Two years later, Brydak [2] investigated the stability of the generalized single variable functional equation

$$
\begin{equation*}
f(\varphi(x))=g(x) f(x)+F(x) . \tag{1}
\end{equation*}
$$

Thereafter, this functional Equation (1) was studied in connection with the iterative functional equation with variable coefficients that could be-for example—a polynomial. Equation (1) is also considered in other forms, such as:

Abel's equation

$$
f(\varphi(x))=f(x)+c
$$

Schröder's equation

$$
f(\varphi(x))=c f(x)
$$

the Gamma functional equation

$$
f(x+1)=x f(x),
$$

the Psi functional equation

$$
f(x+1)=f(x)+\frac{1}{x}
$$

and various iterative functional equations involving a polynomial.
The stability of the functional Equation (1) as well as similar forms of it has been studied by Baker [3], Choczewski et al. [4], Turdza [5], Lee et al. [6], Agarwal et al. [7], Jung et al. [8] and others.

The stability of iterative equations involving polynomials has been investigated by Kuczma et al. [9], Forti [10], Xu [11], Zhang et al. [12], and others.

The stability of the Gamma functional equation

$$
f(x+1)=x f(x)
$$

has been studied by Jung [13,14], Kim [15], Kim et al. [16], and others.
Equations with functional perturbations are interesting from many points of view $[17,18]$ and enjoy various applications especially in the theory of integral [19] and functional-differential equations [18].

For further works conducted in the very active domain of the stability of functional equations, the interested reader is referred to [12-31].

The psi (digamma) function is defined by

$$
\begin{equation*}
\Psi(x):=\frac{d}{d x} \ln \Gamma(x)=\int_{0}^{\infty}\left(\frac{e^{-t}}{t}-\frac{e^{-x t}}{1-e^{-t}}\right) d t \tag{2}
\end{equation*}
$$

where $\Gamma(x)$ stands for the Gamma function.
The Gamma functional equation is the following:

$$
\Gamma(x+1)=x \Gamma(x), x>0
$$

The stability for this functional equation is proved in Jung [13] and Kim [15]. Since the Gamma functional equation implies that

$$
\frac{\Gamma^{\prime}(x+1)}{\Gamma(x+1)}=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}+\frac{1}{x}
$$

it follows that the psi function (2) constitutes the solution of the equation:

$$
\begin{equation*}
\psi(x+1)=\psi(x)+\frac{1}{x} \tag{3}
\end{equation*}
$$

which is the so-called psi functional equation.
Due to (3), we can consider the functional equation

$$
\begin{equation*}
f(x+p)=f(x)+\varphi(x) \tag{4}
\end{equation*}
$$

in which f, φ are unknown functions, and x, p are positive real numbers.
Let us recall that, in the Peano axioms, $n^{\prime}=n+1$ is called the successor of n. Therefore, the functional equation

$$
\begin{equation*}
f(x+1)=f(x)+1 \tag{5}
\end{equation*}
$$

with the unit step is implied, which can be called the unit successor functional equation with unit step. More generally, the functional equation

$$
\begin{equation*}
f(x+p)=f(x)+\alpha_{p} \tag{6}
\end{equation*}
$$

can be considered the α-successor functional equation with p-step, where the constant $\alpha_{p}=\alpha$ depends on a fixed positive real number p.

The aim of the present paper is to investigate the generalized Hyers-Ulam stability for the functional Equation (4), in the sense of P. Gǎvruta [21] and the Hyers-Ulam-Rassias stability [22].

As a corollary, we obtain stability results of the successor functional Equations (5) and (6) and the psi functional Equation (3).

Throughout this paper, let \mathbb{R} and \mathbb{R}_{+}be the set of real numbers and the set of all positive real numbers, respectively. Set $\mathbb{R}_{*}:=\mathbb{R}_{+} \cup\{0\}$. Let $p, \delta>0$ be fixed real numbers, and n be a non-negative integer.

2. Stability of the Functional Equation (4)

In this section, we will investigate the Hyers-Ulam-Rassias stability as well as the stability in the sense of P. Gǎvruta, for the functional Equation (4)

Theorem 1. Let a mapping $\theta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{*}$ satisfy the inequality

$$
\begin{equation*}
\Theta(x):=\sum_{i=0}^{\infty} \theta(x+p i)<\infty . \tag{7}
\end{equation*}
$$

Assume that $f: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{*}$ satisfies the inequality

$$
\begin{equation*}
|f(x+p)-f(x)-\varphi(x)|<\theta(x) \tag{8}
\end{equation*}
$$

Then, there exists a unique solution $F: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{*}$ of the Equation (4) with

$$
\begin{equation*}
|F(x)-f(x)| \leq \Theta(x) \tag{9}
\end{equation*}
$$

Proof. For any $x>0$ and for every positive integer n, we define

$$
\begin{equation*}
P_{n}(x):=f(x+p n)-\sum_{i=0}^{n-1} \varphi(x+p i) \tag{10}
\end{equation*}
$$

By (8), we have

$$
\begin{align*}
\left|P_{n+1}(x)-P_{n}(x)\right| & =|f(x+p n+p)-f(x+p n)-\varphi(x+p n)| \tag{11}\\
& \leq \theta(x+p n) .
\end{align*}
$$

Indeed, for $n \geq m$, we have

$$
\begin{equation*}
\left|P_{n}(x)-P_{m}(x)\right| \leq \sum_{i=m}^{n-1}\left|P_{i+1}(x)-P_{i}(x)\right| \leq \sum_{i=m}^{n-1} \theta(x+p i) \tag{12}
\end{equation*}
$$

The right-hand-side of (12) converges to zero as $m \longrightarrow \infty$, by (7). In view of (12), the sequence $\left\{P_{n}(x)\right\}$ is a Cauchy sequence for all $x \in \mathbb{R}_{+}$.

Hence, we can define a function $F: \mathbb{R}_{+} \rightarrow \mathbb{R}_{*}$ by

$$
F(x):=\lim _{n \rightarrow \infty} P_{n}(x)
$$

By induction on n, we show that

$$
\begin{equation*}
\left|P_{n}(x)-f(x)\right| \leq \sum_{i=0}^{n-1} \theta(x+p i) \tag{13}
\end{equation*}
$$

for all n.
For $n=1$, the inequality (13) follows immediately from (8). Assume that (13) holds true for some n. Then, from (11) and (13), it follows that

$$
\begin{aligned}
\left|P_{n+1}(x)-f(x)\right| & \leq\left|P_{n+1}(x)-P_{n}(x)\right|+\left|P_{n}(x)-f(x)\right| \\
& \leq \sum_{i=0}^{n} \theta(x+p i) .
\end{aligned}
$$

Therefore, (13) holds true for all positive integers n.

Hence, by (13), we have

$$
\begin{aligned}
|F(x)-f(x)| & =\lim _{n \rightarrow \infty}\left|P_{n}(x)-f(x)\right| \\
& \leq \sum_{i=0}^{\infty} \theta(x+p i)=\theta(x)
\end{aligned}
$$

which completes the proof of (9).
From the definition of P_{n}, it follows that F satisfies the functional Equation (4)

$$
\begin{aligned}
F(x+p) & =\lim _{n \rightarrow \infty}\left(f(x+p(n+1))-\sum_{i=1}^{n} \varphi(x+p i)\right) \\
& =\lim _{n \rightarrow \infty} P_{n+1}(x)+\varphi(x)=F(x)+\varphi(x)
\end{aligned}
$$

If $G: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{*}$ is another function which satisfies (9) and (4), then it follows from (10) and (9) that for all n, it holds

$$
\begin{aligned}
\mid F(x) & -G(x)\left|=\lim _{n \rightarrow \infty}\right| P_{n}(x)-Q_{n}(x) \mid \\
& \leq \lim _{n \rightarrow \infty}\left|P_{n}(x)-f(x+p(n-1))\right|+\left|f(x+p(n-1))-Q_{n}(x)\right| \\
& =\lim _{n \rightarrow \infty} 2 \theta(x+p(n-1))
\end{aligned}
$$

where

$$
G:=\lim _{n \rightarrow \infty} Q_{n}
$$

Thus, the uniqueness of the solution of Equation (4) is established, and this completes the proof of Theorem 1.

For the stability in the sense of Gǎvruta [21] to be valuable, there must exist a convergent sequence which satisfies the assumption (7) of the Theorem.

We can show that the infinite series of the undefined function θ of the condition (7) converges, by the improper integral test, the p-series test, or the ratio test for the infinite series.

By replacing the function θ in the stability inequality (8) by an arbitrary exponential function, the assumption (7) of Theorem 1 can be omitted.

Corollary 1. Assume that $f: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{*}$ satisfies the inequality

$$
|f(x+p)-f(x)-\varphi(x)|<\theta_{a}(x):= \begin{cases}a^{x}, & 0<a<1 \\ a^{-x}, & 1<a\end{cases}
$$

Then, there exists a unique solution $F: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{*}$ of the Equation (4) with

$$
|F(x)-f(x)| \leq \Theta_{a}(x):= \begin{cases}\sum_{i=0}^{\infty} a^{x+p i}, & 0<a<1 \\ \sum_{i=0}^{\infty} a^{-(x+p i)}, & 1<a\end{cases}
$$

Proof. The limit of the ratio test implies that

$$
L:=\lim _{x \rightarrow \infty} \frac{\theta_{a}(x+p(i+1))}{\theta_{a}(x+p i)}<1
$$

respectively.
The Hyers-Ulam-Rassias stability follows.

Corollary 2. Assume that $f: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{*}$ satisfies the inequality

$$
|f(x+p)-f(x)-\varphi(x)|<\frac{\delta}{x^{r}}
$$

for fixed $r>1$.
Then, there exists a unique solution $F: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{*}$ of the Equation (4) with

$$
\begin{equation*}
|F(x)-f(x)| \leq \sum_{i=0}^{\infty} \frac{\delta}{(x+i)^{r}} \tag{14}
\end{equation*}
$$

Proof. Set $\theta(x)=\frac{\delta}{x^{r}}$ in Theorem 1. Since the convergence condition of Ψ is satisfied by the p-series test in the case when $r>1$, Corollary 2 follows.

The result (14) of Corollary 2 is the following:

$$
\sum_{i=0}^{\infty} \frac{\delta}{(x+i)^{r}} \leq \begin{cases}(i) \delta\left(\frac{1}{r-1}-\frac{1}{x^{r}}\right), & 0 \leq x<1 \\ (i i) \frac{\delta}{r-1}, & 1 \leq x<2 \\ (i i i) \delta\left(\frac{1}{r-1}-\sum_{n=1}^{\lceil x\rceil-1} \frac{1}{n^{r}}\right), & 2 \leq x\end{cases}
$$

where $\lceil\cdot\rceil$ stands for the Gaussian notation.
The results below concern the Hyers-Ulam-Rassias stability of the successor functional Equations (5) and (6), and the psi functional Equation (3).

Corollary 3. Assume that $f: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{*}$ satisfies the inequality

$$
\left|f(x+p)-f(x)-\alpha_{p}\right|<\frac{\delta}{x^{r}}
$$

for fixed $r>1$, and constant α_{p}, which depends on p.
Then, there exists a unique solution $F: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{*}$ of the equation

$$
f(x+p)=f(x)+\alpha_{p}
$$

with

$$
|F(x)-f(x)| \leq \sum_{i=0}^{\infty} \frac{\delta}{(x+i)^{r}}
$$

Proof. Let $\varphi(x):=\varphi(p)=\alpha_{p}$ that is a constant. Namely, we define

$$
P_{n}(x):=f(x+p n)-n \alpha_{p} .
$$

The following process is similar to that of Theorem 1.
The next result constitutes the Hyers-Ulam-Rassias stability for the psi functional Equation (3).
Corollary 4. Assume that $f: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{*}$ satisfies the inequality

$$
\left|f(x+1)-f(x)-\frac{1}{x}\right|<\frac{\delta}{x^{r}}
$$

for a fixed real number $r>1$.
Then, there exists a unique solution $F: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{*}$ of Equation (3) with

$$
|F(x)-f(x)| \leq \sum_{i=0}^{\infty} \frac{\delta}{(x+i)^{r}}
$$

Proof. Set

$$
p=1, \varphi(x)=\frac{1}{x}, \text { and } \theta(x)=\frac{\delta}{x^{r}}
$$

in Theorem 1. By applying the p-series test, the result follows.
Corollary 5. Assume that $f: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{*}$ satisfies the inequality

$$
|f(x+1)-f(x)-1|<\frac{\delta}{x^{r}}
$$

for fixed $r>1$.
Then, there exists a unique solution $F: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{*}$ of the equation

$$
F(x+1)=F(x)+1
$$

with

$$
|F(x)-f(x)| \leq \sum_{i=0}^{\infty} \frac{\delta}{(x+i)^{r}}
$$

Proof. Setting

$$
p=1, \varphi(1)=\frac{1}{1}=1, \text { and } \theta(x)=\frac{\delta}{x^{r}}
$$

in Theorem 1, and applying the p-series test, the result follows.
Remark 1. By setting

$$
x+p=\phi(x)
$$

this result can be immediately extended to the more general form

$$
f(\phi(x))=f(x)+\varphi(x)
$$

3. Conclusions

In this paper, we proved the generalized Hyers-Ulam stability for the generalized psi functional equation

$$
f(x+p)=f(x)+\varphi(x)
$$

by the direct method in the sense of P. Gǎvruta and the Hyers-Ulam-Rassias stability. As corollaries, we obtain the generalized Hyers-Ulam stability of the unit successor functional Equation (5) with unit step and the α_{p}-successor functional Equation (6) with p-step.

Author Contributions: The authors contributed equally for the preparation of this paper. All authors have read and agree to the published version of the manuscript.
Funding: The first author of this work was supported by Kangnam University Research Grant in 2018.
Acknowledgments: We would like to express our thanks to the referees for valuable comments which helped improve the presentation of the paper.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kuczma, M. The Functional Equations in a Single Variable; Monografie Matematyczne t. 46; PWN-Polish Scientific Publishers: Warsaw, Poland, 1968.
2. Brydak, D. On the stability of the functional equation. Proc. Am. Math. Soc. 1970, 26, 455-460.
3. Baker, J.A. The stability of certain functional equations. Proc. Am. Math. Soc. 1991, 112, 729-732. [CrossRef]
4. Choczewski, B.; Turdza, E.; Wegrzyk, R. On the stability of a linear functional equation. Rocznik Nauk.-Dydakt. Prace Mat. IX 1979, 69, 15-21.
5. Turdza, E. On the stability of the functional equation $\varphi[f(x)]=g(x) \varphi(x)+F(x)$. Proc. Am. Math. Soc. 1971, 30, 484-486. [CrossRef]
6. Lee, S.H.; Jun, K.W. The stability of the equation $f(x+p)=k f(x)$. Bull. Korean Math. Soc. 1998, 35, 653-658.
7. Agarwal, R.P.; Xu, B.; Zhang, W. Stability of functional equations in single variable. J. Math. Anal. Appl. 2003, 288, 852-869. [CrossRef]
8. Jung, S.-M.; Popa, D.; Rassias, M.T. On the stability of the linear functional equation in a single variable on complete metric groups. J. Glob. Optim. 2014, 59, 165-171. [CrossRef]
9. Kuczma, M.; Choczewski, B.; Ger, R. Iterative Functional Equations. In Encyclopedia of Mathematics and Its Applications; Cambridge Univ. Press: Cambridge, UK, 1990.
10. Forti, G.L. Hyers-Ulam stability of functional equations in several variables. Aequ. Math. 1995, 50, 146-190. [CrossRef]
11. Xu, B.; Zhang, W. Hyers-Ulam stability for a nonlinear iterative equation. Colloq. Math. 2002, 93, 1-9. [CrossRef]
12. Zhang, W. Stability of the solution of the iterated equation $\sum_{i=1}^{n} \lambda_{i} f^{i}(x)=F(x)$. Acta Math. Sci. 1988, 8, 421-424. [CrossRef]
13. Jung, S.-M. On the stability of the gamma functional equation. Results Math. 1998, 33, 306-309. [CrossRef]
14. Jung, S.-M. On the modified Hyers-Ulam-Rassias stability of the functional equation for gamma function. Mathematica (Cluj) 1997, 39, 233-237.
15. Kim, G.H. On the stability of the generallized gamma functional eqaution. Int. J. Math. Math. Sci. 2000, 23, 513-520. [CrossRef]
16. Kim, G.H.; $\mathrm{Xu}, \mathrm{B} . ;$ Zhang, W. Notes on stability of the generalized gamma functional equation. Int. J. Math. Math. Sci. 2002, 32, 57-63. [CrossRef]
17. Sidorov, N.; Trufanov, A. Nonlinear operator equations with a functional perturbation of the argument of neutral type. Diff. Equat. (Springer) 2009, 45, 1840-1844. [CrossRef]
18. Kolmanovskii, V.; Myshkis, A. Introduction to the Theory and Applications of Functional-Differential Equations; Mathematics and its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; Volume 463, p. 648.
19. Sidorov, D. Solvability of systems of Volterra integral equations of the first kind with piecewise continuous kernels. Russ. Math. 2013, 57, 54-63. [CrossRef]
20. Abdollahpour, M.R.; Rassias, M.T. Hyers-Ulam stability of hypergeometric differential equations. Aequ. Math. 2019, 93, 691-698. [CrossRef]
21. Gǎvruta, P. On the stability of some functional equations. In Stability of Mappings of Hyers-Ulam Type; Rassias, T.M., Tabor, J., Eds.; Hadronic Press: Palm Harbor, FL, USA, 1994; pp. 93-98.
22. Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297-300. [CrossRef]
23. Abdollahpour, M.R.; Aghayaria, R.; Rassias, M.T. Hyers-Ulam stability of associated Laguerre differential equations in a subclass of analytic functions. J. Math. Anal. Appl. 2016, 437, 605-612. [CrossRef]
24. Czerwik, S. Functional Equations and Inequalities; World Scientific: London, UK, 2002.
25. Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Boston, MA, USA, 1998.
26. Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: Berlin/Heidelberg, Germany, 2011.
27. Kannappan, P. Functional Equations and Inequalities with Applications; Springer: Berlin/Heidelberg, Germany, 2009.
28. Lee, Y.-H.; Jung, S.-M.; Rassias, M.T. Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation. J. Math. Inequal. 2018, 12, 43-61. [CrossRef]
29. Mortici, C.; Jung, S.-M.; Rassias, M.T. On the stability of a functional equation associated with the Fibonacci numbers. Abstr. Appl. Anal. 2014, 2014, 546046. [CrossRef]
30. Park, C.; Rassias, M.T. Additive functional equations and partial multipliers in C^{*}-algebras. Revista de la Real Academia de Ciencias Exactas Serie A Matemáticas 2019, 113, 2261-2275. [CrossRef]
31. Ulam, S.M. A Collection of Mathematical Problems; Problems in Modern Mathematics; Interscience Publ.: New York, NY, USA, 1960.
