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Abstract: Scator set, introduced by Fernández-Guasti and Zaldívar, is endowed with a very peculiar
non-distributive product. In this paper we consider the scator space of dimension 1 + 2 and the so
called fundamental embedding which maps the subset of scators with non-zero scalar component
into 4-dimensional space endowed with a natural distributive product. The original definition of the
scator product is induced in a straightforward way. Moreover, we propose an extension of the scator
product on the whole scator space, including all scators with vanishing scalar component.
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1. Introduction

The scator algebra was introduced by Fernández-Guasti and Zaldívar in a series of papers, starting
from [1,2]. In this paper we confine ourselves to scators in the hyperbolic space of dimension 1 + 2.

To be more precise, we consider a real linear space R1+2 with a fixed basis
o
eee0,

o
eee1 and

o
eee2. An element

o
a ∈ R1+2 will be denoted as

o
a = (a0; a1, a2) = a0

o
eee0 + a1

o
eee1 + a2

o
eee2 = a0 + a1

o
eee1 + a2

o
eee2 (1)

where a0, a1 and a2 are real numbers. The coefficient a0 is referred to as a scalar component and

a1, a2 are called director components. The unit scalar
o
eee0 is usually omitted, see the last equality of

Equation (1). The decomposition into scalar and director components is crucial for many properties of

scators, including their multiplication. In particular, in the hyperbolic case we have (
o
eee1)

2 = (
o
eee2)

2 = 1.
The elliptic case (when squares of director basis vectors are negative) can be considered as

a new realization of hypercomplex numbers [2,3], while the hyperbolic case has potential physical
applications, usually related to deformations and generalizations of the special theory of relativity [4,5],
see also [6–8].

Originally, the scator product has been defined as a map S1+2 × S1+2 into S1+2 (for details see
Definition 1), where

S1+2 = R1+2 \ {o
a : a0 = 0 and a1a2 6= 0} , (2)

Usually, only the elements of S1+2 has been called scators, compare [1,2,9]. In this paper we prefer to
use this name in a little bit more extended sense (scators as elements of R1+2) because one of our goals
is to extend the definition of the scator product on the whole space R1+2, see Section 4.

Definition 1. Scator product of two scators,
o
a = (a0; a1, a2) ∈ S1+2 and

o
b = (b0; b1, b2) ∈ S1+2, is denoted

by
o
a

o
b ≡ (u0; u1, u2). In the hyperbolic case it is defined as follows.
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• For a0 6= 0 and b0 6= 0,

u0 = a0b0 + a1b1 + a2b2 +
a1a2b1b2

a0b0
≡ a0b0

(
1 +

a1b1

a0b0

)(
1 +

a2b2

a0b0

)
,

u1 = a0b1 + a1b0 +
a1a2b2

a0
+

a2b1b2

b0
≡ a0b0

(
a1

a0
+

b1

b0

)(
1 +

a2b2

a0b0

)
,

u2 = a0b2 + a2b0 +
a1a2b1

a0
+

a1b1b2

b0
≡ a0b0

(
1 +

a1b1

a0b0

)(
a2

a0
+

b2

b0

)
.

(3)

• For a0 = a2 = 0, a1 = 1 and b0 6= 0,

o
eee1

o
β =

o
β

o
eee1 =

(
b1; b0,

b1b2

b0

)
. (4)

• For a0 = a1 = 0, a2 = 1 and b0 6= 0,

o
eee2

o
β =

o
β

o
eee2 =

(
b2;

b1b2

b0
, b1

)
. (5)

In particular, the hyperbolic basis satisfies

o
eee1

o
eee1 =

o
eee2

o
eee2 = 1 ,

o
eee1

o
eee2 =

o
eee2

o
eee1 = 0 , (6)

anticipating commutativity and non-associativity of the scator set under multiplication. In addition,

the following property holds: (λ
o
a)

o
b =

o
a(λ

o
b) = λ(

o
a

o
b). Generalization of Definition 1 to higher

dimensions is quite natural, see [3,10].

Remark 2. Using the notation
(a0; a1, a2) = a0(1; βa1, βa2) ,

(b0; b1, b2) = b0(1; βb1, βb2) ,
(7)

(compare [11]), we rewrite the generic case (i.e., Equation (3)) as:

u0 = a0b0(1 + βa1βb1)(1 + βa2βb2) ,

u1 = a0b0(βa1 + βb1)(1 + βa2βb2) ,

u2 = a0b0(1 + βa1βb1)(βa2 + βb2) ,

(8)

In other words, for a0 6= 0 and b0 6= 0 we have

o
a

o
b = a0b0 (1 + βa1βb1) (1 + βa2βb2)

(
1;

βa1 + βb1
1 + βa1βb1

,
βa2 + βb2

1 + βa2βb2

)
. (9)

The components of Equation (9) remind the Lorentz rule for relativistic sum of velocities (in the
one-dimensional case), which motivates some physical applications [4,5]. In this paper we present
a natural motivation for the complicated formulas of Definition 1. We also we propose a novel extension
of Definition 1 on the case a0 = 0 (for any values of a1 and a2).
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2. Commutativity, Non-Distributivity and Generic Associativity of the Scator Product

The scator product, as defined above, is manifestly commutative, for any pair of scators. In general
it is non-distributive, which is clearly underlined in the first papers on the scator algebra [1,2,10].
In order to explicitly show no-distributivity one can compute [11]:

∆(
o
a,

o
b;

o
c) := (

o
a +

o
b)

o
c− o

a
o
c−

o
b

o
c =

(b0a1 − a0b1)(a0b2 − b0a2)

a0b0(a0 + b0)
(

c1c2

c0
, c2, c1), (10)

where we denote, as usual,
o
c = (c0; c1, c2). We see, that except some special cases (a0b1 = a1b0 or

a0b2 = a2b0) the scator product is not distributive.
Computing the product of three scators with non-vanishing scalar components, under assumption

that the scalar components of
o
a

o
b,

o
b

o
c and

o
a

o
c do not vanish, we obtain

(
o
a

o
b)

o
c =

o
a(

o
b

o
c) =

o
b(

o
c

o
a) = (w0; w1, w2) ≡ w0(1; βw1, βw2) , (11)

where
w0 = a0b0c0(1 + βa1βb1 + βa1βc1 + βb1βc1)(1 + βa2βb2 + βa2βc2 + βb2βc2) ,

w1 = a0b0c0(βa1 + βb1 + βc1 + βa1βb1βc1)(1 + βa2βb2 + βa2βc2 + βb2βc2) ,

w2 = a0b0c0(1 + βa1βb1 + βa1βc1 + βb1βc1)(βa2 + βb2 + βc2 + βa2βb2βc2) .

(12)

Therefore, in the generic case the scator product is associative but in special cases the associativity is
broken. A general discussion of the associativity of the scator product can be found in [9]. The simplest
example of the non-associativity is given by triple products of basis vectors.

(
o
eee1

o
eee1)

o
eee2 =

o
eee2 ,

o
eee1(

o
eee1

o
eee2) = 0 , hence (

o
eee1

o
eee1)

o
eee2 6=

o
eee1(

o
eee1

o
eee2) . (13)

Note that both
o
eee1 and

o
eee2 are zero divisors.

3. Fundamental Embedding as a Natural Interpretation of the Scator Product

In Ref. [11] we introduced the so called fundamental embedding F : S1+2
∗ → A2, where S1+2

∗ is
subset of the scator space containing scators with non-zero scalar component and the space A2 is the
algebra over R generated by elements eee1, eee2 satisfying

eee1eee1 = eee2eee2 = 1 , eee1eee2 = eee2eee1 = eee12 . (14)

Therefore, A2 is spanned by 1, eee1, eee2 and eee12. We assume that the product in the space A2 is
commutative, associative and distributive over addition.

In this paper we propose a slightly more general definition of the fundamental embedding,
extending the former definition on the whole set S1+2, defined by Equation (2).

Definition 3. The fundamental embedding F : S1+2 → A2 is defined as:

F(
o
a) = a0 + a1eee1 + a2eee2 +

a1a2

a0
eee12 (a0 6= 0) ,

F(a1
o
eee1) = a1eee1 ,

F(a2
o
eee2) = a2eee2 .

(15)
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Remark 4. The planes (a0; 0, a2) and (a0; a1, 0) are invariants of the fundamental embedding:

F(a0 + a1
o
eee1) = a0 + a1eee1 ,

F(a0 + a2
o
eee2) = a0 + a2eee2 .

(16)

For a0 6= 0 this is a special case of the first formula of Equation (15).

The space A2 may be understood as a commutative analogue of the geometric algebra or the
Clifford algebra [12], where vectors commute only when they are parallel (and orthogonal vectors
anti-commute). In this context we may interpret eee1 and eee2 as vectors and eee12 as a bivector or
pseudoscalar. The set F(S1+2

∗ ) has a natural group structure reminding a commutative analogue of
the Clifford (or Lipschitz) group [13]. Indeed, the first equation of Equation (15) can be rewritten as

F(
o
a) = a0

(
1 +

a1

a0
eee1

)(
1 +

a2

a0
eee2

)
(17)

Operations in the space A2 give a natural interpretation and motivation for the definition in Equation (3)
of the scator product. The following theorem holds.

Theorem 5. If a0 6= 0, b0 6= 0, a1b1 + a0b0 6= 0 and a2b2 + a0b0 6= 0, then there exists
o
c ∈ S1+2

∗ such that

F(
o
a)F(

o
b) = F(

o
c). (18)

What is more,
o
c coincides with

o
a

o
b given by Definition 1, i.e.,

F(
o
a

o
b) = F(

o
a)F(

o
b) ,

o
a

o
b = F−1(F(

o
a)F(

o
b)) . (19)

Proof. First, let us observe that(
1 +

a1

a0
eee1

)(
1 +

b1

b0
eee1

)
= 1 +

a1b1

a0b0
+

(
a1

a0
+

b1

b0

)
eee1 = (1 + βa1βb1) + (βa1 + βb1) eee1 , (20)

where we used the notation in Equation (7). Therefore, the product

F(
o
a)F(

o
b) = a0b0

(
1 +

a1

a0
eee1

)(
1 +

b1

b0
eee1

)(
1 +

a2

a0
eee2

)(
1 +

b2

b0
eee2

)
(21)

can be easily represented in the form of Equation (17). Indeed,

F(
o
a)F(

o
b) = a0b0 (1 + βa1βb1 + (βa1 + βb1) eee1) (1 + βa2βb2 + (βa2 + βb2) eee2) (22)

Denoting
o
c := (c0; c1, c2), where

c0 = a0b0(1 + βa1βb1)(1 + βa2βb2) ,

c1 = a0b0(βa1 + βb1)(1 + βa2βb2) ,

c2 = a0b0(1 + βa1βb1)(βa2 + βb2) ,

(23)

we get Equation (18). The conditions a1b1 + a0b0 6= 0 and a2b2 + a0b0 6= 0 assure that c0 6= 0,

so
o
c ∈ S1+2

∗ , as needed. One can easily see that the above
o
c coincides with

o
u defined by Equation (8),

which ends the proof.
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Remark 6. Theorem 5 does not extend on all scators from the space S1+2. For instance,

F(
o
eee1

o
b) = F(

o
eee1)F(

o
b) (if b0 6= 0 and b1 6= 0) ,

F(
o
eee1

o
b) 6= F(

o
eee1)F(

o
b) (for

o
b = b0 + b2eee2, b0 6= 0) .

(24)

It is worth noting that conditions a1b1 + a0b0 6= 0 and a2b2 + a0b0 6= 0 in Theorem 5 are essential and

necessary. If, for instance, a1b1 + a0b0 = 0, then
o
a

o
b and F(

o
a

o
b) are proportional to eee1, while F(

o
a)F(

o
b) is,

in general, a linear combination of eee1 and eee12, compare Equation (22).

4. Extension of the Scator Product on All Scators with Vanishing Scalar Component

Definition 1 contains only two special cases when one factor can have vanishing scalar component.
We may shortly say, that Definition 1 is applicable for all scators belonging to S1+2. In this section we
propose an extension of this definition on the whole scator space R1+2. First, we consider the case
when the first factor is of the form

o
a = a1

o
eee1 + a2

o
eee2, (25)

while the second factor is assumed to belong to S1+2
∗ (i.e., b0 6= 0):

o
b = b0 + b1

o
eee1 + b2

o
eee2. (26)

We base our treatment on discrete symmetries of the scator set, namely, reflection symmetries.
Let us introduce

o
aε = ε + a1

o
eee1 + a2

o
eee2, (27)

where we understand ε as a very small real positive number. Finally it will approach zero. We will

consider products of the
o
b scator with both ε and −ε versions of

o
a. In this way, since product is

non-distributive, we have to obtain two disparate results (divergent when ε→ 0) with troublesome
terms having opposite signs. Therefore, to find the proper (finite) product we define it as

o
a

o
b =

o
aε

o
b +

o
a−ε

o
b

2
= (a1b1 + a2b2; a1b0 +

a2b1b2

b0
, a2b0 +

a1b1b2

b0
), (28)

where, after straightforward calculation, we observe troublesome terms cancellation. This averaging
procedure seems to be promising, as is confirmed by the following calculation. where two “deficient”
scators are involved:

o
a = a1

o
eee1 + a2

o
eee2,

o
b = b1

o
eee1 + b2

o
eee2 . (29)

Now we have four combinations of divergent terms which also can be cancelled by taking an
appropriate sum. In the identical manner as before, we propose in the case of Equation (29) the
following formula:

o
a

o
b =

o
aε

o
bδ +

o
a−ε

o
bδ +

o
aε

o
b−δ +

o
a−ε

o
b−δ

4
= a1b1 + a2b2 , (30)

where we use a standard convention a1b1 + a2b2 ≡ (a1b1 + a2b2; 0, 0).
Finally, we will define the fundamental embedding for the scators of the form

o
a = a1eee1 + a2eee2,

compare Equation (25). We use approach similar to what we performed above, i.e.,

F(
o
a) =

1
2
(F(

o
aε) + F(

o
a−ε)) = a1eee1 + a2eee2 =

o
a . (31)

Hence, taking into account Remark 4, we see that all coordinate axes and planes perpendicular to
them, including the plane (0; a1, a2), are invariant with respect to the fundamental embedding F.
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5. Conclusions

We studied multiplication in the scator space of dimension 1 + 2. Multiplication of scators is
usually restricted to a subset which consists mostly of scators with non-vanishing scalar component.
In this paper we proposed and discussed an extension of the scator product on the whole scator space.
Theorem 5 gives a motivation and interpretation for the commonly used definition of this product
(Definition 1) which otherwise is rather not very obvious. In the generic case, the scator product is
induced by another product (in another space) which is commutative, associative and distributive
over addition.
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