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Abstract: In this paper, we study the existence of solutions for nonlocal single and multi-valued
boundary value problems involving right-Caputo and left-Riemann–Liouville fractional derivatives
of different orders and right-left Riemann–Liouville fractional integrals. The existence of solutions
for the single-valued case relies on Sadovskii’s fixed point theorem. The first existence results for
the multi-valued case are proved by applying Bohnenblust-Karlin’s fixed point theorem, while the
second one is based on Martelli’s fixed point theorem. We also demonstrate the applications of the
obtained results.

Keywords: fractional differential equations; fractional differential inclusions; existence; fixed point
theorems

1. Introduction

Fractional calculus has emerged as an interesting and fruitful subject in view of wide applications
of its tools in modeling complex dynamical systems. Mathematical models based on fractional-order
operators provide insight into the past history of the underlying phenomena. Examples include
constitutive equations (fractional law) in the viscoelastic materials [1], Caputo power law in transport
processes [2], dynamic memory describing the economic processes, see [3,4].

Widespread applications of fractional differential equations motivated many researchers to
develop the theoretical aspects of the topic. During the last few decades, one can witness the remarkable
development on initial and boundary value problems of fractional differential equations and inclusions.
Much of the literature on such problems include Caputo, Riemann–Liouville, Hadamard type fractional
derivatives, and different kinds of classical and non-classical boundary conditions. For some recent
works on fractional order boundary value problems, for example, see the articles [5–12] and the
references cited therein. Fractional differential equations involving left and right fractional derivatives
also received considerable attention, for instance, see [13–16]. These derivatives appear in the study
of Euler-Lagrange equations [17], steady heat-transfer in fractal media [18], electromagnetic waves
phenomena in a variety of dielectric media with susceptibility [19], etc.

Multivalued (inclusions) problems are found to be of great utility in studying dynamical systems
and stochastic processes, for example, see [20,21]. In the text [22], one can find the details on stochastic
processes, queueing networks, optimization and their application in finance, control, climate control,
etc. Monotone differential inclusions were applied to study the nonlinear dynamics of wheeled
vehicles in [23]. In [24], a fractional differential inclusion with oscillatory potential was studied. In [25],
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the authors investigated the mild solutions to the time fractional Navier-Stokes delay differential
inclusions. Other applications include polynomial control systems [20], synchronization of piecewise
continuous systems of fractional order [21], oscillation and nonoscillation of impulsive fractional
differential inclusions [26], etc. For some recent existence and controllability results on fractional
differential inclusions, we refer the reader to articles [27–33] and the references cited therein.

Recently, in [34], the authors studied existence and uniqueness of solutions for a new kind of
boundary value problem involving right-Caputo and left-Riemann–Liouville fractional derivatives of
different orders and right-left Riemann–Liouville fractional integrals, subject to nonlocal boundary
conditions of the form

CDα
1−

RLDβ
0+y(t) + λIp

1− Iq
0+h(t, y(t)) = f (t, y(t)), t ∈ J := [0, 1],

y(0) = y(ξ) = 0, y(1) = δy(µ), 0 < ξ < µ < 1,
(1)

where CDα
1− and RLDβ

0+ denote the right Caputo fractional derivative of order α ∈ (1, 2] and the left
Riemann–Liouville fractional derivative of order β ∈ (0, 1], Ip

1− and Iq
0+ denote the right and left

Riemann–Liouville fractional integrals of orders p, q > 0 respectively, f , h : [0, 1]×R→ R are given
continuous functions and δ, λ ∈ R.

Here we emphasize that the importance of nonlocal conditions can be understood in the sense
that such conditions are used to model the peculiarities occurring inside the domain of physical
and chemical processes as the classical initial and boundary conditions fail to cater this situation.
The present problem is motivated by useful applications of nonlocal boundary data in petroleum
exploitation, thermodynamics, elasticity, and wave propagation, etc., for instance, see [35,36] and the
details therein.

The existence results for the problem (1) were derived by applying a fixed point theorem due to
Krasnoselski and Leray–Schauder nonlinear alternative, while the uniqueness result was established
via Banach contraction mapping principle.

The objective of the present work is to enrich the results on this new class of problems. We firstly
prove another existence result for the problem (1) with the aid of Sadovskii’s fixed point theorem.
Afterwards, we initiate the study of the multi-valued analogue of the problem (1) by considering the
following inclusions problem:

CDα
1−

RLDβ
0+y(t) ∈ F(t, y(t))− λIp

1− Iq
0+H(t, y(t)), t ∈ [0, 1],

y(0) = y(ξ) = 0, y(1) = δy(µ), 0 < ξ < µ < 1,
(2)

where F, H : [0, 1]×R→ P(R) are compact multivalued maps, P(R) is the family of all nonempty
subsets of R, and the other quantities are the same as defined in problem (1). Existence results for the
problem (2) are established via fixed point theorems due to Bohnenblust-Karlin [37] and Martelli [38].

The rest of the paper is arranged as follows. In Section 2 we recall some preliminary concepts and
a known lemma [34]. In Section 3 we prove an existence result for the problem (1) by applying
Sadovskii’s fixed point theorem. Section 4 presents the existence results for the problem (2).
Applications and examples are discussed in Section 5.

2. Preliminaries

Let us collect some important definitions on fractional calculus.

Definition 1. [39] The left and right Riemann–Liouville fractional integrals of order δ > 0 for g ∈ L1[a, b],
existing almost everywhere on [a, b], are respectively defined by

Iδ
a+g(t) =

∫ t

a

(t− s)δ−1

Γ(δ)
g(s)ds and Iδ

b−g(t) =
∫ b

t

(s− t)δ−1

Γ(δ)
g(s)ds.
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In addition, according to the classical theorem of Vallee-Poussin and the Young convolution theorem,
Iδ
a+g, Iδ

b−g ∈ L1[a, b], δ > 0.

Definition 2. [39] For g ∈ ACn[a, b], the left Riemann–Liouville and the right Caputo fractional derivatives
of order δ ∈ (n− 1, n], n ∈ N, existing almost everywhere on [a, b], are respectively defined by

RLDδ
a+g(t) =

dn

dtn

∫ t

a

(t− s)n−δ−1

Γ(n− δ)
g(s)ds and CDδ

b−g(t) = (−1)n
∫ b

t

(s− t)n−δ−1

Γ(n− δ)
g(n)(s)ds.

The following known lemma [34] plays a key role in proving the main results.

Lemma 1. Let H, F ∈ C[0, 1] ∩ L(0, 1) and y ∈ C([0, 1],R). Then the linear problem
CDα

1−
RL

Dβ
0+y(t) + λIp

1− Iq
0+H(t) = F(t), t ∈ J := [0, 1],

y(0) = y(ξ) = 0, y(1) = δy(µ),
(3)

is equivalent to the fractional integral equation:

y(t) =
∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1−F(s)− λIα+p

1− Iq
0+H(s)

]
ds

+ a1(t)
{

δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1−F(s)− λIα+p

1− Iq
0+H(s)

]
ds (4)

−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1−F(s)− λIα+p

1− Iq
0+H(s)

]
ds
}

+ a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1−F(s)− λIα+p

1− Iq
0+H(s)

]
ds,

where
a1(t) =

1
Λ

[
ξβ+1tβ − ξβtβ+1

]
, a2(t) =

1
Λ

[
tβ(1− δµβ+1)− tβ+1(1− δµβ)

]
, (5)

and it is assumed that
Λ = ξβ+1(1− δµβ)− ξβ(1− δµβ+1) 6= 0. (6)

3. Existence Result for the Single-Valued Problem (1) via Sadovskii’s Fixed Point Theorem

Our existence result for the problem (1) is based on Sadovskii’s fixed point theorem. Before
proceeding further, let us recall some related auxiliary material. In the sequel, we use the norm
‖.‖ = supt∈[0,1] |.|.

Definition 3. Let M be a bounded set in metric space (X, d). The Kuratowski measure of noncompactness,
α(M), is defined as
inf{ε : M covered by a finitely many sets such that the diameter of each set ≤ ε}.

Definition 4. [40] Let Φ : D(Φ) ⊆ X → X be a bounded and continuous operator on Banach space X.
Then Φ is called a condensing map if α(Φ(B)) < α(B) for all bounded sets B ⊂ D(Φ), where α denotes the
Kuratowski measure of noncompactness.

Lemma 2. [41, Example 11.7] The map K+C is a k-set contraction with 0 ≤ k < 1, and thus also condensing, if

(i) K, C : D ⊆ X → X are operators on the Banach space X;
(ii) K is k-contractive, that is, for all x, y ∈ D and a fixed k ∈ [0, 1),

‖Kx− Ky‖ ≤ k‖x− y‖;
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(iii) C is compact.

Lemma 3. [42] Let B be a convex, bounded and closed subset of a Banach space X and Φ : B → B be
a condensing map. Then Φ has a fixed point.

In the sequel, we set

Λ1 =
∆1

Γ(α + 1)
, Λ2 =

|λ|∆1

Γ(α + p + 1)Γ(q + 1)
, Λ3 =

∆2

Γ(α)
, Λ4 =

|λ|∆2

Γ(α + p)Γ(q)
, (7)

where

∆1 =
1

Γ(β + 1)

[
1 + a1(|δ|µβ + 1) + a2ξβ

]
, ∆2 =

1
Γ(β + 1)

[
1 + a1(|δ|+ 1) + a2

]
,

a1 = max
t∈[0,1]

|a1(t)|, a2 = max
t∈[0,1]

|a2(t)|.

Theorem 1. Assume that:

(B1) There exist L > 0 such that | f (t, x)− f (t, y)| ≤ L|x− y|, ∀t ∈ [0, 1], x, y ∈ R;
(B2) | f (t, y)| ≤ σ(t) and |h(t, y)| ≤ ρ(t), where σ, ρ ∈ C([0, 1],R+).

Then the problem (1) has at least one solution on [0, 1] if

Q := LΛ1 < 1.

where Λ1 is given by (7).

Proof. Let Br = {x ∈ C([0, 1],R) : ‖x‖ ≤ r} be a closed bounded and convex subset of C([0, 1],R),
where r is a fixed constant. In view of Lemma 1, we introduce an operator G : C([0, 1],R)→ C([0, 1],R)
associated with the problem (1) as follows:

Gy(t) =
∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1− f (s, y(s))− λIα+p

1− Iq
0+h(s, y(s))

]
ds

+a1(t)

[
δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1− f (s, y(s))− λIα+p

1− Iq
0+h(s, y(s))

]
ds

−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1− f (s, y(s))− λIα+p

1− Iq
0+h(s, y(s))

]
ds

]

+a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1− f (s, y(s))− λIα+p

1− Iq
0+h(s, y(s))

]
ds.

Let us split the operator G : C([0, 1],R)→ C([0, 1],R) on Br as G = G1 + G2, where

G1y(t) =
∫ t

0

(t− s)β−1

Γ(β)
Iα
1− f (s, y(s))ds + a1(t)

[
δ
∫ µ

0

(µ− s)β−1

Γ(β)
Iα
1− f (s, y(s))ds

−
∫ 1

0

(1− s)β−1

Γ(β)
Iα
1− f (s, y(s))ds

]
+ a2(t)

∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα
1− f (s, y(s))ds,

G2y(t) =− λ
∫ t

0

(t− s)β−1

Γ(β)
Iα+p
1− Iq

0+h(s, y(s))ds− λa1(t)
[

δ
∫ µ

0

(µ− s)β−1

Γ(β)
Iα+p
1− Iq

0+h(s, y(s))ds

−
∫ 1

0

(1− s)β−1

Γ(β)
Iα+p
1− Iq

0+h(s, y(s))ds
]
− λa2(t)

∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα+p
1− Iq

0+h(s, y(s))ds.
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We shall show that the operators G1 and G2 satisfy all the conditions of Lemma 3. The proof will be
given in several steps.

Step 1. GBr ⊂ Br.

Let us select r ≥ ‖σ‖Λ1 + ‖ρ‖Λ2, where Λ1, Λ2 are given by (7). For any y ∈ Br, we have

‖Gy‖

≤ sup
t∈[0,1]

{ ∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds

+
∣∣a1(t)

∣∣{|δ| ∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds

+
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds
}

+
∣∣a2(t)

∣∣ ∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds

}

≤ ‖σ‖ sup
t∈[0,1]

{ ∫ t

0

(t− s)β−1

Γ(β)
Iα
1−(1)ds +

∣∣a1(t)
∣∣[|δ| ∫ µ

0

(µ− s)β−1

Γ(β)
Iα
1−(1)ds

+
∫ 1

0

(1− s)β−1

Γ(β)
Iα
1−(1)ds

]
+
∣∣a2(t)

∣∣ ∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα
1−(1)ds

}
+‖ρ‖|λ| sup

t∈[0,1]

{ ∫ t

0

(t− s)β−1

Γ(β)
Iα+p
1− Iq

0+(1)ds +
∣∣a1(t)

∣∣[|δ| ∫ µ

0

(µ− s)β−1

Γ(β)
Iα+p
1− Iq

0+(1)ds

+
∫ 1

0

(1− s)β−1

Γ(β)
Iα+p
1− Iq

0+(1)ds
]
+
∣∣a2(t)

∣∣ ∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα+p
1− Iq

0+(1)ds
}

≤
{
‖σ‖

Γ(α + 1)
+

‖ρ‖|λ|
Γ(α + p + 1)Γ(q + 1)

}
∆1

= ‖σ‖Λ1 + ‖ρ‖Λ2 < r,

which implies that GBr ⊂ Br.

Step 2. G2 is compact.

Observe that the operator G2 is uniformly bounded in view of Step 1. Let t1, t2 ∈ J with t1 < t2

and y ∈ Br. Then we have

|G2y(t2)− G2y(t1)| ≤ |λ|
∣∣∣∣ ∫ t1

0

(t2 − s)β−1 − (t1 − s)β−1

Γ(β)
Iα+p
1− Iq

0+|h(s, y(s))|ds
∣∣∣∣

+|λ|
∣∣∣∣ ∫ t2

t1

(t2 − s)β−1

Γ(β)
Iα+p
1− Iq

0+|h(s, y(s))|ds
∣∣∣∣

+|λ|
∣∣a1(t2)− a1(t1)

∣∣{|δ| ∫ µ

0

(µ− s)β−1

Γ(β)
Iα+p
1− Iq

0+|h(s, y(s))|ds

+
∫ 1

0

(1− s)β−1

Γ(β)
Iα+p
1− Iq

0+|h(s, y(s))|ds
}

+|λ|
∣∣a2(t2)− a2(t1)

∣∣{ ∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα+p
1− Iq

0+|h(s, y(s))|ds
}

≤ |λ|‖ρ‖
Γ(β + 1)Γ(α + p + 1)Γ(q + 1)

{
2(t2 − t1)

β + |t2
β − t1

β|
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+
(|δ|µβ + 1)
|Λ|

(
ξβ+1|tβ

2 − tβ
1 |+ ξβ|tβ+1

2 − tβ+1
1 |

)
+

ξβ

|Λ|

(
|1− δµβ+1||tβ

2 − tβ
1 |+ |1− δµβ||tβ+1

2 − tβ+1
1 |

)}
,

which tends to zero independent of y as t2 → t1. This shows that G2 is equicontinuous. It is clear from
the foregoing arguments that the operator G2 is relatively compact on Br. Hence, by the Arzelá-Ascoli
theorem, G2 is compact on Br.

Step 3. G1 is Q-contractive.

Using (B1) and (B2), it is easy to show that

‖G1y− G1x‖ ≤ sup
t∈[0,1]

{ ∫ t

0

(t− s)β−1

Γ(β)
Iα
1−| f (s, y(s))− f (s, x(s))|ds

+|a1(t)|
[

δ
∫ µ

0

(µ− s)β−1

Γ(β)
Iα
1−| f (s, y(s))− f (s, x(s))|ds

+
∫ 1

0

(1− s)β−1

Γ(β)
Iα
1−| f (s, y(s))− f (s, x(s))|ds

]
+|a2(t)|

∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα
1−| f (s, y(s))− f (s, x(s))|ds

}
≤ L

Γ(β + 1)Γ(α + 1)

[
1 + ā1(|δ|µβ + 1) + ā2ξβ

]
‖y− x‖

= LΛ1‖y− x‖,

which is Q-contractive, since Q := LΛ1 < 1.

Step 4. G is condensing. Since G1 is continuous, Q-contraction and G2 is compact, therefore, by
Lemma 2, G : Br → Br with G = G1 + G2 is a condensing map on Br.

From the above four steps, we conclude by Lemma 3 that the map G has a fixed point which,
in turn, implies that the problem (1) has a solution on [0, 1].

4. Existence Results for the Multi-Vaued Problem (2)

For a normed space (X, ‖ · ‖), we have Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) = {Y ∈
P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, Pcp,c(X) = {Y ∈ P(X) : Y is compact
and convex}, Pb,cl,c(R) = {Y ∈ P(X) : Y is bounded, closed and convex}. We also define the sets of
selections of the multi-valued maps F and H as

SF,y := { f ∈ L1([0, 1],R) : f (t) ∈ F(t, y)},

ŜH,y := {h ∈ L1([0, 1],R) : h(t) ∈ H(t, y)}.

By Lemma 1, we define a solution of the boundary value problem (2) as follows (see also [43,44]).

Definition 5. A function y ∈ C([0, 1],R) is a solution of the boundary value problem (2) if y(0) = y(ξ) =
0, y(1) = δy(µ), and there exist functions f ∈ SF,y, h ∈ ŜH,y a.e. on [0, 1] and

y(t) =
∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds

+a1(t)
{

δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds
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−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds
}

+a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds.

Now we provide the lemmas which will be used in the main existence results in this section.

Lemma 4. (Bohnenblust-Karlin) ([37]) Let D be a nonempty, bounded, closed, and convex subset of X.
Let Φ : D → P(R) be upper semi-continuous with closed, convex values such that Φ(D) ⊂ D and Φ(D) is
compact. Then Φ has a fixed point.

Lemma 5. ([45]) Let X be a separable Banach space. Let F : J × X → Pcp,c(X) be measurable with respect
to t for each y ∈ X and upper semi-continuous with respect to y for almost all t ∈ J and SF,y 6= ∅, for any
y ∈ C(J, X), and let Θ be a linear continuous mapping from L1(J, X) to C(J, X). Then the operator

Θ ◦ SF : C(J, X)→ Pcp,c(C(J, X)), y 7→ (Θ ◦ SF)(y) = Θ(SF,y)

is a closed graph operator in C(J, X)× C(J, X).

In the first result, we study the existence of the solution for the multi-valued problem (2) by
applying Bohnenblust–Karlin fixed point theorem.

Theorem 2. Suppose that:

(M1) F, H : [0, 1]×R→ Pb,c,cp(R); (t, y)→ f (t, y) and (t, y)→ h(t, y) be measurable with respect to t for
each y ∈ R, upper semi-continuous with respect to y for almost everywhere t ∈ [0, 1], and for each fixed
y ∈ R, the sets SF,y and ŜH,y are nonempty for almost everywhere t ∈ [0, 1].

(M2) For each ρ > 0, there exist functions φρ, ψρ ∈ L1([0, 1],R+) such that

‖F(t, y)‖ = sup{| f | : f (t) ∈ F(t, y)} ≤ φρ(t),

‖H(t, y)‖ = sup{|h| : h(t) ∈ H(t, y)} ≤ ψρ(t),

for each (t, y) ∈ [0, 1]×R with ‖y‖ ≤ ρ, and

lim inf
ρ→+∞

1
ρ

∫ 1

0
φρ(t)dt = ζ1 < ∞, lim inf

ρ→+∞

1
ρ

∫ 1

0
ψρ(t)dt = ζ2 < ∞. (8)

Then the boundary value problem (2) has at least one solution on [0,1] provided that

ζ1Λ3 + ζ2Λ4 < 1, (9)

where ζ1, ζ2 are defined by (8), and Λ3, Λ4 are given by (7).

Proof. To transform the problem (2) into a fixed point problem, we define a multi-valued map
U : C([0, 1],R)→ P(C([0, 1],R)) as

U (y) =
{

g ∈ C([0, 1],R) : g(t) =
∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds

+a1(t)

[
δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds

−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds

]
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+a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds
}

,

for f ∈ SF,y, h ∈ ŜH,y.
Now we prove that the operator U satisfies the hypothesis of Lemma 4 and thus it will have

a fixed point which corresponds to a solution of problem (2). Here we show that U is a compact
and upper semi-continuous multi-valued map with convex closed values. This will be established in
a sequence of steps.
Step 1: U (y) is convex for each y ∈ C([0, 1],R). For that, let g1, g2 ∈ U (y). Then there exist f1, f2 ∈
SF,y, h1, h2 ∈ ŜH,y such that, for each t ∈ [0, 1], we get

gi(t) =
∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1− fi(s)− λIα+p

1− Iq
0+hi(s)

]
ds

+a1(t)
{

δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1− fi(s)− λIα+p

1− Iq
0+hi(s)

]
ds

−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1− fi(s)− λIα+p

1− Iq
0+hi(s)

]
ds
}

+a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1− fi(s)− λIα+p

1− Iq
0+hi(s)

]
ds, i = 1, 2.

For each t ∈ [0, 1] and 0 ≤ ν ≤ 1, we can find that[
νg1 + (1− ν)g2

]
(t)

=
∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1−
[
ν f1(s) + (1− ν) f2(s)

]
− λIα+p

1− Iq
0+
[
νh1(s) + (1− ν)h2(s)

]]
ds

+a1(t)
{

δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1−
[
ν f1(s) + (1− ν) f2(s)

]
− λIα+p

1− Iq
0+
[
νh1(s) + (1− ν)h2(s)

]]
ds

−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1−
[
ν f1(s) + (1− ν) f2(s)

]
− λIα+p

1− Iq
0+
[
νh1(s) + (1− ν)h2(s)

]]
ds
}

+a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1−
[
ν f1(s) + (1− ν) f2(s)

]
− λIα+p

1− Iq
0+
[
νh1(s) + (1− ν)h2(s)

]]
ds.

Since SF,y, ŜH,y are convex valued (F, H have convex values), it follows that νg1 + (1− ν)g2 ∈ U (y).
Step 2: U (y) maps bounded sets (balls) into bounded sets in C([0, 1],R). Let us define Bρ = {y ∈
C([0, 1],R) : ‖y‖ ≤ ρ} as a bounded closed convex set in C([0, 1],R) for each positive constant ρ.
We shall prove that there exists a positive number ρ̄ such that U (Bρ̄) ⊆ Bρ̄. If it is not true, then we can
find a function yρ ∈ Bρ, gρ ∈ U (yρ) with ‖U (yρ)‖ > ρ, such that

gρ(t) =
∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1− fρ(s)− λIα+p

1− Iq
0+hρ(s)

]
ds

+a1(t)
{

δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1− fρ(s)− λIα+p

1− Iq
0+hρ(s)

]
ds

−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1− fρ(s)− λIα+p

1− Iq
0+hρ(s)

]
ds
}

+a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1− fρ(s)− λIα+p

1− Iq
0+hρ(s)

]
ds,

for some fρ ∈ SF,yρ , hρ ∈ ŜH,yρ .
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According to condition (M2), we obtain

ρ < ‖U (yρ)‖

≤
∫ t

0

|t− s|β−1

Γ(β)

[
Iα
1−φρ(s) + |λ|Iα+p

1− Iq
0+ψρ(s)

]
ds

+|a1(t)|
{
|δ|
∫ µ

0

|µ− s|β−1

Γ(β)

[
Iα
1−φρ(s) + |λ|Iα+p

1− Iq
0+ψρ(s)

]
ds

+
∫ 1

0

|1− s|β−1

Γ(β)

[
Iα
1−φρ(s) + |λ|Iα+p

1− Iq
0+ψρ(s)

]
ds
}

+|a2(t)|
∫ ξ

0

|ξ − s|β−1

Γ(β)

[
Iα
1−φρ(s) + |λ|Iα+p

1− Iq
0+ψρ(s)

]
ds

≤ 1 + ā1(|δ|+ 1) + ā2

Γ(β + 1)Γ(α)

∫ 1

0
φρ(t)dt +

|λ|(1 + ā1(|δ|+ 1) + ā2)

Γ(β + 1)Γ(α + p)Γ(q)

∫ 1

0
ψρ(t)dt

≤ Λ3

∫ 1

0
φρ(t)dt + Λ4

∫ 1

0
ψρ(t)dt, (10)

where Λ3, Λ4 are given by (7). In (10), we have used the following estimates (α ∈ (1, 2], β ∈ (0, 1], p >

0, q > 1):

∫ t

0

(t− s)β−1

Γ(β)
Iα
1−φρ(s)ds =

∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
φρ(u)du ds

≤
∫ t

0

(t− s)β−1

Γ(β)

(1− s)α−1

Γ(α)
ds
∫ 1

0
φρ(u)du

≤
∫ t

0

(t− s)β−1

Γ(β)

1
Γ(α)

ds
∫ 1

0
φρ(u)du

≤ 1
Γ(β + 1)Γ(α)

∫ 1

0
φρ(u)du

∫ t

0

(t− s)β−1

Γ(β)
Iα+p
1− Iq

0+ψρ(s)ds =
∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α+p−1

Γ(α + p)

∫ u

0

(u− r)q−1

Γ(q)
ψρ(r)dr du ds

≤
∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α+p−1

Γ(α + p)
uq−1

Γ(q)
du ds

∫ 1

0
ψρ(r)dr

≤
∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

1
Γ(α + p)

1
Γ(q)

du ds
∫ 1

0
ψρ(r)dr

≤
∫ t

0

(t− s)β−1

Γ(β)

1− s
Γ(α + p)Γ(q)

ds
∫ 1

0
ψρ(r)dr

≤ 1
Γ(β + 1)Γ(α + p)Γ(q)

∫ 1

0
ψρ(t)dt.

Dividing both sides of (10) by ρ and then taking the lower limit as ρ → ∞, we find by (8) that
ζ1Λ3 + ζ2Λ4 > 1, which is a contradiction to the assumption (9). Hence there exists a positive number
ρ̄ such that U (Bρ̄) ⊆ Bρ̄.
Step 3: U (y) maps bounded sets into equicontinuous sets of C([0, 1],R). For that, let 0 ≤ t1 ≤ t2 ≤ 1,
y ∈ Bρ̄, and g ∈ U (y). Then there exist f ∈ SF,y, h ∈ ŜH,y such that, for each t ∈ [0, 1], we find that

g(t) =
∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds

+a1(t)
{

δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds
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−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds
}

+a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds,

and that

|g(t2)− g(t1)|

=
∫ t1

0

|(t2 − s)β−1 − (t1 − s)β−1|
Γ(β)

[
Iα
1−| f (s)|+ |λ|I

α+p
1− Iq

0+|h(s)|
]
ds

+
∫ t2

t1

|t2 − s|β−1

Γ(β)

[
Iα
1−| f (s)|+ |λ|I

α+p
1− Iq

0+|h(s)|
]
ds

+
∣∣a1(t2)− a1(t1)

∣∣{|δ| ∫ µ

0

|µ− s|β−1

Γ(β)

[
Iα
1−| f (s)|+ |λ|I

α+p
1− Iq

0+|h(s)|
]
ds

+
∫ 1

0

|1− s|β−1

Γ(β)

[
Iα
1−| f (s)|+ |λ|I

α+p
1− Iq

0+|h(s)|
]
ds
}

+
∣∣a2(t2)− a2(t1)

∣∣ ∫ ξ

0

|ξ − s|β−1

Γ(β)

[
Iα
1−| f (s)|+ |λ|I

α+p
1− Iq

0+|h(s)|
]
ds

≤
[
|tβ

2 − tβ
1 |+ 2(t2 − t1)

β +
(|δ|+ 1)
|Λ|

(
ξβ+1|tβ

2 − tβ
1 |+ ξβ|tβ+1

1 − tβ+1
2 |

)
+

1
|Λ|

(
|1− δµβ+1||tβ

2 − tβ
1 |+ |1− δµβ||tβ+1

1 − tβ+1
2 |

)]
×
{

1
Γ(β + 1)Γ(α)

∫ 1

0
φρ(s)ds +

|λ|
Γ(β + 1)Γ(α + p)Γ(q)

∫ 1

0
ψρ(s)ds

}
.

Clearly, the right-hand side of the above inequality tends to zero as t2 → t1 independently of y ∈ Bρ̄.
Hence U is equi-continuous. As U satisfies the above three steps, it follows by the Ascoli-Arzelá
theorem that U is a compact multi-valued map.
Step 4: U has a closed graph. Let yn → y∗, gn ∈ U (yn) and gn → g∗. Then we need to show that
g∗ ∈ U (y∗). Associated with gn ∈ U (yn), we can find fn ∈ SF,yn , hn ∈ ŜH,yn such that, for each
t ∈ [0, 1], we have

gn(t) =
∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1− fn(s)− λIα+p

1− Iq
0+hn(s)

]
ds

+a1(t)
{

δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1− fn(s)− λIα+p

1− Iq
0+hn(s)

]
ds

−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1− fn(s)− λIα+p

1− Iq
0+hn(s)

]
ds
}

+a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1− fn(s)− λIα+p

1− Iq
0+hn(s)

]
ds.

Thus it suffices to show that there exist f∗ ∈ SF,y∗ , h∗ ∈ ŜH,y∗ such that for each t ∈ [0, 1],

g∗(t) =
∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1− f∗(s)− λIα+p

1− Iq
0+h∗(s)

]
ds

+a1(t)
{

δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1− f∗(s)− λIα+p

1− Iq
0+h∗(s)

]
ds

−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1− f∗(s)− λIα+p

1− Iq
0+h∗(s)

]
ds
}
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+a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1− f∗(s)− λIα+p

1− Iq
0+h∗(s)

]
ds.

Let us consider the continuous linear operator Θ : L1([0, 1],R)→ C([0, 1]) so that

(
Θ( f , h)

)
(t) =

∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds

+a1(t)
{

δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds

−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds
}

+a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds.

Observe that

‖gn(t)− g∗(t)‖

=

∥∥∥∥ ∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1−( fn(s)− f∗(s))− λIα+p

1− Iq
0+(hn(s)− h∗(s))

]
ds

+a1(t)
{

δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1−( fn(s)− f∗(s))− λIα+p

1− Iq
0+(hn(s)− h∗(s))

]
ds

−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1−( fn(s)− f∗(s))− λIα+p

1− Iq
0+(hn(s)− h∗(s))

]
ds
}

+a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1−( fn(s)− f∗(s))− λIα+p

1− Iq
0+(hn(s)− h∗(s))

]
ds
∥∥∥∥→ 0 as n→ ∞.

Thus, it follows by Lemma 5 that Θ ◦ SB is a closed graph operator where SB = SF ∪ ŜH . Moreover,
we have gn(t) ∈ Θ(SB,yn). Since yn → y∗, gn → g∗, therefore, Lemma 5 yields

g∗(t) =
∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1− f∗(s)− λIα+p

1− Iq
0+h∗(s)

]
ds

+a1(t)
{

δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1− f∗(s)− λIα+p

1− Iq
0+h∗(s)

]
ds

−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1− f∗(s)− λIα+p

1− Iq
0+h∗(s)

]
ds
}

+a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1− f∗(s)− λIα+p

1− Iq
0+h∗(s)

]
ds,

for some f∗ ∈ SF,y∗ , h∗ ∈ ŜH,y∗ .
Hence, we conclude that U is a compact and upper semi-continuous multi-valued map with

convex closed values. Thus, the hypothesis of Lemma 4 holds true, and therefore its conclusion implies
that the operator U has a fixed point y, which corresponds to a solution of problem (2). This completes
the proof.

Next, we give an existence result based upon the following form of fixed point theorem due to
Martelli [38], which is applicable to completely continuous operators.

Lemma 6. Let X a Banach space, and T : X → Pb,cl,c(X) be a completely continuous multi-valued map. If the
set E = {x ∈ X : κx ∈ T(x), κ > 1} is bounded, then T has a fixed point.
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Theorem 3. Assume that the following hypotheses hold:

(M3) F, H : [0, 1]×R→ Pb,cl,c(R) are L1-Carathéodory multi-valued maps; that is, (i) t 7−→ F(t, y), t 7−→
H(t, y), are measurable for each y ∈ R; (ii) y 7−→ F(t, y), y 7−→ H(t, y) are upper semicontinuous
for almost all t ∈ [0, 1]; (iii) for each r > 0, there exist φr, ψr ∈ L1([0, 1],R+) such that ‖F(t, y)‖ =
sup{|v| : v ∈ F(t, y)} ≤ φr(t), ‖H(t, y)‖ = sup{|v| : v ∈ F(t, y)} ≤ ψr(t), for all y ∈ R with
‖y‖ ≤ r and for almost every t ∈ [0, 1].

(M4) There exist functions z, u ∈ L1([0, 1],R+) such that

‖F(t, y)‖ ≤ z(t), ‖H(t, y)‖ ≤ u(t), for a.e. t ∈ [0, 1] and each y ∈ R.

Then the problem (2) has at least one solution on [0, 1].

Proof. Consider U defined in the proof of Theorem 2. As in Theorem 2, we can show that U is convex
and completely continuous. It remains to show that the set

E = {y ∈ C([0, 1],R) : κy ∈ U (y), κ > 1}

is bounded. Let y ∈ E , then κy ∈ U (y) for some κ > 1 and there exist functions f ∈ SF,y, h ∈ ŜH,y
such that

y(t) =
∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds

+a1(t)
{

δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds

−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds
}

+a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1− f (s)− λIα+p

1− Iq
0+h(s)

]
ds.

For each t ∈ [0, 1], we have

|y(t)| ≤
∫ t

0

|t− s|β−1

Γ(β)

[
Iα
1−z(s) + |λ|Iα+p

1− Iq
0+u(s)

]
ds

+|a1(t)|
{
|δ|
∫ µ

0

|µ− s|β−1

Γ(β)

[
Iα
1−z(s) + |λ|Iα+p

1− Iq
0+u(s)

]
ds

+
∫ 1

0

|1− s|β−1

Γ(β)

[
Iα
1−z(s) + |λ|Iα+p

1− Iq
0+u(s)

]
ds
}

+|a2(t)|
∫ ξ

0

|ξ − s|β−1

Γ(β)

[
Iα
1−z(s) + |λ|Iα+p

1− Iq
0+u(s)

]
ds

≤ 1 + ā1(|δ|+ 1) + ā2

Γ(β + 1)Γ(α)
‖z‖L1 +

|λ|(1 + ā1(|δ|+ 1) + ā2)

Γ(β + 1)Γ(α + p)Γ(q)
‖u‖L1

≤ Λ3‖z‖L1 + Λ4‖u‖L1 ,

Taking the supremum over t ∈ J, we get

‖y‖ ≤ Λ3‖z‖L1 + Λ4‖u‖L1 < ∞.

Hence the set E is bounded. As a consequence of Lemma 6 we deduce that U has at least one fixed
point which implies that the problem (2) has a solution on [0, 1].
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5. Applications

We consider four different cases for F(t, y) and H(t, y) (in (2)) to demonstrate applications of
theorem (2): (a) F and H have sub-linear growth in their second variable. (b) F and H have linear
growth in their second variable. (c) F has sub-linear growth in its second variable and H has linear
growth. (d) F has linear growth in its second variable and H has sub-linear growth.
Case (a). For each (t, y) ∈ [0, 1]×R, there exist functions σi(t), ϑi(t) ∈ L1([0, 1],R+), i = 1, 2, γ ∈ [0, 1)
such that ‖F(t, y)‖ ≤ σ1(t)|y|γ + ϑ1(t) and ‖H(t, y)‖ ≤ σ2(t)|y|γ + ϑ2(t) which correspond in this
case to φρ(t) = σ1(t)ργ + ϑ1(t) and ψρ(t) = σ2(t)ργ + ϑ2(t) and the condition (9) will take the form
0 ·Λ3 + 0 ·Λ4 < 1, that is, ζ1 = ζ2 = 0.
Case (b). F and H will satisfy the assumptions ‖F(t, y)‖ ≤ σ1(t)|y|+ ϑ1(t) and ‖H(t, y)‖ ≤ σ2(t)|y|+
ϑ2(t), which, in view of (M2), implies that φρ(t) = σ1(t)ρ + ϑ1(t) and ψρ(t) = σ2(t)ρ + ϑ2(t), and the
condition (9) becomes ‖σ1‖L1 ·Λ3 + ‖σ2‖L1 ·Λ4 < 1.
Similarly, one can verify the cases (c) and (d). Thus, the boundary value problem (2) has at least one
solution on [0, 1] for all the cases (a)–(d).

Let us consider the following inclusions problem:
CD5/4

1−
RLD3/4

0+ y(t) ∈ F(t, y(t))− 2I3/2
1− I5/2

0+ H(t, y(t)), t ∈ [0, 1],

y(0) = y(1/3) = 0, y(1) = 1
4 y(2/3),

(11)

where α = 5/4, β = 3/4, λ = 2, p = 3/2, q = 5/2, ξ = 1/3, µ = 2/3, δ = 1/4. It is easy to find that

a1 = max
t∈[0,1]

|a1(t)| = |a1(t)|t=1 ≈ 1.101592729739686,

a2 = max
t∈[0,1]

|a2(t)| = |a2(t)|t=ta2
≈ 1.055901462873258,

where

ta2 =
β(1− δµβ+1)

(1− δµβ)(β + 1)
≈ 0.460880265746053 < 1.

Using the above given data, we find that Λ3 ≈ 4.120918689155884, Λ4 ≈ 3.494023466997676,
where Λ3, Λ4 are given by (7).
(a). We consider ‖F(t, y)‖ ≤ σ1(t)|y|1/3 + ϑ1(t) and ‖H(t, y)‖ ≤ σ2(t)|y|1/3 + ϑ2(t) with σi(t), ϑi(t) ∈
L1([0, 1],R+), i = 1, 2, γ ∈ [0, 1). In this case, F and H in (11) satisfy all the assumptions of Theorem 2
with 0 ·Λ3 + 0 ·Λ4 < 1, which implies that the boundary value problem (11) has at least one solution
on [0, 1].
(b) As a second example, let F and H be such that ‖F(t, y)‖ ≤ 1

4(1+t)2 |y| + 2et and ‖H(t, y)‖ ≤
2

(4+t)2 |y|+ e−t. In this case, the condition (9) will take the form 1
8 ·Λ3 +

1
10 ·Λ4 ≈ 0.864517182844253 <

1. Thus, by the conclusion of Theorem 2, there exists at least one solution for the problem (11) on [0, 1].
In a similar manner, one can verify that the problem (2) has at least one solution on [0, 1] when we

choose the cases: (c) ‖F(t, y)‖ ≤ σ1(t)|y|1/3 + ϑ1(t), ‖H(t, y)‖ ≤ 2
(4+t)2 |y|+ e−t, and (d) ‖F(t, y)‖ ≤

1
4(1+t)2 |y|+ 2et, ‖H(t, y)‖ ≤ σ2(t)|y|1/3 + ϑ2(t).

6. Conclusions

In this paper, we have discussed the existence of solutions for a new class of boundary value
problems involving right-Caputo and left-Riemann–Liouville fractional derivatives of different orders
and right-left Riemann–Liouville fractional integrals with nonlocal boundary conditions. The existence
result for the single-valued case of the given problem is proven via Sadovski’s fixed point theorem,
while the existence results for the multi-valued case of the problem at hand are derived by means of
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Bohnenblust-Karlin and Martelli fixed point theorems. Applications for the obtained results are also
presented. By taking δ = 0 in the results of this paper, we obtain the ones for a problem associated with
three-point nonlocal boundary conditions: y(0) = 0, y(ξ) = 0, y(1) = 0 (0 < ξ < 1) as a special case.
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