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Abstract: A logic is called explosive if its consequence relation validates the so-called principle of
ex contradictione sequitur quodlibet. A logic is called paraconsistent so long as it is not explosive.
Sette’s calculus P1 is widely recognized as one of the most important paraconsistent calculi. It is not
surprising then that the calculus was a starting point for many research studies on paraconsistency.
Fernández–Coniglio’s hierarchy of paraconsistent systems is a good example of such an approach.
The hierarchy is presented in Newton da Costa’s style. Therefore, the law of non-contradiction plays
the main role in its negative axioms. The principle of ex contradictione sequitur quodlibet has been
marginalized: it does not play any leading role in the hierarchy. The objective of this paper is to
present an alternative axiomatization for the hierarchy. The main idea behind it is to focus explicitly
on the (in)validity of the principle of ex contradictione sequitur quodlibet. This makes the hierarchy
less complex and more transparent, especially from the viewpoint of paraconsistency.

Keywords: paraconsistent logic; paraconsistency; Sette’s calculus; the law of explosion; the principle
of ex contradictione sequitur quodlibet

1. Introduction

Let var denote a (non-empty) denumerable set of all propositional variables. The set of formulas
F is inductively defined in the following way:

ϕ ::= p | ∼α | α→ α

where p ∈ var, α ∈ F and the symbols ∼,→ denote negation and implication, respectively. A logic
is a pair 〈L,`〉 consisting of a sentential language L and a consequence relation ` defined on the
(non-empty) set of formulas F . A logic is called explosive if its consequence relation validates
the principle of ex contradictione sequitur quodlibet, i.e., {α,∼α} ` β, for any formulas α, β.
“Paraconsistent logic is defined negatively: any logic is paraconsistent as long as it is not explosive”
(cit.per [1]), or, to be more precise,

Definition 1. A logic 〈L,`〉 is said to be paraconsistent if {α,∼ α} 0 β, for some formulas α, β.

Already at first glance, it is striking that the definition is very broad as it includes some logics that
have potentially nothing in common with paraconsistency (cf. [2], p. 19). Nonetheless, the definition
reveals a tendency to view paraconsistent logic through the lens of negation understood as a connective
symbol rather than a truth-function (cf. [3]. For a more extensive discussion on the paraconsistency,
see, e.g., [4–6].).

In the early 1970s of the Twentieth Century, Sette published a paper devoted to one of the most
remarkable paraconsistent calculi. The calculus, denoted as P1, has some unusual properties: it behaves
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in a paraconsistent way only at the level of propositional variables, that is a pair of the formulas α and
∼ α yields any β if, and only if the formula α is not a propositional variable.

The calculus P1 is axiomatized by the following axiom schemas:

(A1) α→ (β→ α)

(A2) (α→ (β→ γ))→ ((α→ β)→ (α→ γ))

(A3) (∼α→ ∼β)→ ((∼α→ ∼∼β)→ α)

(A4) ∼(α→ ∼∼α)→ α

(A5) (α→ β)→ ∼∼(α→ β)

and the rule of detachment (MP) α→ β, α / β.
The connectives of ∼ and→ are taken here as primitives. As for the other connectives such as the

conjunction, disjunction, and equivalence, they are introduced via the definitions ([7], pp. 178–179):

α ∧ β =d f (((α→ α)→ α)→ ∼((β→ β)→ β))→ ∼(α→ ∼β)

α ∨ β =d f (α→ ∼∼α)→ (∼α→ β)

α↔ β =d f (α→ β) ∧ (β→ α).

The definitions are complex and often too awkward to handle. More user-friendly definitions are given
in [8] (pp. 8–9 of the preprint) and [9] (p. 59):

α ∧ β =d f ∼(α→ ∼(∼β→ β))

α ∨ β =d f ∼(∼α→ α)→ β

α↔ β =d f (α→ β) ∧ (β→ α).

It is noteworthy that the disjunction connective can be also defined as in the three-valued Lukasiewicz
logic, namely, α ∨ β =d f (α→ β)→ β (cf. [10], Section 2).

Many important theorems, which hold in the classical propositional calculus, can be proven for
Sette’s system, too. Below we recall some of them needed for our further discussion.

Theorem 1. The deduction theorem holds for P1.

Proof. It is enough to observe that P1 includes (A1), (A2), and the sole rule of inference in P1 is
(MP).

Theorem 2. For every Γ, ∆ ⊆ F and α, β, γ ∈ F , we have:

1. if α ∈ Γ, then Γ `P1 α,
2. if Γ ⊆ ∆ and Γ `P1 α, then ∆ `P1 α,
3. if ∆ `P1 α and, for every β ∈ ∆ it is true that Γ `P1 β, then Γ `P1 α,
4. if Γ ∪ {α} `P1 γ and ∆ `P1 α, then Γ ∪ ∆ `P1 γ

(in particular, if Γ ∪ {α} `P1 γ and ∅ `P1 α, then Γ `P1 γ),
5. Γ `P1 α iff for some finite ∆ ⊆ Γ, ∆ `P1 α.

Proof. The proof proceeds analogously to that of the classical propositional calculus. We refer the
reader to [11,12] for details.

Theorem 3. Some (weaker) variants of the indirect deduction theorem hold for P1, viz.:

1. if Γ, α `P1 {∼β,∼∼β}, then Γ `P1 ∼α,
2. if Γ,∼α `P1 {∼β,∼∼β}, then Γ `P1 α,
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3. if Γ, α→ β `P1 {γ→ δ,∼(γ→ δ)}, then Γ `P1 ∼(α→ β),
4. if Γ,∼(α→ β) `P1 {γ→ δ,∼(γ→ δ)}, then Γ `P1 α→ β,

for every Γ ⊆ F and α, β, γ, δ ∈ F . Note that the notation Γ ` {φ, ψ} is an abbreviation of ‘Γ ` {φ} and
Γ ` {ψ}’.

Sette’s calculus is sound and complete with respect to the matrixMP1 =
〈
{T0, T1, F}, {T0, T1},∼

,→
〉
, where {T0, T1, F} and {T0, T1} are the sets of logical and designated values, respectively. The

connectives of→ and ∼ are defined by the truth tables:

→ T0 T1 F
T0 T0 T0 F
T1 T0 T0 F
F T0 T0 T0

∼
T0 F
T1 T0
F T0.

A P1-valuation is any function v from the set of formulas to the set of logical values (v : F −→
{T0, T1, F}, in symbols) compatible with the above truth-tables (see [7], pp. 176–178). A P1-tautology is
a formula that under every valuation v takes on the designated values {T0, T1}.

The logical meaning of the P1-valuation is clear, but it was never stated in [7] how to interpret
philosophically the three-valued semantics. This gave an impulse for further research, and several
new semantics for the calculus were proposed (see, e.g., [8,13–16]). Notice that the principle of ex
contradictione sequitur quodlibet does not play any significant part in P1. Metaphorically speaking,
paraconsistency is hidden somewhere between the lines of Sette’s paper. Only at one point in his whole
paper does Sette refer to paraconsistency: “(...) N.C.A da Costa presents a hierarchy Cn (1< n < ω)
of propositional calculi which can be used as subjacent propositional logics for inconsistent (but not
absolutely inconsistent) formal systems. The purpose of this note is to present a new propositional
calculus P1 which can be used as subjacent logic for inconsistent (but not absolutely inconsistent)
formal systems (...)”. ([7], p. 173.). In [17], we proposed an alternative axiomatization for P1. The
idea behind it was to focus explicitly on the (in)validity of ex contradictione sequitur quodlibet, or
equivalently, the so-called law of explosion (DS) α → (∼α → β). This concept is directly reflected
below in the axiomatization.

Remark 1. The calculus P1 can be axiomatized by the set of formulas:
(A1) α→ (β→ α)

(A2) (α→ (β→ γ))→ ((α→ β)→ (α→ γ))

(PL) ((α→ β)→ α)→ α

(DS∼) ∼α→ (∼∼α→ β)

(DS→) (α→ β)→ (∼(α→ β)→ γ))

(CM) (∼α→ α)→ α

with (MP) as the only primitive rule (see [17], for details).

In [8], an interesting hierarchy of the paraconsistent calculi starting from P1 was proposed. It is
based on a language more expressive than that which was given in Remark 1 and used by Sette. The
hierarchy is obtained from the system Cω of Newton da Costa, i.e.,

(A1) α→ (β→ α)

(A2) (α→ (β→ γ))→ ((α→ β)→ (α→ γ))

(A3) (α ∧ β)→ α

(A4) (α ∧ β)→ β

(A5) α→ (β→ (α ∧ β))

(A6) α→ (α ∨ β)

(A7) β→ (α ∨ β)

(A8) (α→ γ)→ ((β→ γ)→ (α ∨ β→ γ))
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(NN) ∼∼α→ α

(ExM) α ∨∼α

(MP) α→ β, α / β, (See [18], p. 501.)

by adding to it

(dC) ∼(β∧ ∼ β)→ ((α→ β)→ ((α→ ∼β)→ ∼α))

(nC‡) ∼((α ‡ β) ∧∼(α ‡ β)), where ‡ ∈ {∧,∨,→}

(nC∼n) ∼(∼n α∧ ∼n+1 α), where n ∈ N and ∼n α denotes
n−times︷ ︸︸ ︷∼∼ ... ∼ α,

as new axiom schemas. Obviously, if n = 0, then P0 is the classical propositional calculus; if n = 1,
then P1 is Sette’s system (see [8], p. 9 of the preprint, for details). For a positive integer n, let Pn denote
the calculus of the Fernández–Coniglio’s hierarchy (Pn-hierarchy), henceforth.

Fernández and Coniglio proposed both a matrix and the so-called society semantics for the
Pn-calculi. The former may be viewed as a generalization ofMP1 given by Sette in [7] (see p. 176), and
da Costa in [18] (see, p. 499), that is,

MPn =
〈

X, D,∼,→
〉
,

where X = {T0, T1, T2, . . . Tn, F} and D = X− {F} = {T0, T1, T2, . . . Tn}, n ∈ N, are the sets of logical
and designated values, respectively. The connectives of→ and ∼ are defined in the following way
(i, k ∈ N, i 6 n):

→ T0 Ti F
T0 T0 T0 F
Tk T0 T0 F
F T0 T0 T0

∼
T0 F
Tk Tk−1
F T0.

A Pn-valuation is any function v : F −→ X compatible with the above truth-tables.
A Pn-tautology is a formula that under every valuation v takes on the designated values.

2. A New Axiomatization

The hierarchy discussed in this section is based on different criteria than those used to determine
the Pn-hierarchy. Firstly, we assume that the connectives of conjunction, disjunction, and equivalence
are treated as useful abbreviations, which formally do not appear in formulas; whereas ∼ and→ will
be taken as primitives. Secondly, the law of explosion is assumed to play a crucial role in defining the
new hierarchy. The hierarchy will be obtained from that of Remark 1 by replacing (DS) with a more
general schema, i.e.,

(DS∼n)∼nα→ ( ∼n+1α→ β),

where n ∈ N and ∼nα is an abbreviation for
n︷ ︸︸ ︷∼∼ ... ∼ α; and adding to it the law of double negation,

∼∼α → α, as a new axiom schema. It is worth mentioning at this point that (NN) is provable in P1

(see [7], pp. 174–175, and [17], p. 271), but it is not in any Pm, where m > 1. To put it more precisely, for
each n ∈ N, let Sn result from the implicational fragment of propositional intuitionistic logic by adding
to it the following axiom schemas:

(PL) ((α→ β)→ α)→ α

(DS∼n) ∼nα→ ( ∼n+1α→ β)

(DS→) (α→ β)→ (∼(α→ β)→ γ))

(CM) (∼α→ α)→ α

(NN) ∼∼α→ α
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The other sentential connectives can be introduced by the definitions. Observe that if n = 0, then S0 is
the classical propositional calculus, and the axioms (DS→), (NN) become redundant (cf. [19], p. 437);
but if n = 1, then S1 is equivalent to Sette’s calculus, and (NN) is provable in S1 (see [17], p. 268).

Definition 2. Let α ∈ F and Γ ⊆ F . A formula α is provable from Γ within Sn (Γ `Sn α, in symbols) iff
there is a finite sequence of formulas, β1, β2, ..., βm, such that βm = α, and for each i ≤ m, at least one of the
following is true:

1. βi ∈ Γ,
2. βi is an axiom of Sn,
3. βi is obtained from some of the previous β j by application of the rule of detachment.

Definition 3. A formula α is a thesis of Sn iff ∅ `Sn α.

In what follows, we will need two lemmas to prove the key theorem:

Lemma 1. Let n ∈ N. Then:

1. The deduction theorem holds for Sn.
2. Some variants of the indirect deduction theorem hold for Sn, viz.:

a. if Γ, α `Sn {∼nβ,∼n+1β}, then Γ `Sn ∼α

b. if Γ,∼α `Sn {∼nβ,∼n+1β}, then Γ `Sn α

c. if Γ, α→ β `Sn {γ→ δ,∼(γ→ δ)}, then Γ `Sn ∼(α→ β)

d. if Γ,∼(α→ β) `Sn {γ→ δ,∼(γ→ δ)}, then Γ `Sn α→ β

for every Γ ⊆ F and α, β, γ, δ ∈ F .

Proof. 1. The proof is exactly the same as in Theorem 1.
2.a. Assume that Γ, α `Sn {∼nβ,∼n+1β}. Then, by the deduction theorem, we have Γ `Sn {α→

∼nβ, α → ∼n+1β}. Since ∅ `Sn (α → ∼nβ)→ ((α → ∼n+1β)→ ∼α) (to prove this claim, apply the
deduction theorem, (DS∼n), (HS), (C), (CM2), and (MP)), then {α → ∼nβ, α → ∼n+1β} `Sn ∼α by
the deduction theorem. The relation `Sn is transitive, so Γ `Sn ∼α.

2.b. Suppose that Γ,∼α `Sn {∼nβ,∼n+1β}, then Γ `Sn ∼∼α (by 2.a). Since ∅ `Sn ∼∼α→ α, thus
{∼∼α} `Sn α, and consequently, Γ `Sn α.

2.c., 2.d. The proofs are similar to those of 2.a and 2.b.

Lemma 2. The (schemas of the) formulas:
(IL) α→ α

(LoC) (α→ (β→ γ))→ (β→ (α→ γ))

(HS) (α→ β)→ ((β→ γ)→ (α→ γ))

(C) (α→ (α→ β))→ (α→ β)

(LoE) ((α→ β)→ γ)→ (α→ (β→ γ))

(CM2) (α→ ∼α)→ ∼α

(DD→) (∼φ→ ψ)→ ((∼φ→ ∼ψ)→ φ), where φ := α→ β, ψ := γ→ δ

are provable in Sn, n ∈ N.

Proof. (IL), (LoC), (HS), and (C) immediately follow from the deduction theorem and (MP); (LoE)
follows from the deduction theorem, (A1) and (MP); (CM2) from the deduction theorem, (NN) (HS),
(CM), and (MP); and finally, (DD→) can be easily obtained by the indirect deduction theorem and
(MP).
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The lemmas will be particularly useful for proving the main result of this section.

Theorem 4. Sn = Pn, where n ∈ N.

Proof. The proof is divided into two steps. The first is to demonstrate that each axiom schema of Sn

is a Pn-tautology, and the rule (MP) preserves validity. This can be easily done with the help of the
semantics for Pn. To illustrate the point, we show that (PL), (DS→), and (DS∼n) are valid inMPn .

(PL). Suppose that ((α→ β)→ α)→ α is not a Pn-tautology. Thus, there is a Pn-valuation v such
that v(((α→ β)→ α)→ α) = F. There are two main cases to consider. Either v((α→ β)→ α) = T0

and v(α) = F, or v((α → β) → α) = Tn and v(α) = F, where n > 1. Case 1. If v((α → β) → α) = T0

and v(α) = F, then, no matter which value is assigned to β, v(α → β) = T0, and consequently,
v((α → β) → α) = F. But this gives a contradiction since v((α → β) → α) = T0. Case 2. It follows
from the truth-table for implication that v((α → β) → α) = T0 or v((α → β) → α) = F, for any
α, β ∈ F and every Pn-valuation v. So it is not possible that v((α → β) → α) = Tn, where n 6= 0.
Consequently, there is no Pn-valuation v such that v(((α → β) → α) → α) = F, which means that
(PL) is a Pn-tautology.

(DS→). Assume that (α → β) → (∼(α → β) → γ)) is not a Pn-tautology. So there is
a Pn-valuation v such that v((α → β) → (∼(α → β) → γ)) = F. Hence, either v(α → β) = T0 and
v(∼(α→ β)→ γ) = F, or v(α→ β) = Tn and v(∼(α→ β)→ γ) = F. The latter is impossible due to
the truth table for implication. Therefore, if v(α→ β) = T0, then v(∼(α→ β)) = F, and consequently,
v(∼(α → β) → γ) = T0. But this results in a contradiction because v(∼(α → β) → γ) = F.
As a consequence, there is no Pn-valuation v such that v((α → β) → (∼(α → β) → γ)) = F.
The formula (DS→) is a Pn-tautology.

(DS∼n). Suppose that ∼nα → (∼n+1α → β) is not a Pn-tautology, where n > 1. Then, there
is a Pn-valuation v such that v(∼nα → (∼n+1α → β)) = F. As a result, either v(∼nα) = T0 and
v(∼n+1α → β) = F, or v(∼nα) = Tn−1 and v(∼n+1α → β) = F. Let v(∼nα) = T0 and v(∼n+1α →
β) = F. Hence, v(∼n+1α) = F by the truth tables for negation. Since v(∼n+1α) = F, then, no matter
which value is assigned to β, v(∼n+1α → β) = T0. But this entails a contradiction since v(∼n+1α →
β) = F. Now, let v(∼nα) = Tn−1 and v(∼n+1α → β) = F. Consequently, either v(∼n+1α) = T0 and
v(β) = F, or v(∼n+1α) = Tn and v(β) = F. If v(∼n+1α) = T0, then, according to the truth table for
negation, v(∼nα) = F. But v(∼nα) = Tn−1. On the other hand, if v(∼n+1α) = Tn, then v(∼nα) = Tn+1.
But v(∼nα) = Tn−1. Therefore, there is no Pn-valuation v such that v(∼nα→ (∼n+1α→ β)) = F. The
formula (DS∼n) is a Pn-tautology.

For the second part of the proof, we have to demonstrate that each axiom schema of Pn is provable
in Sn and (MP) is its admissible rule, where n ∈ N. To begin with, notice that (A1), (A2), and (NN)

are the axiom schemas of Sn, and (MP) is its sole rule of inference.
(A3). We show that (α ∧ β) → α is a thesis of Sn, or, to be more precise, that ∼(α → ∼(∼β →

β))→ α is provable in Sn. To see that this claim is true, consider the following sequence of formulas:

1. ∼(α→ ∼(∼β→ β)) by the deduction theorem,
2. (α→∼ (∼ β→ β))→ (∼ (α→∼ (∼ β→ β))→ α) by (DS→),
3. ∼ (α→∼ (∼ β→ β))→ ((α→∼ (∼ β→ β))→ α) by (LoC), 2, (MP),
4. (α→∼ (∼ β→ β))→ α by 1, 3, (MP),
5. α by (PL), 4, (MP),
6. ∼ (α→∼ (∼ β→ β))→ α by the deduction theorem,

and finally,
7. (α ∧ β)→ α by the definition of ∧.

(A4). We prove that (α ∧ β) → β, i.e., ∼(α → ∼(∼β → β)) → β, is a thesis of Sn. To see this,
consider the sequence of formulas:



Axioms 2020, 9, 35 7 of 11

1. ∼(α→ ∼(∼β→ β)) by the deduction theorem,
2.–5. Proceed as in the preceding case,
6. (α→∼ (∼ β→ β))→ (∼ (α→∼ (∼ β→ β))→ (∼ β→ β)) by (DS→),
7. (α→∼ (∼ β→ β))→ (∼ β→ β)) by (LoC), 6, 1, (MP),
8. α→ (∼ (∼ β→ β)→ (∼ β→ β)) by (LoE), 7, (MP),
9. ∼ (∼ β→ β)→ (∼ β→ β) by 5, 8, (MP),
10. ∼ β→ β by (CM), 9, (MP),
11. β by (CM), 10, (MP),
12. ∼ (α→∼ (∼ β→ β))→ β by the deduction theorem,

and consequently,
13. (α ∧ β)→ β by the definition of ∧.

(A5). We show that α → (β → (α ∧ β)), i.e., α → (β → ∼(α → ∼(∼β → β)), is provable in Sn.
Consider the sequence of formulas:

1. α,
2. β,
3. ∼∼(α→∼ (∼ β→ β)) by the indirect deduction theorem,
4. α→∼ (∼ β→ β) by (NN), 3, (MP),
5. ∼ (∼ β→ β) by 1, 4, (MP),
6. ∼ β→ β by (A1), 2, (MP),

a contradiction (5, 6). This entails that:
7. ∼ (α→∼ (∼ β→ β),
8. α→ (β→∼ (α→∼ (∼ β→ β)) by the deduction theorem 1, 2, 7, (MP),

and finally,
9. α→ (β→ (α ∧ β)) by the definition of ∧.

(A6). We demonstrate that α→ (α ∨ β), i.e., α→ (∼(∼α→ α)→ β), is a thesis of Sn. To see that
this claim holds, consider the sequence of formulas:

1. α,
2. ∼(∼α→ α) by the deduction theorem,
3. ∼ α→ α by (A1), 1, (MP),
4. (∼ α→ α)→ (∼ (∼ α→ α)→ β)) by (DS→),
5. β by 4, 3, 2, (MP),
6. α→ (∼ (∼ α→ α)→ β) by the deduction theorem,

and consequently,
7. α→ (α ∨ β) by the definition of ∨.

(A7). We show that β → (α ∨ β), i.e., β → (∼(∼α → α) → β), is provable in Sn. To see this,
consider the sequence of formulas:

1. β,
2. ∼(∼α→ α) by the deduction theorem,
3. β by 1,
4. β→ (∼ (∼ α→ α)→ β)) by the deduction theorem,

and finally,
5. β→ (α ∨ β) by the definition of ∨.

(A8). We prove that (α→ γ)→ ((β→ γ)→ (α ∨ β→ γ)), i.e., (α→ γ)→ ((β→ γ)→ ((∼ (∼
α→ α)→ β)→ γ), is a thesis of Sn. To see that this claim is true, consider the following sequence of
formulas:
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1. α→ γ,
2. β→ γ,
3. ∼ ((∼ (∼ α→ α)→ β)→ γ) by the indirect deduction theorem,

Let φ := (∼ (∼ α→ α)→ β)→ γ. Then,
4. φ→ (∼ φ→ (∼ (∼ α→ α)→ β)) by (DS→),
5. φ→ (∼ (∼ α→ α)→ β) by (LoC), 4, 3, (MP),
6. (φ→ (∼ (∼ α→ α)→ β))→ (∼ (∼ α→ α)→ β) by (PL),
7. ∼ (∼ α→ α)→ β by 5, 6, (MP),
8. φ→ (∼ φ→∼ (∼ (∼ α→ α)→ β)) by (DS→),
9. φ→∼ (∼ (∼ α→ α)→ β)) by (LoC), 8, 3, (MP).

If φ := (∼ (∼ α→ α)→ β)→ γ, then,
10. ((∼ (∼ α→ α)→ β)→ γ)→∼ (∼ (∼ α→ α)→ β)),
11. (∼ (∼ α→ α)→ β)→ (γ→∼ (∼ (∼ α→ α)→ β)) by (LoE), 10, (MP),
12. γ→∼ (∼ (∼ α→ α)→ β) by 11, 7, (MP),
13. β→∼ (∼ (∼ α→ α)→ β) by (HS), 2, 12, (MP),
14. ∼ (∼ α→ α)→∼ (∼ (∼ α→ α)→ β) by (HS), 7, 13, (MP),
15. β→ (∼ (∼ α→ α)→ β) by (A1),
16. ∼ (∼ α→ α)→ (∼ (∼ α→ α)→ β) by (HS), 7, 15, (MP),

Let χ := ∼ α→ α and ψ := ∼ (∼ α→ α)→ β, then,
17. (∼ χ→ ψ)→ ((∼ χ→∼ ψ)→ χ) by (DD→),
18. (∼ χ→∼ ψ)→ χ by 17, 16, (MP),
19. χ by 18, 14, (MP).

If χ := ∼ α→ α, then,
20. ∼ α→ α,
21. α by (CM), 20, (MP),
22. γ by 21, 1, (MP),
23. γ→ ((∼ (∼ α→ α)→ β)→ γ) by (A1),
24. (∼ (∼ α→ α)→ β)→ γ by 23, 22, (MP),

a contradiction (3, 24). This yields that:
25. (∼ (∼ α→ α)→ β)→ γ,
26. (α → γ) → ((β → γ) → ((∼ (∼ α → α) → β) → γ) by the deduction theorem, and

consequently,
27. (α→ γ)→ ((β→ γ)→ (α ∨ β→ γ)) by the definition of ∨.

(ExM). We show that α∨ ∼ α, i.e., ∼(∼α→ α)→ ∼α, is provable Sn.

1. ∼(∼α→ α) by the deduction theorem,
2. (∼ α→ α)→ (∼ (∼ α→ α)→∼ α) by (DS→),
3. (∼ α→ α)→∼ α by (LoC), 2, 1, (MP),
4. ((∼ α→ α)→∼ α)→∼ α by (PL),
5. ∼ α by 4, 3, (MP),
6. ∼ (∼ α→ α)→∼ α by the deduction theorem,

and finally,
7. α∨ ∼ α by the definition of ∨.

(dC). We prove that ∼(β ∧ ∼β) → ((α → β) → ((α → ∼β) → ∼α)), i.e., ∼∼(β → ∼(∼∼β →
∼β))→ ((α→ β)→ ((α→ ∼β)→ ∼α)), is a thesis of Sn.
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1. ∼∼(β→ ∼(∼∼β→ ∼β)),
2. α→ β,
3. α→∼ β by the deduction theorem,
4. (∼∼ β→∼ β)→ (∼ (∼∼ β→∼ β)→∼ α) by (DS→),
5. β→∼ (∼∼ β→∼ β) by (NN), 1, (MP),
6. β→ (∼ (∼∼ β→∼ β)→∼ α) by (HS), 4, 5, (MP),
7. α→ (∼ (∼∼ β→∼ β)→∼ α) by (HS), 2, 6, (MP),
8. ∼ (∼∼ β→∼ β)→ (α→∼ α) by (LoC), 7, (MP),
9. β→ (α→∼ α) by (HS), 5, 8, (MP),

10. α→ (α→∼ α) by (HS), 2, 9, (MP),
11. α→∼ α by (C), 10, (MP),
12. ∼ α by (CM2), (11), (MP),
13. ∼∼ (β→∼ (∼∼ β→∼ β))→ ((α→ β)→ ((α→∼ β)→∼ α)) by the deduction theorem, and

consequently,
14. ∼ (β∧ ∼ β)→ ((α→ β)→ ((α→∼ β)→∼ α)) by the definition of ∧.

(nC‡). We demonstrate that∼((α ‡ β) ∧∼(α ‡ β)), i.e.,∼∼((α ‡ β)→ ∼(∼∼(α ‡ β)→ ∼(α ‡ β)))

and ‡ ∈ {∧,∨,→}, is provable in Sn. Let φ := α→ β, if ‡ is→; φ :=∼ (∼ α→ α)→ β, if ‡ is ∨; and
φ :=∼ (α→∼ (∼ β→ β)), if ‡ is ∧. As a result, we have:

1. ∼∼∼ (φ→∼ (∼∼ φ→∼ φ)) by the indirect deduction theorem,
2. ∼ (φ→∼ (∼∼ φ→∼ φ)) by (NN), 1, (MP),
3. (φ→∼ (∼∼ φ→∼ φ)→ (∼ (φ→∼ (∼∼ φ→∼ φ))→ φ)) by (DS→),
4. (φ→∼ (∼∼ φ→∼ φ))→ φ by (LoC), 3, 2, (MP),
5. ((φ→∼ (∼∼ φ→∼ φ))→ φ)→ φ by (PL),
6. φ by 5, 4, (MP),
7. (φ→∼ (∼∼ φ→∼ φ))→ (∼ (φ→∼ (∼∼ φ→∼ φ))→∼∼ (∼∼ φ→∼ φ)) by (DS→),
8. (φ→∼ (∼∼ φ→∼ φ))→∼∼ (∼∼ φ→∼ φ) by (LoC), 7, 2, (MP),
9. φ→ (∼ (∼∼ φ→∼ φ)→∼∼ (∼∼ φ→∼ φ)) by (LoE), 8, (MP),

10. ∼ (∼∼ φ→∼ φ)→∼∼ (∼∼ φ→∼ φ) by 6, 9, (MP),
11. (∼ (∼∼ φ→∼ φ)→∼∼ (∼∼ φ→∼ φ))→∼∼ (∼∼ φ→∼ φ) by (CM2),
12. ∼∼ (∼∼ φ→∼ φ) by 10, 11, (MP),
13. ∼∼ φ→∼ φ by (NN), 12, (MP),
14. ∼ φ by (CM), 13, (MP),

a contradiction (6, 14). This entails that,
15. ∼∼ (φ→∼ (∼∼ φ→∼ φ)),

and finally,
16. ∼ (φ∧ ∼ φ).

However, if φ := α → β, then ∼ ((α → β)∧ ∼ (α → β)); if φ :=∼ (∼ α → α) → β, then
∼ ((α ∨ β)∧ ∼ (α ∨ β)); and if φ :=∼ (α → ∼ (∼ β → β)), then ∼ ((α ∧ β)∧ ∼ (α ∧ β)). Hence,
∼ ((α ‡ β)∧ ∼ (α ‡ β)), where ‡ ∈ {∧,∨,→}.

(nC∼n). We show that∼(∼nα ∧∼n+1α), that is,∼∼(∼nα→ ∼(∼n+2α→ ∼n+1α)), where n ∈ N,
is provable in Sn.

1. ∼∼∼ (∼n α→∼ (∼n+2 α→∼n+1 α)) by the indirect deduction theorem,
2. ∼ (∼n α→∼ (∼n+2 α→∼n+1 α)) by (NN), 1, (MP),

Let φ := ∼n α→∼ (∼n+2 α→∼n+1 α). Then,
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3. ∼ φ,
4. φ→ (∼ φ→∼n α) by (DS→),
5. φ→∼n α by (LoC), 4, 3, (MP),
6. (∼n α→∼ (∼n+2 α→∼n+1 α))→∼n α by φ,
7. ∼n α by (PL), 6, (MP),
8. φ→ (∼ φ→∼∼ (∼n+2 α→∼n+1 α)) by (DS→),
9. φ→∼∼ (∼n+2 α→∼n+1 α) by (LoC), 8, 3, (MP),

10. (∼n α→∼ (∼n+2 α→∼n+1 α))→∼∼ (∼n+2 α→∼n+1 α) by φ,
11. ∼n α→ (∼ (∼n+2 α→∼n+1 α)→∼∼ (∼n+2 α→∼n+1 α)) by (LoE), 10, (MP),
12. ∼ (∼n+2 α→∼n+1 α)→∼∼ (∼n+2 α→∼n+1 α) by 11, 7, (MP),
13. ∼∼ (∼n+2 α→∼n+1 α) by (CM2), 12, (MP),
14. ∼n+2 α→∼n+1 α by (NN), 13, (MP),
15. ∼n+1 α by (CM), 14, (MP),
16. ∼n α→ (∼n+1 α→ φ) by (DS∼n),
17. φ by 16, 15, 7, (MP),

a contradiction (3, 17). This entails that,
18. ∼∼ (∼n α→∼ (∼n+2 α→∼n+1 α)), and consequently,
19. ∼ (∼n α∧ ∼n+1 α) by the definition of ∧.

This finishes the proof of Theorem 4.

3. Conclusions

In this paper, we proposed a new axiomatization for the Pn-hierarchy. The main idea behind it
was to focus directly on the principle of ex contradictione sequitur quodlibet. This is a remarkable
difference between Fernández–Coniglio’s and our proposal, which makes the hierarchy less complex
and more transparent from the viewpoint of paraconsistency. Additionally, we followed Sette’s idea
and the connectives of negation and implication were taken as primitives. In conclusion let us also
mention that the several other hierarchies can be easily generated from Pn-hierarchy. For instance,
by dropping (DS→), we get the CBn-hierarchy of the paraconsistent calculi (cf. [20]). The interested
reader can also find a slightly different hierarchy in [21] (the so-called Bn-hierarchy).
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