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Institute for Research and Applications of Fuzzy Modelling, NSC IT4Innovations, University of Ostrava,
701 03 Ostrava, Czech Republic; Linh.Nguyen@osu.cz (L.N.); Michal.Holcapek@osu.cz (M.H.)
* Correspondence: Irina.Perfilieva@osu.cz
† This paper is an extended version of our paper published in 2019 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE), New Orleans, LA, USA, 23–26 June 2019.

Received: 30 October 2019; Accepted: 18 December 2019; Published: 31 December 2019
����������
�������

Abstract: We propose and show efficiency of a new fuzzy-transform-based numerical method of solving
ordinary differential equations with boundary conditions. The focus is on weak solutions and a special
construction of a two-parameterized family of test functions. On theoretical and computational levels, we
show how the proposed technique relates to and outperforms the Ritz–Galerkin method. We emphasize
the importance of the proposed technique by considering its application to a real-life problem—the option
pricing policy.

Keywords: boundary valued problem; numerical method; variational method; fuzzy partition;
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1. Introduction

There is no doubt that ordinal or partial differential equations (ODEs or PDEs) are significant
mathematical tools used for describing laws of physics or modeling rules in engineering and economics.
Finding an exact solution of an ODE or a PDE is important, but difficult in practice. The source of difficulties
comes from parameters of equations, describing real phenomena that usually have high complexity and
are not smooth enough for applying classical numerical analysis.

Therefore, in practice, the notion of a solution is modified to a weaker form to be applicable to a
wider class of differential equations. In most cases, weak solutions [1–3] are found in an approximate form
using numerical methods. The latter are based on various transformations of a given problem to simpler
forms such that their solutions approximate the exact one. An important transformation is known as the
Ritz–Galerkin method [3,4], and it is in the focus of our analysis and modification.

The proposed method will be explained on the following two point boundary value problem (BVP) with
homogeneous Dirichlet conditions:

−(p(x)u′(x))′ + q(x)u(x) = f (x), x ∈ (a, b), (1)

u(a) = 0, (2)

u(b) = 0. (3)

A function u : [a, b] → R such that Equations (1)–(3) are fulfilled is called an ordinary solution. It is
known [5] that if parameters p, q, f , are such that p ∈ C1[a, b], q, f ∈ C[a, b], and for any x ∈ [a, b],
0 < βL ≤ p(x) ≤ βR, 0 ≤ γL ≤ q(x) ≤ γR, then an ordinary solution is unique.
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We consider weaker assumptions

1. functions p, q are bounded and measurable in (a, b),
2. function f ∈ L2(a, b),
3. 0 < pL ≤ p(x) ≤ pR, 0 ≤ q(x),

that guarantee existence and uniqueness [1,6] of the so-called weak solution. Below, we explain basic
principles of how a weak solution can be constructed.

We assume that unknown function u is a linear functional, acting on an appropriate set V of test
functions v ∈ V. These functions play role of new “points” where Equation (1) has the following form:

∫ b

a
(−(p(x)u′(x))′ + q(x)u(x)− f (x))v(x)dx = 0. (4)

If u fulfills (4) as well as (2) and (3), then it is a weak solution to the standard BVP. Space V of test functions
is assumed to be linear and to fulfill some additional requirements that specify a particular method
in the theoretical analysis of BVP. Among various spaces of test functions, we can name trigonometric
functions [7], spaces of finite elements (FEM) [1], spaces of the so-called shape functions in the meshless
and generalized FEMs [8–10], etc. Recently, we introduced a construction of test spaces motivated by the
theory of higher degree fuzzy transforms [6,11].

After a space of test functions V is selected, a system of its finite dimensional subspaces V1, . . . , VmN , . . .
is proposed, and a solution ui of (4) is computed on each Vi, i = 1, . . .. The sequence {ui, i = 1, . . .} gives
approximate solutions to (4).

The proposed method consists in a new construction of subspaces V1, . . . , VmN , . . . of test functions
that fulfill boundary conditions (2)–(3). Each subspace Vi is specified by two parameters: N and m—a
number and dimension of “finite elements” in it. By this “two-parameter” trick, we are able to guarantee
an exponential error decrease (see details in Section 3). This method is motivated by the theory of
fuzzy partitions [12] and higher degree fuzzy transforms [13]. Recall that Perfilieva introduced the
ordinary theory of fuzzy transform (F-transform) in [14] with the purpose to bring fuzzy models into the
approximation theory.

In the theory of higher degree fuzzy transforms (Fm-transform) [13], the approximation space is
composed of weighted orthogonal projections on partition elements. The particular projections are
represented by m-degree polynomials (Fm-transform components) and then combined with membership
(basic) functions of corresponding partition elements. Note that the Fm-transform components are best
local approximations of the original function with respect to weights determined by basic functions.
The inverse Fm-transform uses the Fm-transform components as “coefficients” in the linear combination
with the basic functions. The key parameters of the Fm-transform are: a fuzzy partition of a bounded interval
and degree m of polynomials that are used as components. Both parameters significantly influence the
approximation quality provided by the Fm-transform.

The test space, introduced in [6] as well as in [11], is a linear space of functions represented by the
inversion formula of a higher degree Fm-transform. Let us note that, in these papers, only uniform fuzzy
partitions with at most two basic functions, covering a point in a given interval, were considered. In this
contribution, we break this limitation and propose a more flexible approach to the construction of a test
space with respect to a generalized uniform fuzzy partition.

The paper is organized as follows. Section 2 is devoted to the basic concepts such as the Sobolev space,
the cut-off function, and the generalized uniform fuzzy partition. The main contribution is discussed in
Section 3. The fourth and the fifth sections are devoted to the illustration and real-life application of our
proposal, respectively, and the last section is left for conclusions.
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2. Prelimanaries

2.1. Basic Notions about L2(a, b) and Sobolev Space

We fix (a, b) ⊂ R as a universe of discourse and consider the linear space L2(a, b) of functions, defined
on interval [a, b] and square Lebesgue integrable on it. It is known that L2(a, b) is a Hilbert space with
respect to the inner product 〈·, ·〉, defined by

〈 f , g〉 =
∫ b

a
f (x)g(x)dx.

The corresponding norm, denoted by ‖ · ‖L2 , is defined by ‖ f ‖L2 =
√
〈 f , f 〉.

Let C∞
c (a, b) be a linear space of infinitely-differentiable functions with compact support in (a, b).

Let f and g be locally integrable functions on any open subinterval of (a, b). Then, g is a weak
(generalized) derivative of f , if, for all φ ∈ C∞

c (a, b),

∫ b

a
f (x)φ′(x)dx = −

∫ b

a
g(x)φ(x)dx.

A weak derivative of f is unique up to the norm ‖ · ‖L2 , and will be denoted by ∂ f . Let us note that ∂ f = f ′

iff f is (standard) differentiable on (a,b). Moreover, weak differentiability does not imply the standard one.
For example, the absolute function, f (x) = |x|, x ∈ [−1, 1], is not differentiable on (−1, 1), but it is weakly
differentiable on (−1, 1), with

∂ f (x) =

−1, −1 ≤ x ≤ 0;

1, 0 < x ≤ 1.

Let m ≥ 1 be an integer, and Hm(a, b) a linear space of m-time weakly differentiable functions. This space
is called a Sobolev space with the Sobolev norm

‖ f ‖Hm =

(
m

∑
k=0
‖∂k f ‖2

L2

)1/2

, f ∈ Hm(a, b),

where ∂k denotes a weak derivative of order k. It is known that Hm(a, b) is a Hilbert space with the
following inner product,

〈 f , g〉Hm =
m

∑
k=0
〈∂k f , ∂k f 〉,

where f and g are two arbitrary functions in Hm(a, b). Denote by H1
0(a, b) the completion of C∞

c (a, b) with
respect to the norm ‖ · ‖H1 . This space is a subspace of H1(a, b), and can be represented as follows:

H1
0(a, b) = { f ∈ H1(a, b) | f (a) = f (b) = 0}

(see Theorem 8.12 in [15]).

2.2. Cut-Off Function

Denote C∞
b (a, b) a linear space of infinitely-differentiable functions on (a, b) such that all their k-th

derivatives, k ∈ N, are bounded. Let d : [a, b]→ R be defined by d(x) = min{x− a, b− x}, x ∈ [a, b]. One
can easily see that, for any x ∈ [a, b], d(x) is the Hausdorff distance between x and the set of two boundary
points {a, b}.
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Definition 1. A function ψ ∈ C∞
b (a, b) is a cut-off function on [a, b], if

ψ(x) > 0, x ∈ (a, b),

ψ(a) = ψ(b) = 0,

and there exist two positive constants c1, c2 such that

c1d(x) ≤ ψ(x) ≤ c2d(x), x ∈ (a, b).

One can check that a function ψ : [a, b]→ R, defined by

ψ(x) =
2(x− a)(b− x)

b− a
(5)

is a cut-off function on [a, b]. Below, we remind a property that is needed below.

Lemma 1. Let ψ be a cut-of function on [a, b], and ω : [a, b] → R be such that, for some integer m ≥ 0,
ψω ∈ Hm+2(a, b) ∩ H1

0(a, b). Then, ω ∈ Hm+1(a, b).

Proof. This lemma is a consequence of the Hardy inequality. It can be found in Lemma 7.1 of [9] or
in [16].

2.3. Generalized Uniform Fuzzy Partition

The concept of generalized uniform fuzzy partition was proposed in [12] with respect to a bell-shaped
function, called generating function. In this paper, we additionally assume that the latter is weakly
differentiable and its weak derivative is bounded.

Definition 2. Let K : R→ [0, 1] be a bell-shaped function, i.e., K is continuous, even, and non-increasing on (0, 1).
It is said to be a generating function of a fuzzy partition, if it is weakly differentiable, so that its weak derivative is
bounded on R, and K(x) > 0 iff x ∈ (−1, 1).

Example 1. Let δ ∈ (0, 1] be fixed

(i) A triangular generating function
Ktr(x) = δ ·max(1− |x|, 0).

(ii) A raised cosine generating function

Krc(x) =


δ
2 (1 + cos(πx)), −1 ≤ t ≤ 1,

0, otherwise,

(iii) A b-spline generating function of degree n

Kbs,n(x) = δ · βn
(
(n + 1) · x

2

)
,
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where βn(x) = β0 ? β0 ? · · · ? β0(x)︸ ︷︷ ︸
(n+1) times

(? is the convolution operation.) with β0 is the rectangular pulse defined

as follows:

β0(x) =


1, − 1

2 < x < 1
2 ,

1
2 , |x| = 1

2 ,

0, otherwise.

Below, we introduce the definition of a generalized uniform fuzzy partition of a closed interval.

Definition 3. Let [a, b] ⊂ R, α > 0 and an arbitrary integer N be such that N ≥ 2. Let K be a generating function.
Let AN be a set of fuzzy sets on [a, b] defined as follows:

AN = {A−τ , . . . , A0, . . . , AN , . . . , AN+τ},

where τ = d 1
α e − 1, and for any k = −τ, . . . , N + τ,

Ak(x) = K
(

x− a
h
− kα

)
, x ∈ [a, b],

with h = b−a
αN . AN is said to be a generalized uniform fuzzy partition of [a, b] determined by the triplet

(K, α, N) if
N+τ

∑
k=−τ

Ak(x) = 1, x ∈ [a, b].

Parameters α, and h are called density ratio and bandwidth of fuzzy partition AN , respectively. Each fuzzy set of
the fuzzy partition is called a basic function. Let ck = a + kαh. It is called the k-th node of AN .

Let us remind readers that sufficient conditions on the triplet (K, α, N) for constructing a
generalized uniform fuzzy partitions of [a, b] are given in [12,17]. Moreover, from Definition 3,
one can see that there are at most 2(τ + 1) basic functions that cover an arbitrary point in [a, b], i.e.,
max {#{Ak | Ak(x) > 0} | x ∈ [a, b]} = 2(τ + 1).

In the sequel, a generalized uniform fuzzy partition will be referred to as fuzzy partition.
In Figure 1, we show the cubic B-spline fuzzy partition of [0, 1] determined by the triplet

(
Kbs,3, 0.5, 4

)
.

Figure 1. A cubic B-spline generalized uniform fuzzy partition of [0, 1].
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2.4. Fuzzy Transform of a Higher Degree

Let AN be a fuzzy partition of [a, b] ⊂ R, and A a basic function of AN . Denote L2(A) as a linear
space of functions f : SuppA→ R, such that∫

SuppA
f 2(x)A(x)dx < ∞.

It is known from [13] that L2(A) is a weighted Hilbert space with respect to the inner product 〈·, ·〉A
defined by

〈 f , g〉A =
∫

SuppA
f (x)g(x)A(x)dx.

Denote ⊥A as the orthogonality relation on this space. Let Pm(A) (m ≥ 0) be a linear space of up to the
m-th degree polynomials, restricted to SuppA. It is easy to see that Pm(A) is a closed linear subspace of
L2(A).

Below, we recall [13,18] as the definition of a higher degree fuzzy transform (or the Fm-transform,
m ≥ 0).

Definition 4. Let f ∈ L2(a, b), and A = {Ak | k = M, . . . , M′} be a fuzzy partition of [a, b], where M < M′ are
two integers.

(i) The direct Fm-transform (m ≥ 0) of f with respect to A is the set polynomials

Fm[ f ] =
{

Fm
k [ f ] ∈ Pm(Ak) | ( f − Fm

k [ f ]) ⊥Ak Pm(Ak), k = M, . . . , M′
}

.

Fm
k [ f ] is called the k-th component of the direct Fm-transform.

(ii) The inverse Fm-transform of f with respect to A and the set of the direct Fm-transform components
Fm[ f ] =

{
Fm

k [ f ] | k = M, . . . , M′
}

of f , is the function defined as follows:

f̂ m(x) =
M′

∑
k=M

Fm
k [ f ](x)Ak(x), x ∈ [a, b].

In [13,18], we proved that all the direct Fm-transform components of an m-th degree polynomial
coincide with the corresponding restrictions of this polynomial. For more details, we refer to [13,18].

3. Test Spaces Constructed with a Generalized Fuzzy Partition

We introduce a novel system of test spaces based on a parameterized family of fuzzy partitions
that share a common generating function. In other words, we show how to construct a system of
finite-dimensional subspaces of H1

0(a, b) such that it fulfills the Ritz–Galerkin condition.
Let two integers N and m be such that N ≥ 2 and m ≥ 1. LetAN = {A−τ , . . . , A0, . . . , AN , . . . , AN+τ}

be a fuzzy partition of [a, b] determined by the triplet (K, α, N), and Bm(AN) be a set determined as follows:

Bm(AN) =
N+τ⋃

k=−τ

Φm
k ,
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where Φm
k = {φj,k = (x− ck)

j Ak(x) | j = 0, 1, . . . , m} with ck = a + k(b−a)
N (the k-th node of fuzzy partition

AN). It is easy to see that Bm(AN) is a linearly independent system in H1(a, b). Let ψ be a fixed cut-off
function on [a, b], and Bm

0 (AN) be defined as follows:

Bm
0 (AN) =

{
ψφj,k | j− 0, . . . , m; k = −τ, . . . , N + τ

}
.

One can see that Bm
0 (AN) is a linearly independent system in H1

0(a, b). Let Dm
0 (AN) be a linear space

spanned by Bm
0 (AN). We obtain that Dm

0 (AN) is a linear subspace of H1
0(a, b) with dim(Dm

0 (AN)) =

(m + 1)(N + 2τ + 1).
In the sequel, we prove that Dm

0 (AN) can be used as a test space for constructing a weak solution to a
BVP. Namely, we have to show that the following system:

Dm
0 (A2), . . . ,Dm

0 (AN), . . . (6)

fulfills the Ritz–Galerkin condition. Let us note that this system is established by fixing the highest degree
m of polynomials and enlarging the value of N (the number concerning to the number of basic functions).

Remark 1. The system Bm(AN) is not a subset of H1
0(a, b). Indeed, there exist functions in Bm(AN) (for example,

φ0,0 and φ0,N) that do not belong to the latter. This is the reason why we have to modify functions in Bm(AN) by a
fixed cut-off function on [a, b] to obtain a linearly independent system in H1

0(a, b).

Remark 2. Let Dm(AN) be a linear space spanned by Bm(AN). It is easy to see that Dm
0 (AN) =

{ψ f | f ∈ Dm(AN)}.

Lemma 2. Let integers m, N be such that m ≥ 1 and N ≥ 2, and f ∈ Hm+1(a, b). Let AN =

{A−τ , . . . , A0, . . . , AN , . . . , AN+τ} be a fuzzy partition of [a, b] determined by the triplet (K, α, N). Then, there
exists a function ϕ ∈ Dm (AN) and a constant C > 0 independent of N such that

‖ f − ϕ‖H1 ≤ C · N−m+ 1
2 . (7)

Proof. Let h and ck be the bandwidth and the k-th node (k = −τ, . . . , N + τ) of the fuzzy partition AN ,
respectively. By Theorem 5 in Chapter VI of [19], we obtain that f can be extended to a function f̄ , defined
on the interval I = (c−τ − h, . . . , cN+τ + h), so that f̄ ∈ Hm+1(I) and ‖ f̄ ‖Hm+1(I) ≤ E · ‖ f ‖Hm+1(a,b),
where E is a positive real constant. Let Fm

k [ f̄ ], k = −τ, . . . , N + τ, be the k-th component of the direct
Fm-transform of f̄ with respect to the fuzzy partition AN , extended to I. Since the direct Fm-transform
preserves polynomials of degree up to m, it follows from Theorem 3.1.4 in [20] that there exist two constants
C0, C1 > 0 (independent of h) such that, for any i = 0, 1, k = −τ, . . . , N + τ,

‖∂i( f̄ − Fm
k [ f̄ ])‖L2(Ωk)

≤ Ci · hm+1−i · ‖∂m+1 f̄ ‖L2(Ik)
,

where Ωk = Ik ∩ (a, b) with Ik = (ck − h, ck + h). Since h = b−a
αN , there exist two constants C′0, C′1 > 0

(independent of N) such that, for any i = 0, 1, k = −τ, . . . , N + τ,

‖∂i( f̄ − Fm
k [ f̄ ])‖L2(Ωk)

≤ C′i · N−m−1+i. (8)
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Let ϕ be the inverse Fm-transform of f̄ with respect to fuzzy partition AN , i.e.,

ϕ(x) =
N+τ

∑
k=−τ

Fm
k [ f̄ ](x)Ak(x).

It is easy to see that ϕ ∈ Dm (AN). Moreover, we have that

‖ f − ϕ‖2
H1(a,b) = ‖ f̄ − ϕ‖2

H1(a,b) = ‖ f̄ − ϕ‖2
L2(a,b) + ‖∂( f̄ − ϕ)‖2

L2(a,b). (9)

Below, we evaluate the terms ‖ f̄ − ϕ‖2
L2(a,b) and ‖∂( f̄ − ϕ)‖2

L2(a,b). For any x ∈ (a, b), we have

|( f̄ − ϕ)(x)|2 =

∣∣∣∣∣ N+τ

∑
k=−τ

(
f̄ − Fm

k [ f̄ ]
)
(x) · Ak(x)

∣∣∣∣∣
2

≤ 2(τ + 1)
N+τ

∑
k=−τ

∣∣( f̄ − Fm
k [ f̄ ]

)
(x) · Ak(x)

∣∣2
≤ 2(τ + 1)

N+τ

∑
k=−τ

∣∣( f̄ − Fm
k [ f̄ ]

)
(x)
∣∣2 ,

where the first inequality is obtained by the Bunyakovsky–Cauchy–Schwarz (BCS for short) inequality
and the fact that not more than 2(τ + 1) basic functions cover an arbitrary point x ∈ (a, b), and the second
inequality is by the fact that |Ak(x)| ≤ 1, for any x ∈ (a, b). Consequently,

‖ f̄ − ϕ‖2
L2(a,b) ≤ 2(τ + 1)

N+τ

∑
k=−τ

‖ f̄ − Fm
k [ f̄ ]‖2

L2(Ωk)
.

By (8),

‖ f̄ − ϕ‖2
L2(a,b) ≤ 2(τ + 1)

N+τ

∑
k=−τ

C′0
2 · N−2(m+1)

= 2(τ + 1)(2τ + N + 1)C′0
2 · N−2(m+1)

= 2(τ + 1)
(

2τ + 1
N

+ 1
)

C′0
2 · N−2m−1

≤ 2(τ + 1) (τ + 3/2)C′0
2 · N−2m−1. (10)

Therefore, there exists a constant C∗ > 0 (independent of N) such that

‖ f̄ − ϕ‖2
L2(a,b) ≤ C∗ · N−2m−1. (11)

On the other hand, for any x ∈ (a, b), applying the BCS inequality, we obtain

|∂( f̄ − ϕ)(x)|2 =

∣∣∣∣∣ N+τ

∑
k=−τ

∂
(

f̄ − Fm
k [ f̄ ]

)
(x) · Ak(x) +

N+τ

∑
k=−τ

(
f̄ − Fm

k [ f̄ ]
)
(x) · ∂(Ak)(x)

∣∣∣∣∣
2

≤2

∣∣∣∣∣ N+τ

∑
k=−τ

∂
(

f̄ − Fm
k [ f̄ ]

)
(x) · Ak(x)

∣∣∣∣∣
2

+

∣∣∣∣∣ N+τ

∑
k=−τ

(
f̄ − Fm

k [ f̄ ]
)
(x) · ∂(Ak)(x)

∣∣∣∣∣
2
 .
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Using the similar estimations as in (10), we obtain

|∂( f̄ − ϕ)(x)|2 ≤ 4(τ + 1)

(
N+τ

∑
k=−τ

∣∣∂ ( f̄ − Fm
k [ f̄ ]

)
(x) · Ak(x)

∣∣2
+

N+τ

∑
k=−τ

∣∣( f̄ − Fm
k [ f̄ ]

)
(x) · ∂(Ak)(x)

∣∣2) .

Moreover, for any x ∈ (a, b), |Ak(x)| ≤ 1, and |∂(Ak)(x)| = 1
h

∣∣∣∂(K) ( x−ck
h

)∣∣∣ ≤ CK
h , where CK is a positive

constant depending on the generating function K. Therefore, we obtain

‖∂( f̄ − ϕ)‖2
L2(a,b) ≤ 4(τ + 1)

(
N+τ

∑
k=−τ

‖∂
(

f̄ − Fm
k [ f̄ ]

)
‖2

L2(Ωk)
+
CK
h

N+τ

∑
k=−τ

‖
(

f̄ − Fm
k [ f̄ ]

)
‖2

L2(Ωk)

)
.

By (8),

‖∂( f̄ − ϕ)‖2
L2(a,b) ≤ 4(τ + 1)

(
N+τ

∑
k=−τ

C′1
2 · N−2m +

CK
h

N+τ

∑
k=−τ

C′0
2 · N−2(m+1)

)

= 4(τ + 1)(2τ + N + 1)
(

C′1
2
+
CK
h

C′0
2N−2

)
N−2m

= 4(τ + 1)
(

2τ + 1
N

+ 1
)(

C′1
2
+

αCK
(b− a)N

C′0
2
)

N−2m+1

≤ 4(τ + 1) (τ + 3/2)
(

C′1
2
+

αCK
2(b− a)

C′0
2
)

N−2m+1.

As a result, there exists a constant C∗∗ > 0 (independent of N) such that

‖∂( f̄ − ϕ)‖2
L2(a,b) ≤ C∗∗ · N−2m+1. (12)

Let C2 = max{C∗, C∗∗}. By (11) and (12),

‖ f − ϕ‖H1 ≤ C · N−m+ 1
2 .

This proves the lemma.

Lemma 3. Let m ≥ 1 and N ≥ 2, be integers, AN = {A−τ , . . . , A0, . . . , AN , . . . , AN+τ}, a fuzzy partition
of [a, b], determined by the triplet (K, α, N). Let f ∈ Hm+2(a, b) ∩ H1

0(a, b). Then, there exists a function ϕ in
Dm

0 (AN) and a constant C > 0 (independent of N) such that

‖ f − ϕ‖H1 ≤ C · N−m+ 1
2 .

Proof. Let ψ be the cut-off function used in the construction of the spaceDm
0 (AN), and ω = f

ψ . By Lemma 1

and the fact that f ∈ Hm+2(a, b) ∩ H1
0(a, b), we have ω ∈ Hm+1(a, b). By Lemma 2, there exist function

ϕ∗ ∈ Dm (AN), such that
‖ω− ϕ∗‖H1 ≤ C∗ · N−m+ 1

2 ,
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where C∗ > 0 is an (independent of N) constant. Additionally, we have f − ψϕ∗ = ψ(ω− ϕ∗). It follows
that

‖ f − ψϕ∗‖H1 = ‖ψ(ω− ϕ∗)‖H1 .

Since ψ ∈ C∞
b (a, b), there exists a constant Cψ > 0, such that

‖ψ(ω− ϕ∗)‖H1 ≤ Cψ‖ω− ϕ∗‖H1 ≤ CψC∗ · N−m+ 1
2 .

As a result, there exists a constant C > 0 (independent of N) such that

‖ f − ψϕ∗‖H1 ≤ C · N−m+ 1
2 .

Since ψϕ∗ ∈ Dm
0 (AN), we obtain the desired result. This proves the lemma.

The following theorem shows that system (6) fulfills the Rizt-Galerkin condition.

Theorem 1. Let m ≥ 1 be an integer, and f ∈ Hm+2(a, b) ∩ H1
0(a, b). Let N ≥ 2, and AN =

{A−τ , . . . , A0, . . . , AN , . . . , AN+τ} be a fuzzy partition of [a, b], determined by the triplet (K, α, N). For any
ε > 0, there exists N(ε) > 2 and ϕ(N) ∈ Dm

0 (AN), such that, for any N ≥ N(ε), the following inequality holds:

‖ f − ϕ(N)‖H1 < ε. (13)

Proof. Let ε > 0, and f ∈ H1
0(a, b). Since H1

0(a, b) is a completion of C∞
c (a, b), there exists a function g in

C∞
c (a, b), such that

‖ f − g‖H1 <
ε

2
. (14)

By Lemma 3 and the fact that for any m ≥ 1, g ∈ Hm+2(a, b) ∩ H1
0(a, b), we have that, for any N ≥ 2, there

exists ϕ(N) ∈ Dm
0 (AN), such that

‖g− ϕ(N)‖H1 ≤ C · N−m+ 1
2 ,

where C is an (independent of N) positive constant. Choosing N(ε) ≥ 2, such that for any N ≥ N(ε),
C · (N(ε))−m+ 1

2 < ε
2 , we obtain

‖g− ϕ(N)‖H1 <
ε

2
. (15)

By (14) and (15),
‖ f − ϕ(N)‖H1 < ε,

for any N ≥ N(ε). The proof is completed.

4. Illustration

This section aims to show the efficiency of the newly proposed method, whose specificity is in a
two-parameterized constructor of a space of test functions. This method is denoted by “GFPP” (Generalized
uniform Fuzzy Partition with Polynomials), and it is compared with the two well-established numerical
methods, used for solving weak BVPs. The latter are: piecewise linear Finite Element Method (FEM) and
Fuzzy Partition with Polynomials (FPP); see [11]. We have selected three types of BVPs with different
source (right-hand side) functions. They are typical representatives of classes whose smoothness varies
from poor to normal.

To demonstrate its superior performance, we compare it with the well-established piece-wise linear
finite element method (FEM) and the FPP (Fuzzy Partition with Polynomials) method. The latter is
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proposed in our recent paper [11], and the former is selected because it is in a family of conventional
approaches. To evaluate the obtained results, we consider BVPs, whose exact solutions are known. In these
cases, we measure the approximation error by the relative error, defined as follows:

Error =
‖ũ− u‖2

‖u‖2
,

where u and ũ are the exact and numerical solutions, respectively. We also estimate the convergence rates
of numerical solutions. They are computed with respect to the following formula (see [21]):

ri =
log (Ei/Ei+1)

log (Ni+1/Ni)
, (16)

where Ei is the relative error corresponding to the i-th numerical solution with the number of basis function
is 2i+2.

We consider the following three examples of the BVP.

Example 2 (BVP with a smooth right-hand function).

−
(

p(x)y′(x)
)′
+ y(x) = f (x), x ∈ (0, 1),

y(0) = y(1) = 0,

where k(x) = ex and f (x) = 2− x + ex − (1− x)e−x.
This problem has a unique solution given by

y(x) = (1− x)
(
1− e−x) .

Example 3 (BVP with non-smooth coefficients).

−(p(x)u′(x))′ = 1, x ∈ (0, 1),

u(0) = u(1) = 0,

where

p(x) =

{
1, 0 ≤ x < 1/2,

2, 1/2 ≤ x ≤ 1.

Despite the coefficient p(x) not being continuous, the problem has unique solution

u(x) =

{
1
12 (5x− 6x2), 0 ≤ x < 1/2,
1

24 (1 + 5x− 6x2), 1/2 ≤ x ≤ 1.

Example 4 (BVP with an oscillate right-hand function).

−y′′(x) + 8xy(x) = f (x), x ∈ (0, 5),

y(0) = y(5) = 0,

where
f (x) = −16

[
(8x4 − 36x3 − 20x2 − 1) cos 2x2 +10x(x− 3) sin 2x2

]
.
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The exact solution is
y(x) = 8x(5− x) cos 2x2.

When applying the GFPP method to Examples 2, 3 and 4, we fix using the cut-off functions of the
form in (5), and, moreover, use only the cubic b-spline fuzzy partitions. For the application of the FPP
method, we use the triangular fuzzy partitions (the fuzzy partitions determined with respect to triangular
generating functions). Moreover, to have a fair comparison, we restrict polynomials to that of degree at
most m = 1. In Tables 1–3, we give the relative approximation errors and convergence rates of numerical
solutions obtained by the newly proposed method and other methods mentioned above. Let us note that,
in each row of these tables, the same number of basis functions is used in each method for constructing
numerical solutions. One can see that the GFPP method provides much better approximate solutions in
comparison with its competitors. Indeed, all of its obtained approximation errors (in all selected examples)
are significantly smaller than that of the latter ones. The convergence rates, obtained by GFPP method
to the BVP with a smooth right-hand function and smooth coefficients (in Example 2), are significantly
higher than that obtained by FPP and FEM methods.

Table 1. The error estimation and convergence rate of numerical solutions to the analytic solution in
Example 2.

# Basis GFPP FPP FEM

Functions Error Rate Error Rate Error Rate

8 5.1× 10−6 _ 1.5× 10−3 _ 1.3× 10−2 _

16 2.9× 10−8 7.5 1.9× 10−4 2.9 3.8× 10−3 1.8

32 3.5× 10−10 6.4 2.3× 10−5 3.1 9.9× 10−4 1.9

64 6.7× 10−12 5.7 2.9× 10−6 2.9 2.6× 10−4 1.9

128 1.7× 10−13 5.3 3.6× 10−7 3.0 6.5× 10−5 2.2

Table 2. The error estimation and convergence rate of numerical solutions to the analytic solution in
Example 3.

# Basis GFPP FPP FEM

Functions Error Rate Error Rate Error Rate

8 2.8× 10−4 _ 7.3× 10−3 _ 2.2× 10−2 _

16 6.6× 10−5 2.1 1.6× 10−3 2.2 5.4× 10−3 2.0

32 2.6× 10−5 1.3 6.2× 10−4 1.4 1.7× 10−3 1.7

64 1.2× 10−5 1.1 3.0× 10−4 1.1 6.5× 10−4 1.4

128 5.6× 10−6 1.1 1.5× 10−4 1.0 2.9× 10−4 1.2
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Table 3. The error estimation and convergence rate of numerical solutions to the analytic solution in
Example 4.

# Basis GFPP FPP FEM

Functions Error Rate Error Rate Error Rate

8 1.7× 10−2 _ 0.9785 _ 1.0055 _

16 1.5× 10−2 1.8 0.6878 5.1 0.8559 2.3

32 6.0× 10−3 1.3 0.2447 1.5 0.2764 1.6

64 2.5× 10−3 1.3 3.9× 10−2 2.7 7.1× 10−2 1.9

128 2.4× 10−3 1.7 5.4× 10−3 2.9 1.8× 10−2 2.0

5. Real-Life Application

This section discusses an application of the proposed method to the option pricing
problem—an important issue in finance.

We consider a simple plain vanilla option pricing problem with only one underlying asset, constant
volatility, and constant risk-free interest rate. Let V(S, t) be a bivariate function defined on R+ × [0, T],
describing the price of the option. It is generally driven by the following partial differential equation
(Black–Scholes equation) [22]:

∂V
∂t
− 1

2
σ2S2 · ∂2V

∂S2 − rS · ∂V
∂S

+ r ·V = 0, (S, t) ∈ R+ × (0, T), (17)

V(S, 0) = g(S), S ∈ (0, Smax), (18)

V(0, t) = h0(t), t ∈ (0, T), (19)

V(Smax, t) = hmax(t), t ∈ (0, T), (20)

where S and σ are the price and the constant volatility of the underlying asset, respectively, and r is the
constant risk-free interest rate. The goal of this section is to provide a scheme for applying the GFPP
method to find numerical solutions to the partial differential equation.

Let M ∈ Z+ and t` = ` · λ, where λ = T
M , ` = 0, 1, . . . , M. For the sake of simplicity, we denote by V`

the functions of variable S determined by V`(S) = V(S, t`), and let L(V) = − 1
2 σ2S2 · ∂2V

∂S2 − rS · ∂V
∂S + r ·V.

By the Crank–Nicolson discretization of (17)–(20), we obtain the following scheme:

V`+1 −V`

τ
+
L(V`+1) + L(V`)

2
= 0, (21)

V0(S) = g(S), (22)

V`+1(0) = h0(t`+1), (23)

V`+1(Smax) = hmax(t`+1), (24)

where ` = 0, 1, . . . , M − 1. Using this scheme, a numerical solution to the problem (17)–(20) can be
obtained inductively with respect to t`, ` = 0, 1, . . . , M− 1. It is important to stress that Equation (21)
with unknown function V`+1 and two boundary conditions (23) and (24) is a two point boundary value
problem. Therefore, we apply the proposed above GFPP method for finding its numerical solution.
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Below, we consider the European put option problem [23] as a particular case of Black–Scholes
equation (17) with the following boundary and initial conditions:

V(0, t) = Ke−rt, t ∈ (0, T),

V(Smax, t) = 0, t ∈ (0, T),

V(S, 0) = max(K− S, 0), S ∈ (0, Smax),

where r = 0.0176, σ = 0.4594, T = 1/3, K = 4000 (strike price (Euro)) and Smax = 4K. The analytic form
of the solution to this problem is known and given in [23] as follows:

V(S, t) = Ke−rtN(−d2)− SN(−d1),

where

d1 =
log(S/K) + (r + σ2/2)t

σ
√

t
, d2 =

log(S/K) + (r− σ2/2)t
σ
√

t

and

N(c) =
1

2π

∫ c

−∞
exp

(
− x2

2

)
dx.

When applying the proposed scheme to this example, we choose M = 1000 to make the time step
λ = 1/3000 sufficiently small. This guarantees that the approximation error depends mainly on the
performance of the GFPP method. Moreover, for the sake of simplicity, we choose the triangular uniform
fuzzy partition and work with up to the second degree polynomials (m = 1,2). To evaluate the quality of
the obtained approximate numerical solutions, we use the relative error introduced in Section 4. Below in
Table 4, we show the relative error estimation at the final time moment T = 1/3. The obtained results are
compared with those obtained by the Discontinuous Galerkin Method (DGM) discussed in [24]. To be as
fair as possible, we compare with the piecewise linear and piecewise quadratic DGM only. The results in
Table 4 demonstrate the superiority of the proposed method against the traditional DGM.

Table 4. The error estimation of numerical solutions to the European put option.

# Basis Linear # Basis Quadratic

Functions GFPP DGM Functions GFPP DGM

16 1.14× 10−2 4.64× 10−2 12 1.08× 10−2 4.69× 10−2

32 3.35× 10−3 1.69× 10−2 24 1.99× 10−3 5.08× 10−3

64 9.08× 10−4 6.33× 10−3 48 2.63× 10−4 9.08× 10−4

128 2.49× 10−4 2.10× 10−3 96 2.80× 10−5 1.42× 10−4

256 6.35× 10−5 5.22× 10−4 192 2.21× 10−5 2.63× 10−5

512 2.31× 10−5 3.33× 10−4 384 1.51× 10−5 1.67× 10−5

6. Conclusions

In this paper, we introduced a novel approach to the methodology of solving two-point boundary
value problem using modification of the Ritz–Galerkin technique. In particular, we considered the so-called
weak solvability and proposed a new approach to the construction of test spaces. Our proposal differs
from the Ritz–Galerkin technique in having a two-parameterized family of test spaces, opposite to the
one-parameterized case. It has been inspired by the higher degree F-transform with respect to a generalized
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uniform fuzzy partition. We tested the proposed method on various representatives of typical boundary
value problems. To raise the importance of the proposed technique, we considered its application to
a real-life problem—the option pricing policy. The obtained empirical results show better efficiency in
comparison with the traditional Ritz–Galerkin methods.
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18. Holčapek, M.; Nguyen, L.; Tichý, T. Polynomial alias higher degree fuzzy transform of complex-valued functions.
Fuzzy Sets Syst. 2018, 342, 1–31. [CrossRef]

19. Stein, E.M. Singular Integrals and Differentiability Properties of Functions; Princeton University Press: Princeton, NJ,
USA, 1970; Volume 2.

20. Ciarlet, P.G. The Finite Element Method for Elliptic Problems; North-Holland Publishing Company: Amsterdam,
The Netherlands, 2002; Volume 40.
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